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Abstract

“Background subtraction” is an old technique for
finding moving objects in a video sequence—for
example, cars driving on a freeway. The idea is
that subtracting the current image from a time-
averaged background image will leave only non-
stationary objects. It is, however, a crude ap-
proximation to the task of classifying each pixel
of the current image; it fails with slow-moving
objects and does not distinguish shadows from
moving objects. The basic idea of this paper is
that we can classify each pixel using a model of
how that pixel looks when it is part of different
classes. We learn a mixture-of-Gaussians classi-
fication model for each pixel using an unsuper-
vised technique—an efficient, incremental ver-
sion of EM. Unlike the standard image-averaging
approach, this automatically updates the mixture
component for each class according to likelihood
of membership; hence slow-moving objects are
handled perfectly. Our approach also identifies
and eliminates shadows much more effectively
than other techniques such as thresholding. Ap-
plication of this method as part of the Roadwatch
traffic surveillance project is expected to result in
significant improvements in vehicle identification
and tracking.

1 Introduction

Finding moving objects in image sequences is one of the
most important tasks in computer vision. For many years,
the “obvious” approach has been first to compute the sta-
tionary background image, and then to identify the moving
objects as those pixels in the image that differ significantly
from the background. We will call this the background sub-
traction approach. The details of the method are described
briefly in Section 2.

In earlier work as part of the Roadwatch project at Berkeley,

it was shown that background subtraction can provide an
effective means of locating and tracking moving vehicles in
freeway traffic [Koller et al., 1994]. Moving shadows do,
however, cause serious problems, since they differ from the
background image and are therefore identified as parts of
the moving objects. Moreover, when traffic is slow-moving
or stationary, the background image becomes corrupted by
the vehicles themselves.

These problems arise from an oversimplified view of the
task. What we would like to do is to classify each pixel of
each image as moving object, shadow, or background. The
basic idea of this paper is that we can classify each pixel
using a probabilistic model of how that pixel looks when it
is part of different classes (Section 3). For example, a given
road pixel in shadow looks different from the same pixel
in sunlight or as part of a vehicle. Because the appearance
of the pixel in shadow is independent of the object that is
casting the shadow, the shadow model for the pixel is rel-
atively constant, like the background model. Furthermore,
the probabilistic classification of the current pixel value can
be used to update the models appropriately, so that vehicle
pixels do not become mixed in with the background model
when traffic is moving slowly.

Essentially, the pixel models describe the probability dis-
tribution of the appearance of the pixel conditioned on its
type, where the type is a hidden variable. In this paper, the
pixel appearance is modeled as a mixture of Gaussians, and
is learned using the EM algorithm [Dempster et al., 1977].
The details are given in Section 4, where we also describe an
incremental version of the algorithm that provides real-time
performance. We show that our approach is successful in
coping with slow-moving objects and shadows (Section 5).

There is a large literature (several hundred papers in the last
decade, and several annual conferences) on the application
of EM and related techniques to image reconstruction, im-
age segmentation, and motion identification. Applications
include optical astronomy, laser range finders, synthetic
aperture radar, MRI, PET, microscopy, and X-rays. Almost
without exception, EM is used to identify classes of pixels
within an image or classes of motions within an opticalflow
field, on the assumption that similar pixels can be grouped
together. Typical examples include Samadani [1995], Jep-
son and Black [1993], Sawhney and Ayer [1996], and Weiss



and Adelson [1996]. To our knowledge, the use of EM to
model the appearance of a single pixel over time is novel,
and provides a natural probabilistic generalization of a clas-
sical deterministic method.

2 Background subtraction

The roots of background subtraction go back to the 19th
century, when it was shown that the background image
could be obtained simply by exposing a film for a period of
time much longer than the time required for moving objects
to traverse the field of view. Thus, in its simplest form, the
background image is the long-term average image:

B(x, y, t) =
1
t

t

t =1

I(x, y, t )

where I(x, y, t) is the instantaneous pixel value for the (x, y)
pixel at time t. This can also be computed incrementally:

B(x, y, t) = (t 1)
t

B(x, y, t 1) + 1
t
I(x, y, t)

The variance can also be computed incrementally, and mov-
ing objects can be identified by thresholding the Maha-
lanobis distance between I(x, y, t) and B(x, y, t).

One obvious problem with this approach is that lighting
conditions change over time. This can be handled using
a moving-window average, or, more efficiently, using ex-
ponential forgetting. In the latter scheme, each image’s
contribution to the background image is weighted so as to
decrease exponentially as it recedes into the past. This is
implemented by the update equation

B(x, y, t) = (1 )B(x, y, t 1) + I(x, y, t) (1)

where 1/ is the time constant of the forgetting process.
Unlike the moving-window method, this requires no addi-
tional storage. Exponential forgetting is equivalent to using
a Kalman filter to track the background image, as done
in [Koller et al., 1994].

Figure 1 shows a typical result from the method operating
under favourable conditions. Although there are a few
stray pixels identified as “moving” due to image noise, the
vehicles are outlined reasonably well. Standard methods
can be used to group the pixels belonging to each vehicle
and to compute and track a smoothed convex hull.

The sharp-eyed reader will have spotted that the background
subtraction method succeeds not only in detecting moving
vehicles, but also their shadows.1 In practice, shadows
have been one of the most serious problems for video-
based traffic surveillance in both commercial and research

1Some of the road markings are also labelled as “moving”—
this is due to camera jitter. Also, the method fails to detect those
parts of a moving vehicle that are approximately the same intensity
as the background. Such problems are unavoidable in any pixel-
based method.

systems [Michalopoulos, 1991], sometimes resulting in un-
dercounting or overcounting by as much as 50%. It might
be thought that some simple fix such as lightening or thresh-
olding might work to eliminate shadows, but these schemes
may fail because parts of the road may be shadowed by
buildings, and because of road markings—a shadow falling
on a white line can still result in a brighter pixel than sun-
light falling on tarmac [Kilger, 1992].

As mentioned in the introduction, another serious problem
arises when objects are slow-moving or temporarily station-
ary. Here, “slow-moving” means that the time of traversal
is non-negligible compared with 1/ , the time constant of
the exponential forgetting process in Equation (1). When
this happens, the background image becomes corrupted and
object detection fails completely (Figure 2).

The solution used by Koller et al. [1994] was to update
the background image with only those pixels not identi-
fied as moving objects. This is reasonably effective, but
still has problems with very slow traffic because erroneous
pixel classifications perturb the background image, which
increases the number of erroneous classifications, and so
on. Essentially, the distribution of pixels erroneously clas-
sified as non-moving is biased away from the true mean of
the background image, causing instability in the process.

Despite these problems, the idea behind this approach is
essentially right: each pixel must be classified before being
used to update the background model. The next section
shows how this can be done properly, using a probabilistic
classifier and a stable updating algorithm. This approach
also solves the problem with shadows.

3 Pixel models

Consider a single pixel and the distribution of its values over
time. Some of the time it will be in its “normal” background
state—for example, a small area of the road surface. Some
of the time it may be in the shadow of moving vehicles, and
some of the time it may be part of a vehicle. Thus, in the
case of traffic surveillance, we can think of the distribution
of values ix,y of a pixel (x, y) as the weighted sum of three
distributions rx,y (road), sx,y (shadow), and vx,y (vehicle):

ix,y = wx,y (rx,y, sx,y, vx,y)

These distributions are subscripted to emphasize that they
differ from pixel to pixel; rx,y is a probability distribution
for the way that this specific pixel looks when it is showing
unshadowed road at the corresponding physical location.
It is essential to have different models for each pixels, be-
cause, for example, some parts of the image may correspond
to white road markings, others to dark streaks in the cen-
ters of lanes, and still others to lamp-posts (see Figure 1).
The weights are also subscripted, because some pixels may
spend more time in shadow or vehicle than others.

Figures 3(a) and 3(b) show the empirical distribution of in-
tensity and RGB values, respectively, for pixel (160,170),
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Figure 1: (a) Background image computed during fast-moving traffic using exponential forgetting. (b) Current image
(frame 100). (c) Thresholded difference image showing pixels associated with moving objects.                                    

(a) (b) (c)

Figure 2: (a) Background image computed during slow-moving traffic using exponential forgetting. (b) Current image
(frame 925). (c) Thresholded difference image showing pixels associated with moving objects.

which is roughly two-thirds of the way towards the bot-
tom right corner of the image. These data display the be-
haviour one would expect: the shadow and road pixels form
two fairly well-defined peaks, while the vehicle pixels are
widely scattered. As a first approximation, we assume that
each distribution can be modelled as a Gaussian. Using
the techniques described in Section 4, we can fit three-
component mixture models to the data. Figure 3(c) shows
the fitted model for intensity values, and Figure 3(d) shows
a scatter plot for the fitted RGB model. The fitted models
are reasonably good (but far from ideal) approximations to
the empirical data.

The model for pixel (x, y) is parameterized by the parameters
O = wl, l,Yl : l r, s, v so that wx,y = (wr,ws,wv),
rx,y N( r,Yr), and so on.2 Our models apply in two
settings. In the first, we examine intensity levels, and and
Y are scalars. In the second, we examine RGB values, and

is a 3 1 vector and Y is a 3 3 matrix. The derivations
are identical in the two cases. so we do not distinguish
between them in the following discussion.

Let i be a pixel value (either an intensity level or a vector of
RGB values). Let L be a random variable denoting the label
of the pixel in this image. Our model defines the probability

2For clarity, we omit the subscript x, y from the names of these
parameters. However, it should be clear that there is a different
set of parameters for pixel position x, y.

that L = l and I(x, y, t) = i to be
P(L = l, I(x, y, t) = i O) =

wl (2 )
d
2 Yl

1
2 exp 1

2
(i l)TYl 1(i l)

where d is the dimension of each pixel value (1 or 3 in our
case). Given these probabilities, we can classify the pixel
value. Namely, we choose the class lwith highest posteriori
probability P(L = l I(x, y, t)).

4 Algorithms for learning pixel models

This section begins by describing the standard EM algo-
rithm for learning mixture models from observed data with
the class variable hidden. We then describe an efficient,
incremental version suitable for real-time implementation.

4.1 EM for mixture models

Suppose we observe a sequence of pictures 1, . . . , T, and
that I(x, y, t) is the value of pixel (x, y) in the tth image. We
want to learn the parameters of the distributions rx,y, sx,y, vx,y
as well as the relative weights wx,y. To formally set up
the learning problem, we define the likelihood of a set of
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Figure 3: (a) Empirical distribution of intensity values for pixel (160,170) over 1000 frames. (b) Scatter plot of RGB
values for the same pixel. (c) Fitted three-component Gaussian mixture model for the data in (a). (d) Scatter plot of 1000
randomly-generated data points from a fitted three-component Gaussian mixture model for the data in (b).

parameters O to be the probability of the data given O:
WT
t=1P(L = lt, I(x, y, t) O). We want to choose the parame-

ters that maximize the likelihood.

We begin by examining a simpler problem. Suppose that
the images were annotated by the labels of all pixels, and
suppose that Lt(x, y) is the label of x, y in the tth image. In
this case, learning these parameters would be easy. Stan-
dard arguments show that the optimal settings of parameters
for this case can be computed as follows. We define the suf-
ficient statistics for this mixture estimation to beNl,Ml, and
Zl, where

– Nl(x, y) is the number of images for which Lt(x, y) = l;
– Ml(x, y) is the sum of the pixel values for which
Lt(x, y) = l, which we write as t=1,...,T, Lt=l I(x, y, t);
and

– Zl(x, y) is given by 1
Nl(x,y) t=1,...,T, Lt=l I(x, y, t)

I(x, y, t)T , the sum of the outer products of the input
vectors with themselves.

From these sufficient statistics, we can compute wl, l, and
Yl as:

wl = Nl
l Nl

(2)

l = Ml

Nl
(3)

Yl = 1
Nl
Zl T

l l (4)

Unfortunately, we do not have labels Lt for our training
data. Thus, we define the likelihood with respect to the
observable data: L(O) = WT

t=1P(I(x, y, t) O). Learning
mixture models is one of the classic examples of missing
values. The standard solution in the literature is the ex-
pectation maximization algorithm [Dempster et al., 1977;
McLachlan and Krishnan, 1997]. Roughly speaking, the
EM algorithm explores a sequence of parameter settings,
where each setting is found by using the previous one to
classify the data. More precisely, assume that we have
some parameter setting Ok. We can use the probability of



different labels according to Ok as an estimate of their true
distribution. We now reestimate the parameters, where we
“split” each vector I(x, y, t) between the different Gaussians
according to these proportions. Formally, we compute the
expected value of the sufficient statistics as follows:

E[Nl Ok] =
T

t=1

P(Lt = l I(x, y, t),Ok)

E[Ml Ok] =
T

t=1

P(Lt = l I(x, y, t),Ok)I(x, y, t)

E[Zl Ok] =
T

t=1

P(Lt = l I(x, y, t),Ok)
I(x, y, t) I(x, y, t)T

We then define Ok+1 by using Equations 2–4 with the ex-
pected sufficient statistics.

This process has two important properties. First, L(Ok+1)
L(Ok). That is, Ok+1 provides a better approximation to the
distribution of the data. Second, if Ok+1 = Ok, then Ok is
a stationary point (e.g., a local maximum) of the likelihood
function. Combining these two properties, we see that this
procedure will eventually converge to a stationary point
[McLachlan and Krishnan, 1997]. If we start the process
several times with different setting of O0, we hope to find
a good approximation to the optimal setting. In addition,
for our application, we must have a way to identify which
component of the model should be labelled as road, which
as shadow, and which as vehicle. A heuristic solution to
this problem is described in Section 5

4.2 Incremental EM

The standard EM procedure we just reviewed requires us
to store the values of pixel (x, y) for all the images we have
observed. This is clearly impractical for our application.
Moreover, batch processing of the complete image sequence
is not possible in a real-time setting. We now describe an
incremental variant of EM that does not require storing the
data. This procedure was introduced by Nowlan [1991],
and is best understood in terms of the results of Neal and
Hinton [1993].

Neal and Hinton show that we can think of the EM process
as continually adjusting the sufficient statistics. In this view,
on each iteration when we process an instance, we remove
its previous contribution to the sum and replace it with a
new one. Thus, for example, when we update Nl, we re-
move P(Lt = l I(x, y, t),Ok ) and add P(Lt = l I(x, y, t),Ok),
where Ok are the parameter settings we used to com-
pute the previous estimated statistics from I(x, y, t), and
Ok are the current parameter settings. Similarly, to up-
date Ml, we remove P(Lt = l I(x, y, t),Ok )I(x, y, t) and add
P(Lt = l I(x, y, t),Ok)I(x, y, t). Neal and Hinton show that
after each instance is processed, the likelihood of the data
increases.

This argument motivates the following incremental ap-
proach. Whenever we observe a new instance, we add

its contribution to the sufficient statistics. This means that
we are increasing our training set at each step, yet we never
reprocess the previous instances in the training set. This
procedure is no longer guaranteed to be monotonic in L, but
on the average this process increases L. Thus, in the long
run, this process converges to a local maximum with high
probability.

The resulting procedure for each pixel (x, y) has the follow-
ing structure:

Initialize parameters O.
t 0
for l r, s, v

Nl kwl
Ml kwl l
Zl kwl (Yl + l

T
l )

do forever
t t + 1
for l r, s, v

NL NL + P(Lt = l I(x, y, t),O)
Ml Ml + P(Lt = l I(x, y, t),O)I(x, y, t)
Zl Zl + P(Lt = l I(x, y, t),O)I(x, y, t)I(x, y, t)T

Compute O from NL,Ml, Zl .

The initialization step of the procedure sets the statistics to
be the expected statistics for the initial choice of O. Then,
in each iteration we add the expected statistics for the new
instance to the accumulated statistics.

This procedure performs quite well, and the reported ex-
periments in Section 5 are based on it. However, since the
sufficient statistics terms keep growing, this procedure can
run into problems in the long run. Moreover, the procedure
never removes the contributions of old instances from the
sufficient statistics. Intuitively, the models that were used
to compute the expectation for these instances is quite out
of date. Thus, the procedure would perform better if these
instances were removed. To deal with both problems, we
can introduce exponential forgetting, as done in Section 2.
A version of Equation (1) can be applied to the incremental
EM process quite straightforwardly. We are in the process
of experimenting with this variant.

5 Empirical results

Our general procedure for processing a video sequence is
as follows:

1. Initialize mixture models for each pixel with a weak
prior;

2. For each new frame:

(a) Update the estimated mixture model for each
pixel using incremental EM;

(b) Heuristically label the mixture components;
(c) Classify each pixel according the its current mix-

ture model.
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Figure 4: (a) Original image (frame 925). (b) Pixels identified as shadow. (c) Image with shadow pixels replaced by
corresponding road value. (d) Mask showing pixels classified as vehicles.

The heuristic labelling process is needed in cases where the
mixture components are not in the same order as the prior
model indicates. For example, the prior model expects that
vehicle pixels will be brighter, in general, than road pixels.
For white road markings, the brightness order is reversed.
Our heuristics are as follows: label the darkest component
as shadow; of the remaining two components, label the one
with the largest variance as vehicle and the other as road.

Sample results are shown in Figure 4, for the same image
as shown in Figure 2. We show the original image and
the identified shadow pixels, together with an image result-
ing from replacing shadow pixels with the corresponding
road value. The mask image showing the vehicle pixels
is much cleaner than that obtained by background subtrac-
tion. At the time of writing, we are beginning the exper-
iments needed to show that this improvement carries over
into vehicle detection and tracking performance. We are

also rerunning our experiments with RGB models instead
of intensity models; we assume that use of colour informa-
tion will largely eliminate the tendency of darker vehicles
to disappear, since very few vehicles have the same hue as
the road, even if they have the same intensity values. We
note that the incremental version of EM yields an algorithm
capable of running in real time on a suitable platform. Our
target hardware platform, to which we hope to port the al-
gorithm, consists of 12 Texas Instruments C40 DSP chips
running in parallel.

6 Conclusions and further work

We have shown that a probabilistic approach to pixel classi-
fication, together with an unsupervised learning algorithm



for pixel models, can significantly improve the detection of
moving objects in video sequences. This is just one sample
point in a vast space of possible research on the application
of probabilistic inference to the task of understanding sen-
sory input, almost all of which is going on outside the AI
community.

Several improvements are needed in our system before it
can be fielded. The most important from the point of view of
robustness is the need for better initialization and labelling
of models. Our heuristic approach may not work well
in extremes of lighting conditions. Currently, our weak
prior is equivalent to an initial model with a certain amount
of evidential support—we are not able, for example, to
state that the vehicle component is expected to have large
variance but that its mean is very uncertain. Such priors
require a MAP or penalty-based version of EM. This should
require little or no additional computational expense and
may result in significantly more robust performance.

We expect to reach the limits of purely pixel-based tech-
niques fairly soon. Using more background knowledge,
encoded as probabilistic models,one can expect much better
performance. For example, temporal and spatial contiguity
are strong constraints that we currently ignore—or rather,
they are enforced in the grouping code, which is entirely ad
hoc. Temporal contiguity in a pixel’s classification can be
enforced using a simple Markov model in which any given
classification has a high probability of persisting. Similar
schemes can be used for spatial contiguity, but these require
Markov networks that impose a high computational burden.
In any case, this level of models should allow extensions
to, e.g., moving cameras, and should interface nicely with
the higher-level dynamic belief network models of vehicle
behaviour used in [Huang et al., 1994] to predict motions
and to detect events such as stalled vehicles and accidents.
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