
First-Order Models for POMDPs

Siddharth Srivastava
Computer Science Division

University of California, Berkeley

Stuart Russell
Computer Science Division

University of California, Berkeley

Avi Pfeffer
Charles River Analytics

Abstract

Interest in relational and first-order lan-
guages for probability models has grown
rapidly in recent years, and with it the pos-
sibility of extending such languages to han-
dle decision processes—both fully and par-
tially observable. We examine the prob-
lem of extending a first-order, open-universe
language to describe POMDPs and identify
non-trivial representational issues in describ-
ing an agent’s capability for observation and
action—issues that were avoided in previous
work only by making strong and restrictive
assumptions. We present a solution based
on ideas from modal logic, and show how to
handle cases like being able to act upon an
object that has been detected through one’s
observations.

1 Introduction

Relational and first-order languages for probability
models (as well as their close relatives the probabilistic
programming languages) constitute an important de-
velopment for AI in general and for machine learning
in particular [Getoor and Taskar, 2007]. The avail-
ability of such expressive languages should make it
possible to write not just complex probability mod-
els but also complex decision models—the foundation
for rational behavior. To achieve this goal, probabilis-
tic languages can be extended with information about
actions, observations, and rewards. As we show, how-
ever, such extensions raise significant difficulties. We
argue that as machine learning and probabilistic AI
researchers grapple with these more expressive repre-
sentations, it will be necessary to use techniques from
logical AI in conjunction with probabilistic techniques
to produce representations that are both expressive
enough to model the real world and mean exactly what

is intended. In this paper, we use such techniques to
develop a representation of first-order decision models.

We begin in §2 by describing partially observable
Markov decision processes (POMDPs), which are a
very general form of decision model. As a “warm-
up” for the real problem, we show how POMDPs may
be defined as directed graphical models by extending
dynamic Bayesian networks (DBNs). We focus in par-
ticular on the observation model, which gives the dis-
tribution over anticipated sensor readings given the
current world state. When we move to the relational
or first-order setting, we have to contend with the fact
that observations, rather than being values of vari-
ables, become sentences describing properties of ob-
jects using names for those objects. It turns out to
be quite tricky to say in a formal way what a given
sensor can or cannot supply in the way of observa-
tion sentences; expressing the agent’s capability for
action is also tricky, especially when the agent can act
on objects whose existence has been determined only
through its sensors. Consider the following example:

Consider an airport security system whose sensors in-
clude passport scanners at check-in kiosks, boarding
pass scanners, X-ray scanners, etc. A person pass-
ing through the airport generates observations from
each of these scanners, while each scanner generates
a sequence of observations from the sequence of per-
sons passing through it. Thus, the passport scanner
at location A may generate observations of the form
IDName(pA,1) = Bond, IDNumber(pA,1) = 174666007,
HeightOnID(pA,1) = 185cm, . . .; a boarding-pass scan-
ner at B may generate a sequence of the form
Destination(pB,1) = ..., IDNumber(pB,1) = 174666007,
and finally, an X-ray scanner at C may generate ob-
servations of the form MeasuredHeight(pC,1) = 171cm,
MeasuredHeight(pC,2) = In these observation
streams, the symbols pA,i, pB,i and pC,i are place-
holder identifiers (essentially skolem constants or
“gensyms” in Lisp terminology). Although each use of
a given symbol necessarily corresponds to the same in-

dividual, different symbols may or may not correspond
to different individuals; thus, it is possible that pA,1

and pC,2 refer to the same person, while it is also pos-
sible that pA,1 and pB,1 refer to different people even
though they are carrying a passport and a boarding pass
with the same ID number.

Such a scenario can be modeled probabilistically
by a first-order, open-universe language such as
BLOG [Milch et al., 2005], which enables reasoning
about identity uncertainty. To make decisions—such
as searching or arresting a given individual—we need
a POMDP with rewards, actions, and an observation
model. Informally, we might say, “Everyone in the
security line will get scanned”: ∀x InLine(x) →
Scanned(x), and “For everyone who gets scanned, we
will observe a measured height”:

∀xScanned(x)→ Observable(MeasuredHeight(x)) (1)

So far, so good. Now, suppose we know, “Johnny and
his mother are in the security line.” While it is true, in
a sense, that we will get a measured height for Johnny’s
mother, it is not true that the X-ray scanner will tell
us MeasuredHeight(Mother(Johnny)) = 171cm. Tech-
nically, the problem arises because we are trying to
substitute Mother(Johnny) for x in the universally
quantified sentence (1), but one occurrence of x is in-
side Observable(·), which is a modal operator. Prac-
tically, the problem arises because the sensor doesn’t
know who Johnny’s mother is. The same issue can
arise on the action side: telling the security guard to
“Arrest Johnny’s mother” doesn’t work if the guard
cannot execute that action as stated.

We provide a general solution to the problem of rep-
resenting sensing and action in open universe models
(§3). Our solution is based on the idea of defining
models of sensors and actuators and a sensori-motor
stream that connects them (§3.2). We avoid the pit-
falls of standard solutions by defining meta-predicates
for concepts such as the ability to observe something
or the ability to do something (§3.3). We define a no-
tion of syntactic entailment for these meta-predicates
and a semantics for them and show that syntactic en-
tailment is sound and complete with respect to the
semantics (§3.4). We also present several examples
showing how our representation captures the intuitive
meaning of situations (§4). We also discuss the ways in
which previous attempts to define first-order POMDPs
have used strongly restricted languages to avoid these
problems altogether. These restrictions do not allow
an agent to walk into a room, see something, and pick
it up (§5).

2 POMDPs

Definition 1 (POMDP) A POMDP is defined as
〈S,A,O, T,Ω, R〉, where S,A,O are finite sets of state,
action and observation symbols; T (St+1 = s′ | St =
s,At = a) defines the transition model, i.e., the prob-
ability of reaching state s′ if action a is applied in
state s; Ω(Ot+1 = o | St+1 = s′, At = a) defines the
sensor model, i.e., the probability of receiving an ob-
servation o when state s′ is reached via action a, and
R : S × A → R defines the reward that the agent
receives on applying a given action at a given state.

A POMDP defines a decision-theoretic planning prob-
lem for an agent. At every step, the agent executes an
action from A, then the environment enters a new state
(according to T), then the agent receives an observa-
tion and a reward according to Ω and R. Typically,
rewards are aggregated via an infinite discounted sum,
so the optimal policy maximizes the expected value of∑

i=1...∞ γi · r(i) where r(i) is the reward obtained at
timestep i and γ < 1 is a constant.

A DBN [Dean and Kanazawa, 1989] describes a fac-
tored, homogeneous, first-order Markov process as a
“two-slice” Bayesian network showing how variables
at time t + 1 depend on variables at t. At each time
step, any subset of variables may be observed. A dy-
namic decision network or DDN [Russell and Norvig,
1995] represents a POMDP using the the following ad-
ditional node types:

• An action variable At whose values are the possi-
ble actions at time t. For now, assume this set of
actions is fixed. The POMDP’s transition model
is represented through the conditional dependence
of variables at t+ 1 on the value of At and other
variables at t.

• A reward variable Rt, which depends determinis-
tically on At and other variables at time t.

• A set of Boolean observability variables ObsXt,
one for each ordinary variable Xt. Each observ-
ability variable is necessarily observed at each
time step, and ObsXt is true iff Xt is observed.
Observability variables may have as parents other
observability variables, ordinary variables, or the
preceding action variable. 1 The DBN with X
and ObsX variables defines Ω.

Russell and Norvig’s description of DDNs [Russell and
Norvig, 1995] does not mention the need for a model,
and implicitly assumes that a fixed subset of vari-
ables is always observed. (In our model, an always-

1Observability variables capture the full range of pos-
sibilities in the spectrum from missing-completely-at-
random to not-missing-at-random (NMAR) data [Little
and Rubin, 2002].

observable Xt has an ObsXt with a deterministic prior
set to 1.) It should be clear, however, that different
observability models correspond to different POMDPs.

3 First-Order Representation

Structures, States and Transitions Given a set
of types T = {τ1, . . . τk}, we define a first-order vocab-
ulary as a set of function symbols with their type sig-
natures. Constant symbols are represented as zero-ary
function symbols and predicates as Boolean functions.
Given a first-order vocabulary, a structure is defined
as a tuple 〈U , I〉 where U = 〈U1, . . .Uk〉 and each Ui
is a set of elements of type τi ∈ T . The interpreta-
tion I has, for each function symbol in the vocabulary,
a function of the corresponding type signature over
U1, . . . ,Uk. WLOG, we assume that every vocabulary
is defined over a set of types that includes the type
Timestep. We assume the set of values for Timestep
to be the set of natural numbers. Functions whose
last argument is of type timestep are called fluents.
We represent states and possible worlds as structures.

We represent actions using sets of formulas defining
the value of a fluent at timestep t+ 1 in terms of non-
fluents and fluents at timestep t. The reward func-
tion can be expressed as a fluent in a similar manner.
This approach is similar to writing successor state ax-
ioms in situation calculus [Reiter, 2001]. In order to
define probabilistic action effects these ideas can be
easily extended to include a probability distribution
for all possible action effects. Sanner et al. [Sanner
and Boutilier, 2009] describe one such approach. In
order to make the discussion independent of any par-
ticular language of implementation, we will formalize
our ideas in the language of first-order logic (FOL).
We note however that languages for writing gener-
ative first-order probabilistic models like BLOG can
easily express sentences necessary to formulate prob-
abilistic action updates. In particular, in BLOG the
update for a fluent f(x1, . . . , xk) can be expressed as
a dependency of the form if ϕ1 hen CPD1() elseif ϕ2

then CPD2() ; else CPDn();, where the conditions ϕi

are arbitrary FOL formulas with free variables from
{x1, . . . , xn} and CPDs are probability distributions
conditioned on expressions over {x1, . . . , xn}. E.g., the
following BLOG expression describes the update on
the predicate atScanner(x, t):

atScanner(x, t+ 1) {if applied sendToScanner(x,t)

then ∼ followedInstructionCPD();

elseif atScanner(x, t)

then ∼ leftScannerCPD();

else ∼ defaultAtScannerCPD()}

The first clause of this update states that if send-
ToScanner was applied at t then the likelihood that
x is at scanner at t + 1 is given by a probability dis-
tribution followedInstructionCPD. Successive lines can
be understood similarly. We define a set A of func-
tions that indicate whether an action is applied and
denote the function corresponding to action a as ap-
plied a. These formulations do not address a crucial
point: which terms can be used in action arguments?
As implied in the introduction, an agent’s sensors may
need to provide information about argument values.
We formalize this below.

3.1 Challenges in Defining Sensor and
Actuator Models

For clarity in discussion, we will motivate the problems
in expressing observation and action models as well as
their solutions in non-deterministic, partially observ-
able situations where probabilistic information about
possible action effects or observations is not available.
This will be particularly helpful because the biggest
problems in formulating FO-POMDPs are those of de-
signing and utilizing appropriate FOL constructs. As
we noted for the case of actions above, our solutions
generalize easily to probabilistic settings. This is noted
explicitly where needed.

Generalizing the obsX idea discussed in §2 to first-
order representations raises several questions. First,
consider the language in which observations are ex-
pressed. Suppose the sensor reports an observation:
MeasuredHeight(p17)=171cm. Is p17 an element of the
universe or a constant symbol? The two possibili-
ties correspond to model-theoretic and proof-theoretic
frameworks respectively. Both present numerous am-
biguities. In order to plan in partially observable set-
tings the agent maintains a belief state, which is in gen-
eral, a representation of the set of possible real states.
On receiving the observation, the agent must update
its belief state to eliminate all possible worlds where
the interpretation of MeasuredHeight for the element
p17 is not 171cm. In a model-theoretic framework,
the observed sentence reflects a fact about the inter-
pretation of MeasuredHeight. The problem with this
framework is that such information is almost impossi-
ble to obtain, because the agent doesn’t know that p17
is the one being sensed.

In a proof-theoretic framework, belief is updated us-
ing inference rules over axioms about possible observa-
tions. A natural generalization of the obsX idea is to
write rules of the form: ∀x̄ ϕ(x̄) → observable(ψ(x̄)),
where ϕ and ψ are arbitrary FOL formulas. WLOG,
ψ and ϕ can be considered to be predicates defined
using FOL formulas with variables in x̄ as free vari-
ables. The interpretation of this formula would be “if

ϕ(x̄) holds, then ψ(x̄) is observed”. Problems with this
framework that were discussed in the introduction are
consequences of the nature of universal instantiation
in FOL. The axiom of universal instantiation in FOL
states that if ∀x α(x) is true, then for any ground term
t, α(t/x) (the version of α(x) where all free occurrences
of x are replaced by t) must also be true. Therefore,
the same erroneous conclusions follow if we let α(x) be
any FOL formula that states “if x is at the scanner,
then the measured height of x is observable”. Intu-
itively, as noted in the introduction, we would like to
be able to refer to the same object (e.g. “Wilma” ver-
sus “mother of Jonny”) in different terms, such that
one’s height is observable and the other’s is not, even
though the precondition (scanned) holds for both.

3.2 System-Independent Sensor and
Actuator Specifications

We begin our formal solution to the problems noted
above by defining uninterpreted sensor and actuator
specifications denoting the types of values that sensors
generate and actuators accept.

Definition 2 (Sensor Specification) A Sensor speci-
fication S is a tuple 〈T̄S , τS〉 where T̄S is a vector of
types and τS is a type.

T̄S defines the type-vector of observation values that
S produces and τS defines the type of new sym-
bols that it may generate and communicate to an
actuator. An X-ray sensor can be specified as
〈〈PersonRef, Real〉, 〈PersonRef〉〉. Such a sensor can
generate new symbols of type PersonRef in the form
new(pr17), or tuples of the form 〈pr17, 171cm〉. The
interpretation of these values is modelled using gen-
erative models in the next section. Intuitively, the X-
ray scanner may generate PersonRef symbols for every
person that passes through it, and return a mapping
from these symbols to the measured heights of the per-
sons they represent.

Definition 3 (Actuator Specification) An actuator
specification A is a tuple 〈a1, t̄1〉 denoting an action
name and a vector of its argument types.

An actuator may be specified as
〈takeSnapshotOfSrc, 〈PersonRef〉〉, denoting a camera
that can take pictures when given an argument
of type PersonRef. In many settings sensors can
communicate knowledge necessary for an actuator
to be able to execute an action. For example, the
X-ray scanner may setup a communication channel
with real-time information about the position of a
person. The scanner indicates that information about
a PersonRef, e.g.. pr17 is available at t by generat-
ing the signal known(pr17, t). We formalize these

channels as sensori-motor streams. These streams
characterize the truly feasible observation and action
signal sequences under given specifications.

Definition 4 (Sensori-Motor Stream) Let S =
〈T̄S , τS〉 be a sensor specification and A =
{〈a1, t̄1〉, . . . 〈ak, t̄k〉} be an actuator specification.
A sensori-motor stream for S and A, denoted
stream(S,A) is a timestep-indexed sequence of sets of
tuples signals(t) such that each element of signals(t) is
either:

• An observation value in the specification S OR
• A new symbol declaration of the form new(u)

where u is a term of type τS OR
• A signal of the form knownSA(u) where new(u)

occurs in ∪i=0,...,t−1signals(i) OR
• An effector signal of the form ai(r̄) where
〈ai, type(r̄)〉 ∈ A; type(r̄) is the vector of types
of elements of r̄, taken in order; and every term
u occurring in r̄ is of the form f(u′) where
knownSA(u′) ∈ signals(t) and f is a determinis-
tic function (one whose interpretation is a unique
function in all possible structures).

3.3 Generative Models for Sensor and
Actuator Specifications

In order to express generative models for given sensor
and actuator specifications, we define a set of meta-
predicates. These meta-predicates signify properties
of the language’s predicates, such as when a certain
predicate’s value will be observed.

Definition 5 (Sensor Model) A sensor model for a
given sensor specification S consists of conditional de-
pendency statements for the following predicates:

• observable(p(x1, . . . , xn), t) where types of
x1, . . . , xn correspond to the vector of observa-
tion types in S, t is of type timestep and p is a
predicate in the generative model’s vocabulary.
• new(x1, t) where x1 the type that can be gener-

ated by S and t is of type timestep.

As noted earlier, p could be a defined func-
tion/predicate. The meta-predicate observable(p(x̄),
t) is true iff the agent receives an observation
about p(x̄) at timestep t. Both new(x, t) and
observable(p(x̄), t) are themselves fully observable at
t because the agent can always determine whether or
not it has received an observation, and if so, the value
of that observation.

Definition 6 (Actuator Model) An actuator model
for an actuator specification A is a dependency state-
ment for doable(a(x1, ..., xn), t), where a and types of
x1, . . . , xn are as specified by A.

Sensori-motor streams are modelled using a commu-
nication model, which consists of dependency state-
ments for known() predicates. The known(x,t) pred-
icate is also observable at timestep t as it is true iff
known(x,t) is generated by the sensor. Thus, doable is
the only meta-predicate that need not always be ob-
servable since it may depend on other state dependent,
partially observable properties.

Sensor-Actuator Initialization Sets of pre-
defined symbols that are new, and those that are al-
ways available to actuators can be initialized by as-
serting expressions of the form ∧c∈Cnew

new(c, 0) and
∀t ∧c∈Cknown

knownSiAj
(c, t) respectively. We will omit

the subscripts from knownSA() predicates when they
are clear from the context.

Example 1 Consider an X-ray scanner spec-
ified as 〈〈PersonRef, Real〉, 〈PersonRef〉〉
and a camera specified as
{〈takeSnapshotOfSrc, 〈PersonRef〉〉, 〈takeSnapshot,
〈Angle, Angle, Zoom〉〉}. FOL formulas modelling this
example are presented in Fig. 1.

3.3.1 Syntactic Entailment and Semantics

In this section we formulate a notion of entailment over
a set of logical axioms that use the meta-predicates
new, observable, known and doable. Note that using
person references as illustrated above does not solve
the problem of incorrect inferences due to the axiom
of universal instantiation. In particular, if the rules
stated in Fig. 1 are treated as standard formulas in
FOL we can substitute variables of type PersonRef
with the function record(Mother(Johnny), 12). The
agent would then expect observations of the form Msd-
HtOfSrc(record(Mother(Johnny)), 12)=... at timestep
12. Clearly, the sensor specification in Eg. 1 does not
allow such observations.

In order to take into account the state of knowl-
edge of a sensor, we distinguish meta-predicates
from the usual, object-predicates because meta-
predicates denote properties of symbols rather than
of objects. Intuitively, even if the agent be-
lieves that pr17=record(Mother(Johnny), t), truth of
observable(MsdHtOfSrc(pr17), t) does not imply ob-
servable(MsdHtOfSrc(record(Mother(Johnny), t)), t).
On the other hand, since object-predicates denote
properties of objects, in every possible structure that
satisfies pr17=record(Mother(Johnny), t), MsdHtOf-
Src(record(Mother(Johnny),t)) = MsdHtOfSrc(pr17)
holds.

We formalize this intuition using terminology from
modal logic. The axiom of universal quantification is
modified in modal logic to state that: if ∀x α(x) is
true, then α(t/x) is true for terms t whose values are

known. Such terms are referred to as rigid designators
and represent the same object in every possible struc-
ture. In our framework, it is clear that the sensor will
know the symbols that it itself generates in addition
to any set of symbols that it may be initialized with,
e.g. numbers and strings. E.g., if a sensor reports a
new image as new(img17), then the symbol img17 is
known to it.

Formally, each sensor is associated with a countably
infinite set of rigid designator symbols in the vocab-
ulary. The new() observation for a rigid designator
makes that symbol available for future observations.
Universal instantiation is modified so that bound vari-
ables that occur in meta-predicates can only be sub-
stituted with rigid designators. Formally, if x occurs
in a meta-predicate in α, then the modified axiom of
universal instantiation is ∀xα(x) → α(trd/x) where
trd is a rigid designator of the type of x in the lan-
guage. Given a theory T , we say that T `RD ϕ iff ϕ
follows from T using the axioms of FOL with univer-
sal instantiation applicable only on those quantifiers
in a formula whose quantified variables occur only in
object-level predicates (not meta-predicates) in that
formula. For other quantifiers we use the modified
version of universal instantiation.

Example 2 In Fig. 1, in equations 4 and 6 the vari-
ables y, and z range over the set of person refer-
ences that have been generated by the sensor. Since
Mother(Johnny) and record(Mother(Johnny)) are not
such symbols, incorrect inference resulting from sub-
stitution of these terms is avoided.

Semantics In order to define the semantics of the
modified form of universal instantiation we need to de-
scribe the semantics of quantifiers over variables that
occur in meta-predicates. As noted above, each sensor
is associated with a set of rigid designator symbols. We
require that every structure has a unique interpreta-
tion for each such symbol. This is easy to appreciate
for rigid designators of standard types like numbers.
Every structure’s universe includes all real numbers;
rigid designator symbols for reals (e.g., “7.3”) will be
interpreted as the corresponding real numbers (e.g.,
7.3) in every structure. In general we will assume that
each rigid designator symbol c has a canonical inter-
pretation as the object [[c]] of the universe.

Formally, given a structure S, S |= ∀x α(x) where x
occurs in a meta-predicate in α iff S |= α(c/x) for
every c that is a rigid designator of the type of x in S.
If x does not occur in any meta-predicate in α, we use
the usual FOL semantics of quantification. Given a
theory T , we denote semantic entailment of a formula
α with this semantics as as T |=RD α.

∀PersonRef y, Timestep t (∃Person x (atScanner(x, t) ∧ record(x, t)=y) ↔ new(y, t)) (2)

∀Person x, x’ PersonRef y, Timestep t,t’ (record(x, t)=y ∧ record(x’,t’)=y → x=x’ ∧ t=t’ (3)

∀PersonRef y, Timestep t, Real z (new(y, t) ∧ ∃Person x (atScanner(x, t)∧
Height(x,t)>50 ∧ record(x,t)=y) ∧HeightSensorOnline(t)

↔ observable(MsdHtOfSrc(y), t)) (4)

∀PersonRef y, Timestep t (new(y, t) ∧ ∃Person x (atScanner(x,t) ∧ record(x,t)=y)↔ known(y,t)) (5)

∀PersonRef y, Timestep t (known(y,t)↔ doable(takeSnapshotOfSrc(y),t)) (6)

Figure 1: FOL formulas modelling a sensor, an actuator and communication between them (see example 1).

3.4 Properties of the Proposed Framework

A few properties of the proposed framework are pre-
sented below. First, we note that the framework de-
veloped above is sound and complete.

Theorem 1 T `RD α iff T |=RD α.

Proof The result follows by soundness and complete-
ness of typed first-order logic. We can translate the
formulation above into typed first-order logic, where
rigid designator objects for each sensor constitute a
distinct type and have unique names. In the trans-
lation, quantifiers over variables that occur in meta-
predicates range over the objects of the type corre-
sponding to rigid designators of the appropriate sen-
sors or actuators. Syntactic and semantic definitions of
entailment described above are equivalent to the corre-
sponding notions for typed quantifiers. Then, sound-
ness and completeness follows by soundness and com-
pleteness of typed first-order logic. 2

This framework addresses all the fundamental prob-
lems raised towards the beginning of Sec. 3.1. In an
observation MeasuredHeight(p17)=171cm, the sound-
ness and completeness results above show that the re-
sults on an agent’s belief will be the same regardless
of whether p17 is treated as a rigid-designator symbol
in the language or a rigid-designator object in the uni-
verse. Furthermore, since p17 must be a rigid designa-
tor, it must occur in the agent’s belief state. The next
theorem presents conditions under which a generative
model will generate only valid sensori-motor streams,
ensuring that the model conforms to specifications.

Theorem 2 Let S be a set of sensor specifications,
A a set of actuator specifications, and SA a set of
sensori-motor stream specifications over a subset of
S × A. Suppose the model includes the following for-
mulas:

• doable(ak(x1, . . . xm), t) →
∧k=1...m ∨{Sj :SjAi∈SA} knownSjAi

(xk, t).

• observable(p(x1, . . . , xm), t) →
∧k=1...m∃t′ new(xk, t

′) ∧ t′ ≤ t.

• known(y, t)→ ∃t′ new(y, t′) ∧ t′ ≤ t.

Then the set of observable, new, known and doable
statements that are provable in the theory will corre-
spond to a subset of the union of the sensori-motor
streams SA.

Proof The requirements for a sensori-motor stream
are that arguments for known and observable be de-
clared using new and that action arguments be com-
municated from a coordinating sensor. Stated condi-
tions ensure this. 2

In a probabilistic setting the consequent of Th. 2
continues to hold when the logical implications in
the premises are made to hold with probability
1. E.g., P (∧k=1...m ∨{Sj :SjAi∈SA} knownSjAi

(xk, t) |
doable(ak(x1, . . . xm), t)) = 1. These requirements can
be included in a generative first-order model using de-
fined predicates. The next simple yet significant result
shows that if an object is referred to by multiple terms,
even in our framework of meta-predicates that distin-
guish between such terms, the result of an action on
any of them leads to the same object-level belief state.

Theorem 3 Let t1 and t2 be terms of type τ and a an
action whose argument is of type τ . Suppose the agent
believes with certainty that t1 = t2. If doable(a(t1))
and doable(a(t2)) are both true in the agent’s belief
then the belief state over object-level predicates after
a(t1) will be the same as the belief state obtained after
applying a(t2).

Proof In every possible structure in a belief state,
interpretations of t1 and t2 are identical; a formula
holds for t1 iff it holds for t2. Since the effects of action
application are computed by evaluating FO formulas,
the effects of a(t1) will be identical to that for a(t2)
for all object-level predicates in the universe. 2

4 Examples

In the previous section we showed how syntactic rules
of inference defined above correspond with certain se-
mantic notions. We now demonstrate using examples
that these semantic notions correspond with desirable
intuitive interpretations of sensor and actuator mod-
els.

Example 3 Let Sskolem be a sensor that returns
a sequence of Lengths denoting heights of peo-
ple (Length objects are positive reals attached with
units, e.g. “171cm”.). Sskolem can be modeled as
∀Person x,Length y Height(x) = y ∧ atScanner(x) ↔
observable(∃z MeasuredHeight(z) = y). In a proba-
bilistic model, the observed value of y may include er-
ror and can be represented in general in terms of a con-
ditional distribution that takes as its arguments each
of the conjuncts on the other side of the bi-implication.
The only variable in observable() in this expression is
y; y can be substituted with any Length. Thus, we
may substitute 171cm for y to obtain the fact that an
observation ∃z MeasuredHeight(z) = 171cm is received
iff there is someone with height 171cm at the scanner.
Such a model can also represent a scanner generating
a stream of fingerprints which can be used in conjunc-
tion with a database to initiate actions when a match
is (or isn’t) detected.

Example 4 Let SPerson be a sensor that returns a
mapping from objects of type Person to their heights.
SPerson can be modelled as ∀Person x atScanner(x)↔
observable(Height(x)). Instead of PersonRef as used
in the running example, x’s type is Person in this ex-
ample. However, Person is not a predefined type like
Length with a standard interpretation. Thus, x can be
substituted with any constant of type Person that this
sensor generated or was initialized with. Further, if
the sensor returns an observation Height(p17)=171cm
then p17 is a rigid designator of type Person and every
time the object represented by p17 is at the scanner,
the scanner must be able to re-identify it and return
a height observation. This is a natural consequence
of two facts: the specification that the scanner returns
symbols of type Person and the observability condition
specified above. In practice, it is unusual to find scan-
ners that return rigid designators for Persons. More
realistic sensors can be specified using other type spec-
ifications. This example indicates that if a sensor can-
not identify elements of type τ1, it cannot return map-
pings from τ1 to τ2.

Finally, we illustrate that this system can be used to
construct search trees for FOPOMDPs in a manner
consistent with given sensor-actuator specifications. A
search tree for a POMDP is a bipartite tree consist-
ing of action nodes and observation nodes with an

action node as the root. Each edge from an action
node represents a possible action; each edge from an
observation node nO represents an observation that
may be received when the action leading to nO is ex-
ecuted. Solution techniques for POMDPs use search
trees to evaluate the best action at each node of the
tree, given a belief state at which one of the actions
stemming from the root node must be applied. Fig. 2
shows an example of the search tree for the running
example. For this illustration we assume that the sym-
bols P1, . . . , Pk have been declared initially and that
the action sendToScanSrc(Pi, t) can be performed on
any of these symbols. This action has effect of the
person represented by Pi being at the scanner with
a high probability; it is also possible that this person
could not go to the scanner and instead we receive
an observation of another person at the scanner. The
left-most branch from the observation node represents
the high-probability outcome. Following every branch,
the rules of inference imply that only one particular
takeSnapshotOfSrc(Pi) action can be executed. Every
path from root to a leaf in this tree constitutes a valid
sensori-motor stream.

5 Related Work and Conclusions

Our formulation of action effects uses update rules
similar to successor state axioms proposed by Reiter
[2001]. However, usually employed assumptions like
having a “closed initial database” in that line of work
preclude the possibility of expressing identity uncer-
tainty: distinct terms like Mary and Mother(Johnny)
can never represent the same object. Sanner and
Kersting [2010] present a framework for first-order
POMDPs but under the assumption that all non-fluent
terms are fully observable. This disallows uncertainty
about statements like Mary=Mother(Johnny), which
constitutes one of the key representational problems
addressed in this paper. Sanner and Kersting sug-
gest a same-as(t1, t2) predicate for representing iden-
tity uncertainty between fluent terms. However, it is
not clear how this predicate can be used in conjunc-
tion with their unique names axioms for actions, which
assert that instances of an action applied on distinct
terms must be distinct. Furthermore, if the same-as
predicate is used, a single object may be referred to by
multiple terms, only one of which may be used by a
sensor—thus leading to the problems addressed in this
paper. Wang and Khardon [2010] present a relational
representation for POMDPs while making the unique
names and closed world assumptions: in their frame-
work, action arguments have to be objects of the uni-
verse (implying that every object has a unique name
in the language) and observations report properties of
such objects.

.

MsdHtOfSrc(P1, t)

known(P1, t)

obs:

MsdHtOfSrc(Pk, t)

known(Pk, t)

takeSnapshotOfSrc(Pk, t) takeSnapshotOfSrc(P1, t)

.

.
takeSnapshotOfSrc(P1, t)

new(P1, 0),..., new(Pk, 0)

.

.

sendToScanSrc(P1, t−1) sendToScanSrc(Pk, t−1)

takeSnapshotOfSrc(Pk, t)

obs:

Figure 2: A 2-step search tree. Actions that are not doable are striked out.

To the best of our knowledge, Moore [1985] presented
the earliest comprehensive FOL formulation of actions
that did not make the unique names assumption and
allowed terms in the language to be partially observ-
able. In Moore’s formulation actions can be executed
by an agent only if they are “known” to it; an agent
knows an action if its arguments are substituted by
rigid designators. This notion of epistemic feasibility
of an action was also used in later work by Morgen-
stern [1987] and Davis [1994, 2005]. These approaches
use a significantly larger axiomatization to address the
problem of syntactically proving and communicating
facts about knowledge. In contrast, the main contri-
butions of our work are on the unaddressed problems
of expressing observability and action availability in
a sound and complete framework that does not make
unique-names or closed-world assumptions; conforms
to a given sensori-motor specification; and addresses
the fundamental question of how rigid designators are
generated. These fundamental advances open the re-
search frontier on developing autonomous agents that
can plan and act on objects discovered through their
sensors.

Acknowledgments

This research was supported in part by DARPA DSO
grant FA8650-11-1-7153, DARPA contract W31P4Q-
11-C-0083 and the NSF under grant number IIS-
0904672.

References

Ernest Davis. Knowledge preconditions for plans. J.
Log. Comput., 4(5):721–766, 1994.

Ernest Davis. Knowledge and communication: A first-
order theory. Artif. Intell., 166(1-2):81–139, 2005.

Thomas Dean and Keiji Kanazawa. A model for rea-
soning about persistence and causation. Comput.
Intell., 5(3):142–150, December 1989.

Lise Getoor and Ben Taskar. Introduction to Statistical
Relational Learning. The MIT Press, 2007.

Roderick J. A. Little and Donald B. Rubin. Statistical
analysis with missing data (second edition). Wiley,
2002.

Brian Milch, Bhaskara Marthi, Stuart J. Russell,
David Sontag, Daniel L. Ong, and Andrey Kolobov.
BLOG: Probabilistic models with unknown objects.
In Proc. of IJCAI, pages 1352–1359, 2005.

Robert C Moore. A Formal Theory of Knowledge and
Action, pages 319–358. Ablex, 1985.

Leora Morgenstern. Knowledge preconditions for ac-
tions and plans. In Proc. of IJCAI, pages 867–874,
1987.

Raymond Reiter. Knowledge in Action: Logical Foun-
dations for Specifying and Implementing Dynamical
Systems. The MIT Press, Massachusetts, MA, 2001.

Stuart J. Russell and Peter Norvig. Artificial intel-
ligence - a modern approach: the intelligent agent
book. Prentice Hall, 1995.

Scott Sanner and Craig Boutilier. Practical solu-
tion techniques for first-order MDPs. Artif. Intell.,
173(5-6):748–788, 2009.

Scott Sanner and Kristian Kersting. Symbolic dy-
namic programming for first-order POMDPs. In
Proc. of AAAI, 2010.

Chenggang Wang and Roni Khardon. Relational par-
tially observable MDPs. In Proc. of AAAI, 2010.

