
Rao-Bla
kwellised Parti
le Filtering forDynami
 Bayesian NetworksKevin Murphy and Stuart Russell1 Introdu
tionParti
le �ltering in high dimensional state-spa
es 
an be ineÆ
ient, be
ausea large number of samples are needed to represent the posterior. A standardte
hnique to in
rease the eÆ
ien
y of sampling te
hniques is to redu
e thesize of the state-spa
e by marginalizing out some of the variables analyti
ally;this is 
alled Rao-Bla
kwellisation (Casella and Robert 1996). Combiningthese two te
hniques results in Rao-Bla
kwellised parti
le �ltering (RBPF)(Dou
et 1998, Dou
et, de Freitas, Murphy and Russell 2000). In this 
hapter,we explain RBPF, dis
uss when it 
an be used, and give a detailed exampleof its appli
ation to the problem of map learning for a mobile robot, whi
hhas a very large (� 2100) dis
rete state-spa
e.The key idea of RBPF is to partition the state-spa
e Zt into two sub-spa
es, Rt and Xt, su
h that the distribution P (XtjR1:t; y1:t) 
an be updatedanalyti
ally and eÆ
iently; the distribution P (R1:tjy1:t) is updated using par-ti
le �ltering. The justi�
ation for this de
omposition follows from the 
hainrule of probability:P (X1:t; R1:tjy1:t) = P (X1:tjR1:t; y1:t)P (R1:tjy1:t)Sampling just Rt will generally require many fewer parti
les (to rea
h some�xed a

ura
y threshold) than standard parti
le �ltering, whi
h would sampleboth Rt and Xt. (Please see the 
hapter by Dou
et, de Freitas and Gordon(2000: this volume) for an introdu
tion to standard PF.)RBPF is very similar to standard PF, ex
ept that ea
h parti
le now main-tains not just a sample from P (R1:tjy1:t), whi
h we will denote by r(i)1:t, butalso a parametri
 representation of P (Xtjr(i)1:t; y1:t), whi
h we will denote by�(i)t . (The parametri
 representation might be a mean ve
tor and a 
ovari-an
e matrix, for instan
e.) The Rt samples are updated as in standard PF,and then the Xt distributions are updated using an exa
t �lter, 
onditionalon Rt. The overall algorithm is shown in Figure 1.In Se
tion 2, we dis
uss when this algorithm 
an be usefully applied, whi
his best des
ribed using the language of dynami
 Bayesian networks. In Se
-tion 3, we dis
uss in detail how to 
ompute the equations used by the al-gorithm. Finally, in Se
tion 4, we dis
uss the appli
ation of RBPF to maplearning. 1
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Generi
 RBPF1. Sequential importan
e sampling step� For i = 1; : : : ; N , sample�br(i)t � � q(rt; r(i)1:t�1; y1:t)and set �br(i)1:t� def= (br(i)t ; r(i)1:t�1)� For i = 1; : : : ; N , evaluate the importan
e weights up to a normalising
onstant: w(i)t / p �ytj y1:t�1; r(i)1:t� p�r(i)t ��� r(i)1:t�1; y1:t�1�q �rt; r(i)1:t�1; y1:t�� For i = 1; : : : ; N , normalise the importan
e weights:ew(i)t = w(i)t � NXj=1w(j)t ��12. Sele
tion step� Resample N samples from (br(i)1:t) a

ording to the importan
e distributionew(i)t to obtainN random samples (r(i)1:t) approximately distributed a

ordingto p(r(i)1:tjy1:t).3. Exa
t step� Update �(i)t given �(i)t�1, r(i)t , r(i)t�1, and yt.

Figure 1. Generi
 Rao-Bla
kwellised parti
le �ltering algorithm.If we repla
e referen
es to rt with zt = (xt; rt) and omit step 3, theresult is a \regular" (non Rao-Bla
kwellised) parti
le �lter. Notethat if we are only interested in �ltering, we do not to store thefull traje
tory r(i)1:t in ea
h parti
le, just its most re
ent 
omponent,r(i)t , sin
e we are updating �(i)t online. This �gure is adaptedfrom (Dou
et et al. 2000).
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)Figure 2. (a) The 
anoni
al DBN to whi
h RBPF 
an be applied.The shaded Yt nodes denote observations. (b) A simpli�
ation inwhi
h we have removed the \
ross ar
s." The Rt nodes are 
alledthe roots, and theXt nodes the leaves. (
) We have partitioned theroot node into two 
omponents, Rt(1), whi
h a�e
ts the dynami
sof Xt, and Rt(2), whi
h a�e
ts the observation model Yt.2 RBPF in generalWe 
an most easily 
hara
terize the models to whi
h RBPF may be eÆ-
iently applied by representing them graphi
ally as dynami
 Bayesian net-works (DBNs), whi
h we now brie
y explain. Bayesian networks (Pearl1988, Cowell, Dawid, Lauritzen and Spiegelhalter 1999) are dire
ted a
y
li
graphs, in whi
h nodes represent random variables, and the la
k of ar
srepresents 
onditional independen
ies. Dynami
 Bayesian networks extendBayesian networks to probability distributions that evolve over time. As ina state-spa
e model, we must spe
ify the transition model, P (ZtjZt�1), theobservation model, P (YtjZt), and the prior, P (Z1). We use a \two sli
e"graph to represent the 
onditional independen
e relationships in P (ZtjZt�1).In addition to the graph stru
ture, we must spe
ify the 
onditional probabil-ity distribution (CPD) of ea
h node given its parents. For a more detailedintrodu
tion to DBNs, please see Koller and Lerner (2000: this volume).RBPF 
an be applied to any DBN that 
an be made topologi
ally equiva-lent to the model shown in Figure 2(a), 
lustering nodes together if ne
essary.However, to apply the algorithm in Figure 1, we must 
ompute the termP (Rtjr(i)1:t�1; y1:t�1) = Xxt�1 P (Rtjr(i)t�1; xt�1)P (xt�1jr(i)1:t�1; y1:t�1) (2.1)IfXt�1 is a ve
tor in f1; : : : ; kgm, i.e., the 
ross-produ
t ofm dis
rete k-valuedrandom variables, then this equation takes O(km) time to 
ompute, whi
h is



4usually una

eptably high, espe
ially sin
e it must be 
omputed on
e perparti
le. Likewise, if Xt�1 is a ve
tor in IRm, the required integration often
annot be 
omputed in 
losed form. Hen
e it is 
ommon to assume there isno ar
 from Xt�1 to Rt, so that we 
an eliminate the marginalization overXt�1. In other words, the equation be
omesP (Rtjr(i)1:t�1; y1:t�1) = P (Rtjr(i)t�1)If we 
onsider a single time sli
e, there are now no ar
s entering Rt, so werefer to it as a \root." Similarly, Xt will be 
alled a \leaf." It is also 
ommonto assume there is no ar
 from Rt�1 to Xt, although this does not 
hange thealgorithm in any signi�
ant way.1 After eliminating both of these inter-sli
e\
ross ar
s", we end up with the DBN shown in Figure 2(b).Given the simpli�ed model of Figure 2(b), we are left with two tasks: tosample the root nodes eÆ
iently, and to update the leaf distributions eÆ-
iently, given that the roots have known values (and are therefore e�e
tivelydis
onne
ted from the graph). Sin
e the roots 
an be sampled using a stan-dard parti
le �lter, many of the te
hniques dis
ussed in this book are dire
tlyappli
able. Hen
e we fo
us on the latter issue here.A simple example of when the leaves 
an be eÆ
iently updated is whenthe CPDs for Xt and Yt are linear-Gaussian, in whi
h 
ase the model is
alled a 
onditionally linear-Gaussian state-spa
e model. We 
an 
omputeP (Xtjr1:t; y1:t) re
ursively using a Kalman �lter. If Rt is dis
rete, the modelis 
alled a jump Markov linear system, or swit
hing state-spa
e model (Chenand Liu 1999, Dou
et, Gordon and Krishnamurthy 1999). In this 
ase, it isoften useful to split the root node into two independent 
omponents, as inFigure 2(
). Rt(1) is a parent of Xt, and 
an be used to model dis
ontinuous
hanges in state (
.f., M
Ginnity and Irwin (2000: this volume)). Rt(2) is aparent of Yt, and 
an be used to model outliers in the observations. Another
ase when we might have multiple root nodes is when we are doing onlineparameter estimation: in the Bayesian approa
h, the parameters are justadditional random variables (nodes in the graph) that 
an be sampled usingparti
le �ltering.In the jump Markov linear system, the jumps o

ur \spontaneously", asdi
tated by the Markov transition matrix on theRt(1) node. For some models,it is useful to have the system's state, Xt, \trigger" the jump, whi
h 
anbe modelled by adding an ar
 from Xt�1 to Rt, and making Rt's CPD alogisti
 or softmax fun
tion. Unfortunately, Equation 2.1 be
omes hard to
ompute in this 
ase, sin
e we have a hidden 
ontinuous parent 
onne
ted to a(hidden) dis
rete 
hild. One possible approa
h would be to use the variationalapproximation dis
ussed in (Murphy 1999).1Spe
i�
ally, it just means we only have to 
ondition on r(i)t , instead of both r(i)t andr(i)t�1, when updating �(i)t in step 3 of the algorithm in Figure 1.
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Figure 3. The two-tank DBN, adapted from Koller and Lerner(2000: this volume). We have omitted the RF12 and R12 nodesto keep the �gure simple. RF standards for resistan
e failure, andrepresents a permanent 
hange in the resistivity of a pipe. MFstands for measurement failure, and represents a temporary errorin the sensor. The MF and observed (shaded) nodes are onlyshown for sli
e 2, for simpli
ity, sin
e they are transient variables,i.e., they are not 
onne
ted a
ross time-sli
es.



6 A more 
omplex DBN is shown in Figure 3. We would like to sam-ple the dis
rete indi
ator variables (whi
h model failures of various kinds)shown inside the dotted boxes, and apply exa
t inferen
e on the remain-ing, 
ontinuous-valued nodes, whi
h we 
an group into a single ve
tor-valuednode, Xt. Unfortunately, in this model, although the noise is Gaussian, thedynami
s are non-linear, making it hard to integrate out Xt. We 
ould applyan approximate inferen
e te
hnique, su
h as the extended Kalman �lter, orthe uns
ented �lter (Julier and Uhlmann 1997), but we would no longer bedoing stri
t Rao-Bla
kwellisation. In parti
ular, these approximations maydiverge. (Koller and Lerner apply parti
le �ltering to both Rt and Xt.)Given an arbitrary DBN with a potentially 
omplex topology, whi
h nodesshould be 
onsidered as roots, and whi
h as leaves? If we disallow ar
s fromXt�1 to Rt for the reasons dis
ussed above, the answer is fairly straightfor-ward. We de�ne the set of nodes whi
h are eligible to be roots, R, to be allthe nodes whi
h either have no parents, or whose parents are also in the setR, possibly shifted ba
k in time. We initialize R to be all the nodes Xt(i)whi
h have no parents, or whose only parent is Xt�1(i). We then add to Rall the nodes, Xt(i), whose parents are in R [ fXt�1(i)g. For example, inthe two-tank DBN in Figure 3, we start with R1 
ontaining all the nodes indotted boxes, and 
an then add R1o and R2o to getR2 = fR1o; R2o; RF1o; RF2o;MF1o;MF2o;MF12g:The idea is to keep growing the set R until the set of remaining variables,Xi def= SnRi, 
an be updated exa
tly and eÆ
iently, where S represents all thenodes in a single sli
e of the DBN, and Ri represents the root set at iterationi of the above root-growing algorithm. In the two-tank 
ase, R2 is lo
allymaximal: there is no single node that 
an be added su
h that the desired
losure property would be maintained. The next valid root set is R3 = S,whi
h 
orresponds to sampling all the variables, as in standard PF.Now suppose the set of non-boxed variables X1 had linear-Gaussian dy-nami
s. In this 
ase, we 
ould sample the dis
rete root nodes R1 and applythe Kalman �lter to the 
ontinuous nodes X1, as we dis
ussed before. Ex-panding fromR1 to R2, while legal, would probably not be very helpful, sin
eR1o and R2o are jointly Gaussian with X2 by assumption, and hen
e 
an bemarginalized out eÆ
iently.When all the (hidden) nodes in a DBN are dis
rete, we 
an always performexa
t inferen
e in 
losed form, using the HMM �lter or the jun
tion treealgorithm (Smyth, He
kerman and Jordan 1997, Cowell et al. 1999). Theproblem is that the 
omplexity is generally O(kn), where n is the number ofhidden nodes, and k is the number of values ea
h node 
an take on. (We willsee an example of this in Se
tion 4.) In this 
ase, we should keep growing Runtil X be
omes small enough that exa
t inferen
e be
omes 
omputationally
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(a) (b)Figure 4. (a) We have partitioned the leaves and observationsinto two 
omponents. (b) The dashed ar
s entering the root nodeindu
e 
orrelation between the leaves, as indi
ated by the dotted\path of in
uen
e." The root nodes are shown shaded sin
e theyare instantiated.tra
table.2 Of 
ourse, the larger R, the more samples we will need, so thistradeo� must be made 
arefully. We hope to examine this issue in the future.In this 
hapter, we assume that the set R has been pre-spe
i�ed.In some 
ases, the non-root nodes might be 
onditionally independentgiven the roots, as in Figure 4(a). We will see an example of this in Se
tion 4.The advantage of this is that we 
an update ea
h leaf independently, 
ondi-tioned on the root, whi
h is exponentially more eÆ
ient than updating theleaves jointly. Note, however, that, if we had ar
s from the leaves entering theroot, as in Figure 4(b), we would no longer be able to update the leaves inde-pendently. This is be
ause Rt would a
t like a 
ommon observed 
hild node,indu
ing 
orrelation amongst its parents, a phenomenon 
alled \explainingaway" (Pearl 1988).2For example, applying the greedy root-growing algorithm to the BAT DBN (Figure 6)in the 
hapter by Koller and Lerner gives the following results, where we use the notation�i def= Ri n Ri�1 to represent the extra nodes added at the ith iteration. R1 = fLeftClr,RightClr, EngStatus, BYdotDi�, SensorValid, B
lrg, �2 = f FYdotDi�, BXdot, B
lose-Fast, F
lr g, �3 = f F
loseSlow g, �4 = f FrontBa
kStatus g. To 
ontinue growing, wewould have to 
onsider additions of two or more parents simultaneously, et
.



83 The RBPF algorithm in detailWe now explain the RBPF algorithm, whi
h is sket
hed in Figure 1, in moredetail. We assume there are no ar
s from Xt�1 to Rt, and for simpli
ity, thatthere are also no ar
s from Rt�1 to Xt, so the generi
 stru
ture is one that isisomorphi
 to Figure 2b.As we mentioned in the introdu
tion, the belief state, P (Xt; R1:tjy1:t), isrepresented by a set of N weighted parti
les. The marginal distribution onthe root nodes is approximated asP (r1:tjy1:t) � NXi=1witÆ(r(i)1:t; r1:t)where wit is the weight of the i'th parti
le, and Æ(x; y) = 1 if x = y and is 0otherwise. The marginal on the leaf is approximated asP (Xtjy1:t) = Xr1:t P (Xtjr1:t; y1:t)P (r1:tjy1:t)� Xr1:t P (Xtjr1:t; y1:t) NXi=1witÆ(r(i)1:t; r1:t)= NXi=1witP (Xtjr(i)1:t; y1:t)For notational simpli
ity, we will assume that all nodes are dis
rete, so we
an represent ea
h leaf marginal as a ve
tor in [0; 1℄k whi
h sums to 1, wherek is the number of possible values of the node. In addition, sin
e the nodesare dis
rete, all the CPDs 
an be expressed as tables:�R(r) def= P (R1 = r)TR(r0; r) def= P (Rt = rjRt�1 = r0)TX(x0; r; x) def= P (Xt = xjRt = r;Xt�1 = x0)OY (x; r; y) def= P (Yt = yjXt = x;Rt = r)Sin
e the leaf nodes are dis
rete, we 
an update their distributions, 
on-ditional on having sampled Rt, using the HMM �lter as follows. First we
ompute the one step-ahead predi
tion:�(i)tjt�1(x) def= P (Xt = xjy1:t�1; r(i)1:t)= Xx0 P (Xt = xjXt�1 = x0; r(i)t )P (Xt�1 = x0jy1:t�1; r(i)1:t�1)= Xx0 TX(x0; r(i)t ; x)�(i)t�1(x0)



9Then we do Bayesian updating:�(i)t (x) def= P (Xt = xjy1:t; r(i)1:t)= (1=Z(i)t )P (ytjXt = x; r(i)t )P (Xt = xjy1:t�1; r(i)1:t)= (1=Z(i)t )OY (x; r(i)t ; yt)�(i)tjt�1(x)where the denominator is equal to the likelihood:Z(i)t def= P (ytjy1:t�1; r(i)1:t) =Xx OY (x; r(i)t ; yt)�(i)tjt�1(x) (3.1)If we have L leaves 
onditionally independent leaves, as in Figure 4(a), weapply these equations to ea
h leaf separately. Ea
h su
h update will result ina \lo
al likelihood" term, Zt(j)(i), like the one above. The overall likelihoodthen be
omes a produ
t of the lo
al likelihoods:P (ytjy1:t�1; r(i)1:t) = Xx1;:::;xL LYj=1 hP (yt(j); Xt(j) = xjjr(i)1:t; y1:t�1)i= LYj=1 "Xx P (yt(j)jXt(j) = x; r(i)1:t)P (Xt(j) = xjr(i)1:t�1; y1:t�1)#= LYj=1Zt(j)(i)All that remains is to spe
ify how to do the following standard PF steps:� Sample new values of the roots.� Compute the weight of a parti
le.� Resample the parti
les.We will now explain these steps in detail. We drop the i supers
ript forbrevity.As dis
ussed in the 
hapter by Dou
et, de Freitas and Gordon (2000: thisvolume), in sequential importan
e sampling, if we sample from the proposaldistribution q(Rt; r1:t�1; y1:t), we must assign the parti
le weight equal to theratio between the true posterior and the proposal density:wt / P (ytjy1:t�1; r1:t)P (Rtjrt�1)q(Rt; r1:t�1; y1:t)The simplest 
ase is if we sample from the prior, q(Rt) = P (Rtjrt�1). In this
ase, the weight is simply the likelihood 
omputed in Equation 3.1.



10 The \optimal" proposal distribution, in the sense of minimizing the vari-an
e of the importan
e weights (Dou
et et al. 1999), is given byP (Rtjr1:t�1; y1:t) = P (ytjy1:t�1; r1:t)P (Rtjrt�1)P (ytjy1:t�1; r1:t)where the denominator is the one step-ahead likelihoodP (ytjy1:t�1; r1:t) = jRtjXr=1P (ytjy1:t�1; r1:t�1; Rt = r)P (Rt = rjrt�1)This requires 
omputing the likelihood jRtj times, whi
h 
an be quite ex-pensive. Whether the 
omputational expense is worthwhile depends on therelative reliability of the observations and the transition prior: if the prioris weak (di�use) and the observation likelihood is strong (sharply peaked),many parti
les may be proposed in a part of the state spa
e that has lowlikelihood, whi
h is wasteful. In this 
ase, it might be worthwhile to takethe most re
ent eviden
e, yt, into a

ount before proposing. See Pitt andShephard (2000: this volume) for a more detailed dis
ussion.Finally, given a set of parti
les and weights, we 
an resample a fresh setusing any of the standard methods, su
h as residual resampling, dis
ussed inDou
et, de Freitas, and Gordon (2000: this volume).4 Appli
ation: Con
urrent lo
alisation andmap learning for a mobile robotIn this se
tion, we dis
uss an appli
ation of RBPF to a highly simpli�edversion of the problem of map learning for mobile robots (Murphy 2000).The appli
ation of standard (non-RB) PF to the problem of robot lo
alisation(�nding the robot's position given a known map) using real robots is dis
ussedin Thrun et al. (2000: this volume).Consider a robot whi
h 
an move on a dis
rete, two-dimensional grid.The goal is to learn the 
olor of ea
h grid 
ell, whi
h 
an be either bla
k orwhite (say). The diÆ
ulty is that the 
olor sensors are not perfe
t (they maya

idently 
ip bits with probability po), nor are the motors (the robot mayfail to move in the desired dire
tion with probability pa, due e.g., to wheelslippage). Consequently, it is easy for the robot to get lost. And when therobot is lost, it does not know what part of the map to update. (Note that, ifthe robot always knew its lo
ation, e.g., by using GPS, map learning would beeasy; unfortunately, GPS does not work indoors, nor is it a

urate enough.)The optimal Bayesian solution to this problem is to maintain a belief stateover both the lo
ation of the robot, Lt 2 f1; : : : ; NLg, and the 
olor of ea
hgrid 
ell, Mt(l) 2 f0; 1g, l = 1; : : : ; NL, where NL is the number of 
ells. For



11notational simpli
ity, in this subse
tion we shall assume there are only two
olors; the te
hnique easily generalizes.We assume the 
olor of the 
ells 
an 
hange, to represent the fa
t thatthe environment 
an be dynami
. For example, in Se
tion 4.2, we use four\
olors" that represent whether a 
ell is uno

upied, or 
ontains a wall, oran open door, or a 
losed door, and we allow doors to 
hange between openand 
losed. In this 
ase, Mt is like an o

upan
y grid (Morave
 and Elfes1985), whi
h is a simple kind of map. For simpli
ity, we assume the 
olors ofthe 
ells 
hange independently, but with an identi
al distribution, spe
i�edby the matrix TM(
; 
0) def= P (Mt(l) = 
0jMt�1(l) = 
). If this is an identitymatrix, it means that the 
olors do not 
hange.3The observation model is that the robot sees the 
olor of the grid 
ell atits 
urrent lo
ation, 
orrupted by noise:P (ytjm1; : : : ; mNL ; Lt = l) def= B(ml; yt) = ( 1� po if yt = mlpo if yt 6= mlwhere po is the probability that a 
olor gets misread, and B is the 2 � 2observation matrix with 1 � po on the diagonal and po o� the diagonal. Amore realisti
 model would 
apture the fa
t that the robot 
an see the 
olor ofneighboring 
ells as well. This is not hard to do, but for notational simpli
ity,we shall sti
k to the single-
ell model for now.Let us assume for now that the robot is in a one-dimensional grid world, soit 
an only move left or right, depending on the 
ontrol input, Ut. The robotmoves in the desired dire
tion with probability 1 � pa, and otherwise staysput. In addition, it 
annot move o� the edges of the grid. Algebrai
ally, thisbe
omesP (Lt = l0jLt�1 = l; Ut =!) = 8>>><>>>: 1� pa if l0 = l + 1 and 1 � l0 < NLpa if l = l0 and 1 � l0 < NL1 if l = l0 = NL0 otherwiseThe equation for P (Lt = l0jLt�1 = l; Ut = ) is analogous. In Se
tion 4.2, wewill 
onsider the 
ase of a robot moving in two dimensions. In that 
ase, themotion model will be slightly more 
omplex.Finally, we need to spe
ify the prior. The robot is assumed to know itsinitial lo
ation, so the prior P (L1) is a delta fun
tion. If the robot did notknow its initial lo
ation, there would be no well-de�ned origin to the map; inother words, the map is relative to the initial lo
ation. Also, the robot has auniform prior over the 
olors of the 
ells. However, it knows the size of theenvironment, so the state spa
e has �xed size.3If the 
olors do not 
hange, and if we are satis�ed with learning a maximum likelihoodestimate of the map, instead of a full posterior, we 
an treat theM(i)s as �xed parametersand use EM to learn them (Thrun, Burgard and Fox 1998). However, doing this onlinedoes not work very well (Murphy 2000).
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Figure 5. The DBN used in the map learning problem. Mt(l)represents the 
olor of grid 
ell l at time t, Lt represents the robot'slo
ation, Yt the 
urrent observation, and Ut is the 
urrent input(
ontrol).The DBN we are using is shown in Figure 5. This kind of topology (mod-ulo the observed input ndoes) is 
alled a fa
torial HMM (Ghahramani andJordan 1997). Inferen
e in these models is 
omputationally intra
table. Tobe pre
ise, if there are n 
hains, ea
h of whi
h 
an take on k possible values,then the belief state has size O(kn): all the 
hains be
ome 
oupled be
auseYt is a 
ommon observed 
hild. Exa
t inferen
e, using the jun
tion tree al-gorithm (Smyth et al. 1997, Cowell et al. 1999), takes O(nkn+1) operationsper time step. In general, if the number of values the nodes in 
hain j 
antake on is kj, then the belief state has size S = Qnj=1 kj, and exa
t inferen
etakes O(SPnj=1 kj) operations per time step. In our appli
ation, there are NL
hains with 2 possible values ea
h, and one 
hain with NL possible values,so we need 3N2L2NL operations per time step. In Se
tion 4, we use a 10� 10grid, so this requires O(2100) operations per time step for exa
t inferen
e.In our 
ase, however, the observation model has the 
ru
ial property thatYt only depends on a single element of Mt on
e Lt is known. Note that this
onditional independen
e property is not obvious from the stru
ture of thegraph, but is impli
it in Yt's CPD 
.f., (Boutilier, Friedman, Goldszmidt andKoller 1996). The upshot is that we 
an rewrite the model of Figure 5 to takeon the form of Figure 4(a) as follows: Lt is equivalent to the root Rt, and themap 
ells Mt(j) are equivalent to the leaves Xt(j). (We ignore the Ut nodesfor simpli
ity.) The transition model for the root is the motion model of the
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Figure 6. A one-dimensional grid world.robot, and the transition model of the leaves is the matrix TM , de�ned to beindependent of Lt. Finally, the observation nodes are as follows. We de�neP (Yt(j) = m0jMt(j) = m;Lt = l) = ( B(m;m0) if j = l1=2 if j 6= lwhere j; l 2 f1; : : : ; NLg and m;m0 2 f0; 1g. This observation model onlygives information about the 
ell at the robot's 
urrent lo
ation, Lt = l, asdesired; all other 
ells (leaves) will be e�e
tively be updated with no obser-vations. It is now straightforward to apply RBPF to this model.4.1 Results on a one-dimensional gridTo evaluate the e�e
tiveness of this algorithm, we �rst applied it to a problemwhi
h was suÆ
iently small (8 
ells) that we 
ould 
ompute the \groundtruth" using exa
t inferen
e. In parti
ular, 
onsider the one-dimensional gridshown in Figure 6. We have NL = 8, so exa
t inferen
e takes about 50,000operations per time step (!). For simpli
ity, we will �x the 
ontrol poli
y asfollows: the robot starts at the left, moves to the end, and then returns home.Suppose there are no sensor errors, but there is a single \slippage" error att = 4. We summarize this below, where Ut represents the input (
ontrola
tion) at time t.t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16Lt 1 2 3 4 4 5 6 7 8 7 6 5 4 3 2 1Yt 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0Ut - ! ! ! ! ! ! !         To study the e�e
t of this sequen
e, we used exa
t inferen
e to 
omputeP (Ltjy1:t) and P (Mtjy1:t): see Figure 7. At ea
h time step, the robot thinks itis moving one step to the right, but the un
ertainty gradually in
reases. How-ever, as the robot returns to \familiar territory", it is able to better lo
alizeitself, and hen
e the map be
omes \sharper", even in distant 
ells. Note thatthis e�e
t only o

urs be
ause we are modelling the 
orrelation between 
ells
.f., the sto
hasti
 map representation of (Smith, Self and Cheeseman 1988).For a more detailed interpretation of this example, see (Murphy 2000).In Figure 8, we show the results obtained using RBPF. We see that itapproximates the exa
t solution very 
losely, using only 50 parti
les. The
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(a) (b)Figure 7. Results of exa
t inferen
e on the 1D grid world. (a) Aplot of P (Mt(i) = 1jy1:t), where i is the verti
al axis and t is thehorizontal axis; lighter 
ells are more likely to be 
olor 1 (white).(b) A plot of P (Lt = ijy1:t), i.e., the estimated lo
ation of therobot at ea
h time step.
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(a) (b)Figure 8. Results of the RBPF algorithm on the 1D grid worldusing 50 parti
les.results shown are for a parti
ular random number seed; other seeds produ
equalitatively very similar results, indi
ating that 50 parti
les are in fa
t suÆ-
ient in this 
ase. Obviously, as we in
rease the number of parti
les, the errorand varian
e de
rease, but the running time in
reases (linearly).The question of how many parti
les to use is a diÆ
ult one: it dependsboth on the noise parameters and the stru
ture of the environment (if every
ell has a unique 
olor, lo
alization, and hen
e map learning, is easy). Sin
ewe are sampling traje
tories, the number of hypotheses grows exponentiallywith time (as in a jump Markov linear system). In the worst 
ase, the number
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(a) (b)Figure 9. Results of the BK algorithm on the 1D grid world.of parti
les needed may depend on the length of the longest 
y
le in theenvironment, sin
e this determines how long it might take for the robot toreturn to \familiar territory" and \kill o�" some of the hypotheses (sin
e auniform prior on the map 
annot be used to determine Lt when the robot isvisiting pla
es for the �rst time). In the above example, the robot was able tolo
alize itself quite a

urately when it rea
hed the end of the 
orridor, sin
eit knew that this 
orresponded to 
ell 8. In general, we may need to use a
lever 
ontrol poli
y, su
h as the one we dis
uss in the next se
tion, to keepthe number of parti
les tra
table.For 
omparison purposes, we also tried the Boyen-Koller (BK) algorithm(Boyen and Koller 1998), whi
h is another popular approximate inferen
ealgorithm for dis
rete DBNs. In its simplest, fully fa
torised form, BK rep-resents the belief state as a produ
t of marginals:P (Mt; Ltjy1:t) = P (Ltjy1:t) NLYj=1P (Mt(j)jy1:t)The results of using BK are shown in Figure 9. As we 
an see, it performsvery poorly in this 
ase, be
ause it ignores 
orrelation between the 
ells. Of
ourse, it is possible to use produ
ts of pairwise or higher-order marginals fortightly 
oupled sets of variables. Unfortunately, there is no natural subset ofvariables to use in this 
ase, sin
e all the grid 
ells are potentially 
orrelated.4.2 Results on a two-dimensional gridWe now 
onsider the 10� 10 grid world in Figure 10. We use four \
olors",whi
h represent 
losed doors, open doors, walls, and free spa
e. Doors 
antoggle between open and 
losed independently with probability p
 = 0:1, but
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h are either open or 
losed), bla
k denotes walls, and whitedenotes free spa
e.
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10Figure 11. Results of RBPF on the 2D grid world using 200parti
les.the other \
olors" remain stati
; hen
e the 
ell transition matrix TM is0BBB� 1� p
 p
 0 0p
 1� p
 0 00 0 1 00 0 0 11CCCAThe robot observes a 3�3 neighborhood 
entered on its 
urrent lo
ation. Thetotal probability that ea
h pixel gets mis
lassi�ed is po = 0:1. The robot 
anmove north, east, south or west; there is a pa = 0:1 
han
e it will a

identalymove in a dire
tion perpendi
ular to the one spe
i�ed by Ut.We use a 
ontrol poli
y that alternates between exploring new territorywhen it is 
on�dent of its lo
ation, and returning to familiar territory to



17relo
alize itself when the entropy of P (Ltjy1:t) be
omes too high 
.f., (Fox,Burgard and Thrun 1998): see (Murphy 2000) for details.The results of applying the RBPF algorithm to this problem, using 200parti
les, are shown in Figure 11. We see that by time 50, it has learnt analmost perfe
t map, even though the state-spa
e has size 2100.5 Con
lusions and future workWe have shown how to exploit \tra
table substru
ture" in 
ertain kinds ofDBNs by 
ombining parti
le �ltering with exa
t inferen
e. In the future, wehope to �nd more appli
ations of this te
hnique, and to extend the algorithmto the bat
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