Rao-Blackwellised Particle Filtering for
Dynamic Bayesian Networks

Kevin Murphy and Stuart Russell

1 Introduction

Particle filtering in high dimensional state-spaces can be inefficient, because
a large number of samples are needed to represent the posterior. A standard
technique to increase the efficiency of sampling techniques is to reduce the
size of the state-space by marginalizing out some of the variables analytically;
this is called Rao-Blackwellisation (Casella and Robert 1996). Combining
these two techniques results in Rao-Blackwellised particle filtering (RBPF)
(Doucet 1998, Doucet, de Freitas, Murphy and Russell 2000). In this chapter,
we explain RBPF, discuss when it can be used, and give a detailed example
of its application to the problem of map learning for a mobile robot, which
has a very large (~ 2'%) discrete state-space.

The key idea of RBPF is to partition the state-space Z; into two sub-
spaces, R; and X, such that the distribution P(X;|Ry.4, y1.) can be updated
analytically and efficiently; the distribution P(R1.|y1.;) is updated using par-
ticle filtering. The justification for this decomposition follows from the chain
rule of probability:

P(Xl:taRlzt‘y]:t) = P(Xl:t|Rl:tay]:t)P(R]:t‘y]:t)

Sampling just R, will generally require many fewer particles (to reach some
fixed accuracy threshold) than standard particle filtering, which would sample
both R, and X;. (Please see the chapter by Doucet, de Freitas and Gordon
(2000: this volume) for an introduction to standard PF.)

RBPF is very similar to standard PF, except that each particle now main-
tains not just a sample from P(Ry.|y;.), which we will denote by 7"57%, but
also a parametric representation of P(Xt|r§f%,y1:t), which we will denote by
agi). (The parametric representation might be a mean vector and a covari-
ance matrix, for instance.) The R, samples are updated as in standard PF,
and then the X; distributions are updated using an exact filter, conditional
on R;. The overall algorithm is shown in Figure 1.

In Section 2, we discuss when this algorithm can be usefully applied, which
is best described using the language of dynamic Bayesian networks. In Sec-
tion 3, we discuss in detail how to compute the equations used by the al-
gorithm. Finally, in Section 4, we discuss the application of RBPF to map
learning.

Generic RBPF

1. Sequential importance sampling step

e Fori=1,..., N, sample

(77) ~ atrisrll1mn)

and set O def () (D)
~l2 € A~)
(7"1:t) = (7" i)
e For 1 = 1,..., N, evaluate the importance weights up to a normalising
constant:
(4) b (U?“ Y1:t—1, TY?‘) p (Tg” Tﬁr)‘,flaylztfl)
w,; ' o :
q (Tt; 1, ym)
e Fori=1,..., N, normalise the importance weights:

. TN 11
G = [Z w,E])}
j=1

2. Selection step

(2)

e Resample N samples from (?IZ,) according to the importance distribution
1’17157’) to obtain N random samples (7"57%) approximately distributed according

to p(r{}) y1a).
3. Exact step

e Update agi) given 0/1(‘1)1 7",@, 7"1@1, and y;.

Figure 1. Generic Rao-Blackwellised particle filtering algorithm.
If we replace references to r, with z; = (x;,7;) and omit step 3, the
result is a “regular” (non Rao-Blackwellised) particle filter. Note
that if we are only interested in filtering, we do not to store the
full trajectory rﬂ in each particle, just its most recent component,
T,Ei), since we are updating ()/gl) online. This figure is adapted
from (Doucet et al. 2000).

() ()
O o &
SRCROROION

(

Figure 2. (a) The canonical DBN to which RBPF can be applied.
The shaded Y; nodes denote observations. (b) A simplification in
which we have removed the “cross arcs.” The R; nodes are called
the roots, and the X; nodes the leaves. (¢) We have partitioned the
root node into two components, R;(1), which affects the dynamics
of Xy, and R;(2), which affects the observation model Y;.

2 RBPF in general

We can most easily characterize the models to which RBPF may be effi-
ciently applied by representing them graphically as dynamic Bayesian net-
works (DBNs), which we now briefly explain. Bayesian networks (Pearl
1988, Cowell, Dawid, Lauritzen and Spiegelhalter 1999) are directed acyclic
graphs, in which nodes represent random variables, and the lack of arcs
represents conditional independencies. Dynamic Bayesian networks extend
Bayesian networks to probability distributions that evolve over time. As in
a state-space model, we must specify the transition model, P(Z;|Z; 1), the
observation model, P(Y;|Z;), and the prior, P(Z;). We use a “two slice”
graph to represent the conditional independence relationships in P(Z;|Z; ;).
In addition to the graph structure, we must specify the conditional probabil-
ity distribution (CPD) of each node given its parents. For a more detailed
introduction to DBNs, please see Koller and Lerner (2000: this volume).

RBPF can be applied to any DBN that can be made topologically equiva-
lent to the model shown in Figure 2(a), clustering nodes together if necessary.
However, to apply the algorithm in Figure 1, we must compute the term

P(Rt|7"$27]>yl:t71) =Y P(Rt|7"£i)1;-’Etfl)P(fEtflvgg—]ayl:tfl) (2.1)

Tt—1

If X; jisavectorin{1,...,k}™, i.e., the cross-product of m discrete k-valued
random variables, then this equation takes O(k™) time to compute, which is

usually unacceptably high, especially since it must be computed once per
particle. Likewise, if X;_; is a vector in R™, the required integration often
cannot be computed in closed form. Hence it is common to assume there is
no arc from X; | to R;, so that we can eliminate the marginalization over
X;_ 1. In other words, the equation becomes

P(Rt|7ﬁ$27]ay]:t71) — P(Rt|r,£1)])

If we consider a single time slice, there are now no arcs entering R;, so we
refer to it as a “root.” Similarly, X; will be called a “leaf.” It is also common
to assume there is no arc from R; ; to X;, although this does not change the
algorithm in any significant way.! After eliminating both of these inter-slice
“cross arcs”, we end up with the DBN shown in Figure 2(b).

Given the simplified model of Figure 2(b), we are left with two tasks: to
sample the root nodes efficiently, and to update the leaf distributions effi-
ciently, given that the roots have known values (and are therefore effectively
disconnected from the graph). Since the roots can be sampled using a stan-
dard particle filter, many of the techniques discussed in this book are directly
applicable. Hence we focus on the latter issue here.

A simple example of when the leaves can be efficiently updated is when
the CPDs for X; and Y; are linear-Gaussian, in which case the model is
called a conditionally linear-Gaussian state-space model. We can compute
P(X¢|r1.4, y1.4) recursively using a Kalman filter. If R, is discrete, the model
is called a jump Markov linear system, or switching state-space model (Chen
and Liu 1999, Doucet, Gordon and Krishnamurthy 1999). In this case, it is
often useful to split the root node into two independent components, as in
Figure 2(c¢). R;(1) is a parent of X;, and can be used to model discontinuous
changes in state (c.f., McGinnity and Irwin (2000: this volume)). R;(2) is a
parent of Y;, and can be used to model outliers in the observations. Another
case when we might have multiple root nodes is when we are doing online
parameter estimation: in the Bayesian approach, the parameters are just
additional random variables (nodes in the graph) that can be sampled using
particle filtering.

In the jump Markov linear system, the jumps occur “spontaneously”, as
dictated by the Markov transition matrix on the R;(1) node. For some models,
it is useful to have the system’s state, X;, “trigger” the jump, which can
be modelled by adding an arc from X; ; to R;, and making R,’s CPD a
logistic or softmax function. Unfortunately, Equation 2.1 becomes hard to
compute in this case, since we have a hidden continuous parent connected to a
(hidden) discrete child. One possible approach would be to use the variational
approximation discussed in (Murphy 1999).

ISpecifically, it just means we only have to condition on rt(i'), instead of both rt(i') and

7“,@1, when updating agi) in step 3 of the algorithm in Figure 1.

Figure 3. The two-tank DBN, adapted from Koller and Lerner
(2000: this volume). We have omitted the RF12 and R12 nodes
to keep the figure simple. RF standards for resistance failure, and
represents a permanent change in the resistivity of a pipe. MF
stands for measurement failure, and represents a temporary error
in the sensor. The MF and observed (shaded) nodes are only
shown for slice 2, for simplicity, since they are transient variables,
i.e., they are not connected across time-slices.

A more complex DBN is shown in Figure 3. We would like to sam-
ple the discrete indicator variables (which model failures of various kinds)
shown inside the dotted boxes, and apply exact inference on the remain-
ing, continuous-valued nodes, which we can group into a single vector-valued
node, X;. Unfortunately, in this model, although the noise is Gaussian, the
dynamics are non-linear, making it hard to integrate out X;. We could apply
an approximate inference technique, such as the extended Kalman filter, or
the unscented filter (Julier and Uhlmann 1997), but we would no longer be
doing strict Rao-Blackwellisation. In particular, these approximations may
diverge. (Koller and Lerner apply particle filtering to both R; and X;.)

Given an arbitrary DBN with a potentially complex topology, which nodes
should be considered as roots, and which as leaves? If we disallow arcs from
X; 1 to R; for the reasons discussed above, the answer is fairly straightfor-
ward. We define the set of nodes which are eligible to be roots, R, to be all
the nodes which either have no parents, or whose parents are also in the set
R, possibly shifted back in time. We initialize R to be all the nodes X,(7)
which have no parents, or whose only parent is X; ;(i). We then add to R
all the nodes, X;(i), whose parents are in R U {X;_;(7)}. For example, in
the two-tank DBN in Figure 3, we start with R; containing all the nodes in
dotted boxes, and can then add Rlo and R20 to get

Ry = {Rlo, R20, RF10, RF20, M Flo, M F20, M F12}.

The idea is to keep growing the set R until the set of remaining variables,
X; def S\R;, can be updated exactly and efficiently, where S represents all the
nodes in a single slice of the DBN, and R; represents the root set at iteration
1 of the above root-growing algorithm. In the two-tank case, R is locally
maximal: there is no single node that can be added such that the desired
closure property would be maintained. The next valid root set is R3 = S,
which corresponds to sampling all the variables, as in standard PF.

Now suppose the set of non-boxed variables X} had linear-Gaussian dy-
namics. In this case, we could sample the discrete root nodes R, and apply
the Kalman filter to the continuous nodes X, as we discussed before. Ex-
panding from R, to Rs, while legal, would probably not be very helpful, since
Rlo and R2o0 are jointly Gaussian with X, by assumption, and hence can be
marginalized out efficiently.

When all the (hidden) nodes in a DBN are discrete, we can always perform
exact inference in closed form, using the HMM filter or the junction tree
algorithm (Smyth, Heckerman and Jordan 1997, Cowell et al. 1999). The
problem is that the complexity is generally O(k™), where n is the number of
hidden nodes, and k is the number of values each node can take on. (We will
see an example of this in Section 4.) In this case, we should keep growing R
until X becomes small enough that exact inference becomes computationally

&
=

()
Figure 4. (a) We have partitioned the leaves and observations
into two components. (b) The dashed arcs entering the root node
induce correlation between the leaves, as indicated by the dotted
“path of influence.” The root nodes are shown shaded since they
are instantiated.

tractable.? Of course, the larger R, the more samples we will need, so this
tradeoff must be made carefully. We hope to examine this issue in the future.
In this chapter, we assume that the set R has been pre-specified.

In some cases, the non-root nodes might be conditionally independent
given the roots, as in Figure 4(a). We will see an example of this in Section 4.
The advantage of this is that we can update each leaf independently, condi-
tioned on the root, which is exponentially more efficient than updating the
leaves jointly. Note, however, that, if we had arcs from the leaves entering the
root, as in Figure 4(b), we would no longer be able to update the leaves inde-
pendently. This is because R; would act like a common observed child node,

inducing correlation amongst its parents, a phenomenon called “explaining
away” (Pearl 1988).

2For example, applying the greedy root-growing algorithm to the BAT DBN (Figure 6)

in the chapter by Koller and Lerner gives the following results, where we use the notation

A; def R; \ Ri—1 to represent the extra nodes added at the ith iteration. Ry = {LeftClr,

RightClr, EngStatus, BYdotDiff, SensorValid, Belr}, Ay = { FYdotDiff, BXdot, Bclose-
Fast, Fclr }, A3 = { FcloseSlow }, Ay = { FrontBackStatus }. To continue growing, we
would have to consider additions of two or more parents simultaneously, etc.

3 The RBPF algorithm in detail

We now explain the RBPF algorithm, which is sketched in Figure 1, in more
detail. We assume there are no arcs from X;_; to R;, and for simplicity, that
there are also no arcs from R;_; to X, so the generic structure is one that is
isomorphic to Figure 2b.

As we mentioned in the introduction, the belief state, P(X;, Ri.|y1.), is
represented by a set of N weighted particles. The marginal distribution on
the root nodes is approximated as

T]t\yu wa Tltarlt

where w! is the weight of the 7'th particle, and 6(z,y) = 1 if x = y and is 0
otherwise. The marginal on the leaf is approximated as

P(Xt\ym) = ZP(Xt\ﬁ:t,y1:t)P(7“1:t|y1:t)

T1:t
N . .
~ Z P(Xt‘rlzt’ yl:t) Z w;(s(rgqa 7nl:t>
T1:t =1

N .
= ZwZP(Xf|T$7%7U11‘)
i=1

For notational simplicity, we will assume that all nodes are discrete, so we
can represent each leaf marginal as a vector in [0, 1]* which sums to 1, where
k is the number of possible values of the node. In addition, since the nodes
are discrete, all the CPDs can be expressed as tables:

mr(r) € PR, =)
Ta(r'sr) € PR, =r|Ri_y =)
Tx(',riz) € P(X,=zR =r X, 1 =21
Oy(z,ry) € P, =y|X, =2, R, =r)

Since the leaf nodes are discrete, we can update their distributions, con-
ditional on having sampled R;, using the HMM filter as follows. First we
compute the one step-ahead prediction:

i def i
ai\fll(ﬂ:) = P(X; = x|y 1, 7"”)
ZP (X = 2| X m/,Tél))P(thl = 37,\y1:t71,7“§271)

ZTX ! Tt ; agl—)l(xl)

Then we do Bayesian updating:

0/,@(7") of P(Xt:m‘ylztargl;r)‘,)
= (1/ZOVPyl Xy = 2, 1V P(X, = xlyng 1, 71))
= (1/Z)0y (z,r"; y)ol]) ,(2)

where the denominator is equal to the likelihood:
def
2" % Plyly i) = X Ov (s yiall (@) (3.1)

If we have L leaves conditionally independent leaves, as in Figure 4(a), we
apply these equations to each leaf separately. Each such update will result in
a “local likelihood” term, Z;(j)®, like the one above. The overall likelihood
then becomes a product of the local likelihoods:

. L .
Plylyre i) = > T [Pw(). Xuls) = zlril yra)]

Z1,---TL]7]

= H [ZP v (1)1 X (5) = x,rgvi)P(X,‘(j) = $|T521=?J1:t1)]
= H Z(j)
j=1

All that remains is to specify how to do the following standard PF steps:

e Sample new values of the roots.
e Compute the weight of a particle.

e Resample the particles.

We will now explain these steps in detail. We drop the ¢ superscript for
brevity.

As discussed in the chapter by Doucet, de Freitas and Gordon (2000: this
volume), in sequential importance sampling, if we sample from the proposal
distribution q(Ry; 7141, y1.4), we must assign the particle weight equal to the
ratio between the true posterior and the proposal density:

P(yt|y1:t71;Tl:t)P(Rt|Tt71)
Q(Rfa T1:i—1, yl:t)

The simplest case is if we sample from the prior, ¢(R;) = P(R;|r;—1). In this
case, the weight is simply the likelihood computed in Equation 3.1.

The “optimal” proposal distribution, in the sense of minimizing the vari-
ance of the importance weights (Doucet et al. 1999), is given by

P(y|yra—1,m1.4) P(Ry|ri—1)

P(Rt|7ﬂl:t71:y1:t) - P(yt|y1't ! T]'t)

where the denominator is the one step-ahead likelihood

| Ry |
P(yilyra—1,m14) =D Pylyi-1, m1a—1, Ry = r)P(Ry = rlry_y)

r=1

This requires computing the likelihood |R;| times, which can be quite ex-
pensive. Whether the computational expense is worthwhile depends on the
relative reliability of the observations and the transition prior: if the prior
is weak (diffuse) and the observation likelihood is strong (sharply peaked),
many particles may be proposed in a part of the state space that has low
likelihood, which is wasteful. In this case, it might be worthwhile to take
the most recent evidence, 1;, into account before proposing. See Pitt and
Shephard (2000: this volume) for a more detailed discussion.

Finally, given a set of particles and weights, we can resample a fresh set
using any of the standard methods, such as residual resampling, discussed in
Doucet, de Freitas, and Gordon (2000: this volume).

4 Application: Concurrent localisation and
map learning for a mobile robot

In this section, we discuss an application of RBPF to a highly simplified
version of the problem of map learning for mobile robots (Murphy 2000).
The application of standard (non-RB) PF to the problem of robot localisation
(finding the robot’s position given a known map) using real robots is discussed
in Thrun et al. (2000: this volume).

Consider a robot which can move on a discrete, two-dimensional grid.
The goal is to learn the color of each grid cell, which can be either black or
white (say). The difficulty is that the color sensors are not perfect (they may
accidently flip bits with probability p,), nor are the motors (the robot may
fail to move in the desired direction with probability p,, due e.g., to wheel
slippage). Consequently, it is easy for the robot to get lost. And when the
robot is lost, it does not know what part of the map to update. (Note that, if
the robot always knew its location, e.g., by using GPS, map learning would be
easy; unfortunately, GPS does not work indoors, nor is it accurate enough.)

The optimal Bayesian solution to this problem is to maintain a belief state
over both the location of the robot, L, € {1,..., N}, and the color of each
grid cell, M,(l) € {0,1}, 1 =1,..., N, where Ny is the number of cells. For

notational simplicity, in this subsection we shall assume there are only two
colors; the technique easily generalizes.

We assume the color of the cells can change, to represent the fact that
the environment can be dynamic. For example, in Section 4.2, we use four
“colors” that represent whether a cell is unoccupied, or contains a wall, or
an open door, or a closed door, and we allow doors to change between open
and closed. In this case, M; is like an occupancy grid (Moravec and Elfes
1985), which is a simple kind of map. For simplicity, we assume the colors of

the cells change independently, but with an identical distribution, specified

by the matrix Ty (c;¢) € P(M,(I) = ¢|M,_1(l) = ¢). If this is an identity

matrix, it means that the colors do not change.?
The observation model is that the robot sees the color of the grid cell at
its current location, corrupted by noise:

def oy) L=pe iy =my
P(yilmy,...,my,, Ly =1) = B(m;y) = { . if 1y, £ m;
where p, is the probability that a color gets misread, and B is the 2 x 2
observation matrix with 1 — p, on the diagonal and p, off the diagonal. A
more realistic model would capture the fact that the robot can see the color of
neighboring cells as well. This is not hard to do, but for notational simplicity,
we shall stick to the single-cell model for now.

Let us assume for now that the robot is in a one-dimensional grid world, so
it can only move left or right, depending on the control input, U;. The robot
moves in the desired direction with probability 1 — p,, and otherwise stays
put. In addition, it cannot move off the edges of the grid. Algebraically, this
becomes

1—p, fl'=14+1and1<!'< N

o o - . Pa ifl:l'and1§1'<NL
P(L,=1ULi 1 =1,U,=—) = 1 =1 =N,
0 otherwise

The equation for P(L; = l'|L; 1 = [,U; =+) is analogous. In Section 4.2, we
will consider the case of a robot moving in two dimensions. In that case, the
motion model will be slightly more complex.

Finally, we need to specify the prior. The robot is assumed to know its
initial location, so the prior P(L;) is a delta function. If the robot did not
know its initial location, there would be no well-defined origin to the map; in
other words, the map is relative to the initial location. Also, the robot has a
uniform prior over the colors of the cells. However, it knows the size of the
environment, so the state space has fixed size.

31f the colors do not change, and if we are satisfied with learning a maximum likelihood
estimate of the map, instead of a full posterior, we can treat the M (i)s as fixed parameters
and use EM to learn them (Thrun, Burgard and Fox 1998). However, doing this online
does not work very well (Murphy 2000).

z
G

) G

i@

M(1)

)
)

?
e
B

Figure 5. The DBN used in the map learning problem. M;(/)
represents the color of grid cell [at time ¢, L, represents the robot’s
location, Y; the current observation, and U, is the current input
(control).

M(1)

M(2)

-0
T-0-® @

Q
Q

The DBN we are using is shown in Figure 5. This kind of topology (mod-
ulo the observed input ndoes) is called a factorial HMM (Ghahramani and
Jordan 1997). Inference in these models is computationally intractable. To
be precise, if there are n chains, each of which can take on k possible values,
then the belief state has size O(k™): all the chains become coupled because
Y; is a common observed child. Exact inference, using the junction tree al-
gorithm (Smyth et al. 1997, Cowell et al. 1999), takes O(nk"*!) operations
per time step. In general, if the number of values the nodes in chain j can
take on is kj, then the belief state has size S = [[}_; k;, and exact inference
takes O(S X2j_, k;) operations per time step. In our application, there are Ny,
chains with 2 possible values each, and one chain with N possible values,
so we need 3N22Nt operations per time step. In Section 4, we use a 10 x 10
grid, so this requires O(2!%) operations per time step for exact inference.

In our case, however, the observation model has the crucial property that
Y; only depends on a single element of M, once L; is known. Note that this
conditional independence property is not obvious from the structure of the
graph, but is implicit in Y;’s CPD c.f., (Boutilier, Friedman, Goldszmidt and
Koller 1996). The upshot is that we can rewrite the model of Figure 5 to take
on the form of Figure 4(a) as follows: L; is equivalent to the root R;, and the
map cells M;(j) are equivalent to the leaves X;(j). (We ignore the U; nodes
for simplicity.) The transition model for the root is the motion model of the

Figure 6. A one-dimensional grid world.

robot, and the transition model of the leaves is the matrix 7T},, defined to be
independent of L;. Finally, the observation nodes are as follows. We define

B(m;m') ifj=1
1/2 it j £ 1

where 5,1 € {1,..., N} and m,m' € {0,1}. This observation model only
gives information about the cell at the robot’s current location, L, = [, as
desired; all other cells (leaves) will be effectively be updated with no obser-
vations. It is now straightforward to apply RBPF to this model.

PY() = | My(G) = m Ly = 1) = {

4.1 Results on a one-dimensional grid

To evaluate the effectiveness of this algorithm, we first applied it to a problem
which was sufficiently small (8 cells) that we could compute the “ground
truth” using exact inference. In particular, consider the one-dimensional grid
shown in Figure 6. We have N; = 8, so exact inference takes about 50,000
operations per time step (!). For simplicity, we will fix the control policy as
follows: the robot starts at the left, moves to the end, and then returns home.
Suppose there are no sensor errors, but there is a single “slippage” error at
t = 4. We summarize this below, where U, represents the input (control
action) at time t.

t 1.2 3 4 5 6 7 & 9 10 11 12 13 14 15 16
L, 12 3 4 4 5 6 7 8 7 6 5 4 3 2 1
Yy, 0 1.0 1 1 0O 1 O 1 O 1T O 1 O 1 0
U - = = = 5 2 5 9 e e e e e

To study the effect of this sequence, we used exact inference to compute
P(Li|y1.) and P(M;|y;.4): see Figure 7. At each time step, the robot thinks it
is moving one step to the right, but the uncertainty gradually increases. How-
ever, as the robot returns to “familiar territory”, it is able to better localize
itself, and hence the map becomes “sharper”, even in distant cells. Note that
this effect only occurs because we are modelling the correlation between cells
c.f., the stochastic map representation of (Smith, Self and Cheeseman 1988).
For a more detailed interpretation of this example, see (Murphy 2000).

In Figure 8, we show the results obtained using RBPF. We see that it
approximates the exact solution very closely, using only 50 particles. The

Marginal map, i.e., P(Ml(t) | y(1:t) Prob. location, i.e., P(L(t)=i | y(1:t))

E }
2 4 6 8 10 12 14 16

time t time t

(a) (b)

2

%)

~

grid cell i

)

o

7

grid cell i
© ~ o 0 ~ w ~ -
| m

Figure 7. Results of exact inference on the 1D grid world. (a) A
plot of P(M,(i) = 1|y1.), where i is the vertical axis and ¢ is the
horizontal axis; lighter cells are more likely to be color 1 (white).

(b) A plot of P(L; = i|y1.), i.e., the estimated location of the
robot at each time step.

Marginal map, i.e., P(M(t) | y(1:)), 50 particles, seed 1 Prob. location, i.e., P(L(t)=i | y(L:t)), 50 particles, seed 1
1 1
2 2
3 3
=4 =4
B 8
b] T
55 55
6 6
7 7
8
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
time t time t

(a) (b)

Figure 8. Results of the RBPF algorithm on the 1D grid world
using 50 particles.

results shown are for a particular random number seed; other seeds produce
qualitatively very similar results, indicating that 50 particles are in fact suffi-
cient in this case. Obviously, as we increase the number of particles, the error
and variance decrease, but the running time increases (linearly).

The question of how many particles to use is a difficult one: it depends
both on the noise parameters and the structure of the environment (if every
cell has a unique color, localization, and hence map learning, is easy). Since
we are sampling trajectories, the number of hypotheses grows exponentially
with time (as in a jump Markov linear system). In the worst case, the number

BK Marginal map, i.e., P(Ml(i) | y(1:t) BK Prob. location, i.e., P(L(t)=i | y(1:t))

09

-

09

08

N

08

0.7 07

w

06 06

ES

05
05

T T
3 o
z bl
5 o

[l

04
04

03
03
02

02

01

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
time t time t

(a) (b)

Figure 9. Results of the BK algorithm on the 1D grid world.

of particles needed may depend on the length of the longest cycle in the
environment, since this determines how long it might take for the robot to
return to “familiar territory” and “kill off” some of the hypotheses (since a
uniform prior on the map cannot be used to determine L; when the robot is
visiting places for the first time). In the above example, the robot was able to
localize itself quite accurately when it reached the end of the corridor, since
it knew that this corresponded to cell 8. In general, we may need to use a
clever control policy, such as the one we discuss in the next section, to keep
the number of particles tractable.

For comparison purposes, we also tried the Boyen-Koller (BK) algorithm
(Boyen and Koller 1998), which is another popular approximate inference
algorithm for discrete DBNs. In its simplest, fully factorised form, BK rep-
resents the belief state as a product of marginals:

Np

P(Mt; Lt|?/1:t) = P(Lt‘ylzt) H P(Mt(.j)‘ylzt)

Jj=1

The results of using BK are shown in Figure 9. As we can see, it performs
very poorly in this case, because it ignores correlation between the cells. Of
course, it is possible to use products of pairwise or higher-order marginals for
tightly coupled sets of variables. Unfortunately, there is no natural subset of
variables to use in this case, since all the grid cells are potentially correlated.

4.2 Results on a two-dimensional grid

We now consider the 10 x 10 grid world in Figure 10. We use four “colors”,
which represent closed doors, open doors, walls, and free space. Doors can
toggle between open and closed independently with probability p. = 0.1, but

T2 s e s oeo1h s

Figure 10. A simple 2D grid world. Grey cells denote doors
(which are either open or closed), black denotes walls, and white
denotes free space.

posterior on map at t=50

P(M(i,j)=free) P(M(i,j)=open)

2 4 6 8 10

P(M(i,j)=wall) P(M(i,j)=closed)

Figure 11. Results of RBPF on the 2D grid world using 200
particles.

the other “colors” remain static; hence the cell transition matrix Ty, is

1*pc DPe 0 0

pe 1-=p. 0 0
0 0 10
0 0 0 1

The robot observes a 3 x 3 neighborhood centered on its current location. The
total probability that each pixel gets misclassified is p, = 0.1. The robot can
move north, east, south or west; there is a p, = 0.1 chance it will accidentaly
move in a direction perpendicular to the one specified by U,.

We use a control policy that alternates between exploring new territory
when it is confident of its location, and returning to familiar territory to

relocalize itself when the entropy of P(L;|y;4) becomes too high c.f., (Fox,
Burgard and Thrun 1998): see (Murphy 2000) for details.

The results of applying the RBPF algorithm to this problem, using 200
particles, are shown in Figure 11. We see that by time 50, it has learnt an
almost perfect map, even though the state-space has size 2190,

5 Conclusions and future work

We have shown how to exploit “tractable substructure” in certain kinds of
DBNs by combining particle filtering with exact inference. In the future, we
hope to find more applications of this technique, and to extend the algorithm
to the batch (offline) case.

References

Boutilier, C., Friedman, N., Goldszmidt, M. and Koller, D. (1996). Context-
specific independence in Bayesian networks, Proc. of the Conf. on Un-
certainty in Al

Boyen, X. and Koller, D. (1998). Tractable inference for complex stochastic
processes, Proc. of the Conf. on Uncertainty in AL

Casella, G. and Robert, C. P. (1996). Rao-Blackwellisation of sampling
schemes, Biometrika 83(1): 81 94.

Chen, R. and Liu, S. (1999). Mixture Kalman filters, Submitted.

Cowell, R. G., Dawid, A. P., Lauritzen, S. L. and Spiegelhalter, D. J. (1999).
Probabilistic Networks and Ezpert Systems, Springer.

Doucet, A. (1998). On sequential simulation-based methods for Bayesian
filtering, Technical Report CUED/F-INFENG/TR 310, Department of
Engineering, Cambridge University.

Doucet, A., de Freitas, N., Murphy, K. and Russell, S. (2000). Rao-
blackwellised particle filtering for dynamic Bayesian networks. Submit-
ted.

Doucet, A., Gordon, N. and Krishnamurthy, V. (1999). Particle filters for
state estimation of jump markov linear systems, Technical report, De-
partment of Engineering, Cambridge University.

Fox, D., Burgard, W. and Thrun, S. (1998). Active Markov localization for
mobile robots, Robotics and Autonomous Systems.

Ghahramani, Z. and Jordan, M. (1997). Factorial hidden Markov models,
Machine Learning 29: 245-273.

Julier, S. and Uhlmann, J. (1997). A new extension of the Kalman fil-
ter to nonlinear systems, Proc. of AeroSense: The 11th Intl. Symp. on
Aerospace/Defence Sensing, Simulation and Controls.

Moravec, H. and Elfes, A. (1985). High resolution maps from wide angle
sonar, IEEFE Intl. Conf. on Robotics and Automation.

Murphy, K. P. (1999). A variational approximation for Bayesian networks
with discrete and continuous latent variables, Proc. of the Conf. on Un-
certainty in AL

Murphy, K. P. (2000). Bayesian map learning in dynamic environments, in
S. Solla, T. Leen and K.-R. Miiller (eds), Advances in Neural Information
Processing Systems 12, MIT Press, pp. 1015-1021.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference, Morgan Kaufmann.

Smith, R., Self, M. and Cheeseman, P. (1988). Estimating uncertain spatial
relationships in robotics, in Lemmer and Kanal (eds), Uncertainty in
Artificial Intelligence, Vol. 2, Elsevier, pp. 435—461.

Smyth, P., Heckerman, D. and Jordan, M. 1. (1997). Probabilistic indepen-
dence networks for hidden Markov probability models, Neural Compu-
tation 9(2): 227-269.

Thrun, S., Burgard, W. and Fox, D. (1998). A probabilistic approach to con-
current mapping and localization for mobile robots, Machine Learning
31: 29-53.

