
Formal Composition of Robotic Systems as Contract Programs

Mason Nakamura1, Justin Svegliato2, Samer B. Nashed3, Shlomo Zilberstein3, and Stuart Russell2

Abstract— Robotic systems are often composed of modular

algorithms that each perform a specific function within a larger

architecture, ranging from state estimation and task planning

to trajectory optimization and object recognition. Existing

work for specifying these systems as a formal composition

of contract algorithms has limited expressiveness compared to

the variety of sophisticated architectures that are commonly

used in practice. Therefore, in this paper, we (1) propose a

novel metareasoning framework for formally composing robotic

systems as a contract program with programming constructs for

functional, conditional, and looping semantics and (2) introduce

a recursive hill climbing algorithm that finds a locally optimal

time allocation of a contract program. In our experiments, we

demonstrate that our approach outperforms baseline techniques

in a simulated pick-and-place robot domain.

I. INTRODUCTION

Robotic systems are often composed of modular algo-
rithms that each perform a specific function within a larger
architecture, ranging from state estimation [28] and task
planning [9], [6] to trajectory optimization [13] and object
recognition [14]. However, in practice, there is often no
formal model that represents the relationship between how
the results of these algorithms can augment or diminish each
other’s performance. For example, a pick-and-place robot
may have an upstream algorithm for state estimation and
a downstream algorithm for task planning but no formal
model that represents the relationship between the results
of these algorithms. Therefore, since robotic systems have
been increasingly deployed across a range of complex real-
world domains, there has been a growing need to formally
model their architectures as a network of algorithms in order
to improve their utility and performance during operation.

A promising approach to formally modeling the architec-
ture of a robotic system is to represent it as a composition of
contract algorithms called a contract program [31], [35]. In
short, a contract algorithm is an algorithm that (1) gradually
improves the quality of its current solution at runtime but (2)
must be terminated at a fixed deadline [32]. Consequently,
in this approach, once a robotic system has been specified
as a composition of contract algorithms, the objective is
to determine a time allocation for each contract algorithm
such that the overall expected utility of the robotic system
is optimized subject to a given computation time budget.

This work was supported by NSF grants IIS-1813490/IIS-1954782 and a
gift from the Open Philanthropy Foundation.

1Marist College, Poughkeepsie, NY, USA. Emails: mason.nakamura1
@marist.edu

2University of California, Berkeley, CA, USA. Emails: {jsvegliato,
russell}@berkeley.edu

3University of Massachusetts, Amherst, MA, USA. Emails: {snashed,
shlomo}@cs.umass.edu

graspObject(Z) {

 x = estimateState(Z);

 pick_target = planGrasp(x);

 traj = findTrajectory(x, pick_target);

 grasp_quality = motorController(traj);

 return grasp_quality;

}

a) b)

c)

Fig. 1. Our approach for an object grasping contract program M within
the architecture of a robotic system. (a) shows the original graspObject
function specified in a high-level program written in a language like
C++ or Python that invokes three contract algorithms estimateState,
planGrasp, and findTrajectory along with the execution algorithm
motorController. (b) shows the corresponding contract program with
three vertices v1, v2, and v3 for the contract algorithms that each can be
allocated a computation time ti where the sum 3.2 + 1.6 + 5.2 equals a
time budget � = 10. (c) shows the recursive hill climbing algorithm that
gradually improves a time allocation t = h4, 3, 3i in term of its expected
utility E[UM(t)] with each attempted swap until converging to a locally
optimal time allocation ~t⇤ = h3.2, 1.6, 5.2i given a utility function U .

However, while this approach offers a framework for
formally modeling the architecture of a robotic system as a
composition of contract algorithms, it is has limited expres-
siveness compared to the variety of sophisticated architec-
tures that are commonly used in practice. In particular, this
approach only considers a contract program with functional

semantics: the output of a set of upstream contract algo-
rithms can only be used as input to a downstream contract
algorithm. Ideally, in order to formally model complex
robotic systems and improve their utility and performance in
complex real-world domains, it is critical to build contract
programs with programming constructs for not only func-

tional semantics but also conditional and looping semantics.

Therefore, we propose a novel metareasoning framework
illustrated in Figure 1 for formally modeling a robotic system
as a contract program with programming constructs for not
only functional but also conditional and looping semantics.
By building a performance profile for each programming
construct representing the probability of a solution quality
being generated by the contract algorithm for a given time
allocation and a set of input qualities, it is possible to specify
a formal representation of the expected utility for a contract
program. Given this representation, a contract program can
be solved—a time allocation can be determined—by using a
recursive hill climbing algorithm that finds a locally optimal
time allocation. Empirically, we show that our metareasoning
approach is effective at determining the time allocations of a
contract program, outperforming simple baseline techniques,
in a simulated pick-and-place robot domain.

2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 1-5, 2023. Detroit, USA

978-1-6654-9190-7/23/$31.00 ©2023 IEEE 6727

20
23

 IE
EE

/R
SJ

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 In

te
lli

ge
nt

 R
ob

ot
s a

nd
 S

ys
te

m
s (

IR
O

S)
 |

 9
78

-1
-6

65
4-

91
90

-7
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IR

O
S5

55
52

.2
02

3.
10

34
23

41

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on August 03,2024 at 11:43:20 UTC from IEEE Xplore. Restrictions apply.

II. RELATED WORK

There has been a large body of research on metareason-
ing. The most relevant work to this paper is on anytime
algorithms, a class of algorithms encapsulating interruptible

and contract algorithms [32]. The main property of an
anytime algorithm is that it gradually improves the quality
of its current solution at runtime. To obtain the current
solution, an interruptible algorithm can be interrupted at
any time while a contract algorithm must be terminated
at a fixed deadline. Generally, it is has been shown that
any interruptible algorithm can be a contract algorithm by
executing it until fixed deadline while any contract algorithm
can be an interruptible algorithm by repeatedly executing
it with a fixed deadline that grows exponentially [35]. In
robotics specifically, anytime algorithms have been shown
to be effective in a variety of domains, ranging from state
estimation [28] and task planning [9], [6] to trajectory
optimization [13] and object recognition [14]. We outline a
few relevant areas of metareasoning that have been developed
for anytime algorithms and related domains below.

First, there has been work on metareasoning for optimal
stopping of interruptible algorithms. The earliest approach,
namely fixed allocation, executes the anytime algorithm
until a stopping point determined prior to runtime [11],
[5]. Although fixed allocation is effective when there is
negligible uncertainty in the performance of the anytime
algorithm, there is often substantial uncertainty in real-
time planning problems [19]. Hence, a more sophisticated
approach, namely monitoring and control, tracks the perfor-
mance of the anytime algorithm and estimates a stopping
point at runtime [12], [34], [10], [16], [26], [23], [21].

Next, there has been work on metareasoning for optimal
parameter tuning of anytime algorithms that has been de-
signed for specific anytime algorithms. For example, for task
planning, methods tune the weight of an anytime heuristic
search algorithm called anytime weighted A* by selecting the
best weight for a problem [9], choosing the best weight for
an instance of a problem [20], modifying the weight heuris-
tically [27], or adjusting the weight randomly [3]. Moreover,
for motion planning, methods tune the growth factor of an
anytime motion planning algorithm called RRT* [29], [1],
[15]. Most recently, it has been shown that reinforcement
learning is an effective framework for learning how to tune
the parameters of any anytime algorithm [4], [2].

Finally, there has been work on metareasoning for optimal
selection among a portfolio of decision-making models or
algorithms. This work recognizes that different models or
algorithms tend to dominate each other on different types
of problems. For example, methods based on metareasoning
have been developed to select the best model needed to
recover from a range of exceptions or safety concerns [25],
[24], [22], the best algorithm needed to solve challenging
computational problems like constraint satisfaction prob-
lems [33], [8], [30], the best abstraction needed to solve
Markov decision processes [18], [17], and the best node
expansion to be performed in heuristic search algorithms [7].

III. FORMAL COMPOSITION OF ROBOTIC SYSTEMS

We begin by introducing a novel metareasoning framework
for formally composing a robotic system as a contract
program. The rest of this section proceeds as follows. First,
we define the formal metareasoning problem for contract
programs. Next, we offer foundational programming con-
structs for the control flow of a contract program. Finally,
we propose a recursive hill climbing algorithm that finds a
locally optimal time allocation of a contract program.

1) Metareasoning for contract programs: First, we de-
fine the formal metareasoning problem for contract pro-
grams. A contract program is a composition of contract
expressions that interact with each other through a set of
well-defined programming constructs. Like any high-level
program, the control flow of a contract program can use
programming constructs like functional, conditional, and
looping expressions. Formally, a contract program can be
represented by a directed graph where each vertex denotes
a contract expression and each edge denotes an interaction
between contract expressions. We define a contract program
below and then define each expression later in the paper.

Definition 1. A contract program M is a composition of

contract expressions represented by a directed graph:

• A vertex vZ is an input variable Z.

• A vertex vF is a functional expression F (G1, . . . , Gn)
such that the vertices vG1 , . . . , vGn with edges directed

into vertex vF denote the set of input variables or

functional expressions G1, . . . , Gn.

• A vertex vC is a conditional expression C(FC , F¬C)
with a condition C such that the vertices vFC and vF¬C

with edges directed into vertex vC denote the functional

expressions FC and F¬C such that C is TRUE with

probability ⇢ and FALSE with probability 1� ⇢.

• A vertex vL is a looping expression L(F) such that the

vertex vF with an edge directed into vertex vL denotes

� sequential invocations of the functional expression F

such that � is selected offline or dynamically online.

The notation v 2 V[M] denotes a vertex, e 2 E [M] denotes
an edge, and ↵ 2 A[M] denotes a contract algorithm.

It is possible to calculate the expected utility of a contract
program for a given time allocation. This is computed by
summing over the probability of the final solution qualities
generated by each contract expression for a given time
allocation multiplied by the utility that results from the
final solution qualities. We define this expected utility below
where T is a normed vector space representing the set of
possible time allocations and Qi = [0, 1] is a continuous set
of final solution qualities for each contract algorithm ↵i.

Definition 2. The expected utility E[UM] : T �! R of a

contract program M for a given time allocation t 2 T is:

E[UM(t)] =
X

(q1,...,qn)2Q1⇥...⇥Qn

Pr(q1, . . . , qn | t)U(q1, . . . , qn),

where (q1, . . . , qn) 2 Q1 ⇥ . . . ⇥ Qn are the final solution

qualities generated by each contract expression and U : Q1⇥

6728

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on August 03,2024 at 11:43:20 UTC from IEEE Xplore. Restrictions apply.

· · · ⇥ Qn ! R is the utility function of the problem being

solved by the contract program.

The objective of the metareasoning problem for contract
programs is to determine the optimal time allocation of the
contract program that optimizes the expected utility subject
to a given time budget. We define this objective below.

Definition 3. A time allocation t⇤ = ht1, t2, . . . , t|V[M]|i of

a contract program M is optimal if and only if:

t⇤ = argmax
t2T

E [UM(t)] ,

where T = {t 2 (R+)|V[M]| | ktk1 = �} is the space of time

allocations that are available to be allocated to each contract

algorithm of the contract program given a time budget �.

2) Extending contract programs: Next, we offer foun-
dational programming constructs for the control flow of
a contract program. For each programming construct, we
give its semantics and summarize its performance with a
performance profile that represents the probability of the
final solution quality generated by the contract algorithm for
a given time allocation and a set of input solution qualities.
This is typically provided by a domain expert or built through
simulations of the contract algorithm offline [32].

Functional expressions, like function statements in high-
level programs that were introduced in early work on contract
programs [35], invoke a contract algorithm on a set of inputs:

Definition 4. A functional expression F is a function

invocation F (G1, . . . , Gn) that invokes a contract algorithm

↵ 2 A[M] on a set of input variables or functional

expressions G1, . . . , Gn.

Definition 5. A functional expression performance profile
� : Q ⇥ T �! �|Q|

gives the probability �(q | q, t) of a

functional expression F generating an output quality q 2 Q

given a time allocation t 2 T and a tuple of input qualities

q 2 Q = Q1 ⇥ · · ·⇥Qn.

Conditional expressions, analogous to if-else statements in
high-level programs, invoke either a left or right functional
expression based on whether the condition is true or false:

Definition 6. A conditional expression C(FC , F¬C) with a

condition C that evaluates in ⌧ computation time to TRUE
with probability ⇢ or FALSE with probability 1� ⇢ is:

[C = TRUE] · FC(·) + [C = FALSE] · F¬C(·),
where FC(·) and F¬C(·) are functional expressions.

Definition 7. A conditional expression performance profile
� : QFC ⇥QF¬C ⇥Q⇥ T �! �|Q|

gives the probability

�(q | qFC , qF¬C ,q, t) = ⇢ · �FC (qFC | q, t� ⌧)

+ (1� ⇢) · �F¬C (qF¬C | q, t� ⌧)

of a conditional expression C generating an output quality

q 2 Q given a time allocation t 2 T , a tuple of input

qualities q 2 Q = Q1 ⇥ · · · ⇥ Qn, and a pair of left and

right branch qualities qFC 2 QFC and qF¬C 2 QF¬C for

functional expressions FC(·) and F¬C(·).

Algorithm 1: RECURSIVEHILLCLIMBING(·)
In: A contract program M, a time budget � 2 R+, and an initial

time allocation vector t0 2 (R+)|V[M]|

Out: A final time allocation vector t 2 (R+)|V[M]|

Require: A performance profile �↵ for each contract algorithm
↵ 2 A[M], a resolution threshold ⌘ 2 R+, and a
refinement rate 2 (1,1)

1 ✏ kt0k1
2 t t0, t0 t0

3 while ✏ � ⌘ do

4 for (vi, vj) in V[M]2 such that vi 6= vj do

5 ↵i CALCULATETIMEALLOCATION(vi)
6 ↵j CALCULATETIMEALLOCATION(vj)

7 if ↵i � ✏ < 0 or ↵j + ✏ > � then

8 continue

9 �i ↵i � ✏, �j ↵j + ✏

10 for vk in {vi, vj} do

11 if vk .ISFUNCTIONALEXPRESSION() then

12 t0k �k
13 if vk .ISCONDITIONALEXPRESSION() then

14 RHC(MC ,�k,
� �k
↵k

�
tvC)

15 RHC(M¬C ,�k,
� �k
↵k

�
tv¬C)

16 if vk .ISLOOPINGEXPRESSION() then

17 RHC(ML,�k,
� �k
↵k

�
tvL)

18 if E[UM(t0)] > E[UM(t)] then

19 t t0

20 if t = t0 then

21 ✏ ✏/

22 return t

Looping expressions, similar to for and while statements
in high-level programs, invoke a functional expression for a
number of sequential invocations that can be specified offline
or dynamically online:

Definition 8. A looping expression L(F) that iterates for a

number of sequential invocations � > 0 that can be specified

by hand offline or dynamically online is:

F
(�) � F (��1) � . . . � F (1)(I),

where F
(i)

is the ith intermediate sequential invocation of

the functional expression F and I is the set of initial input

variables and functional expressions.

Definition 9. A looping expression performance profile � :
Q⇥T �! �|Q|

gives the probability

�(q | q, t) =
�Y

i=1

�F (i)(q(i) | q(i�1)
,q, t(i))

of a looping expression L generating an output quality q 2 Q

given a tuple of intermediate time allocations t 2 T = T1⇥
· · · ⇥ T� , a tuple of initial input qualities q 2 Q = Q1 ⇥
· · ·⇥Qn, and an output quality q

(i)
for the ith intermediate

invocation of functional expression F .

Importantly, we note that any method for computing the
expected utility E[UM(t)] of a contract program M for a
given time allocation t 2 T depends on the joint probability
Pr(q1, . . . , qn | t) of the solution qualities (q1, . . . , qn) 2
Q1⇥. . .⇥Qn. By expressing this joint probability as a chain
of conditional probabilities (similar to a Bayesian network),

6729

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on August 03,2024 at 11:43:20 UTC from IEEE Xplore. Restrictions apply.

this can be computed efficiently by using the performance
profile �↵ of each contract algorithm ↵ 2 A[M].

3) Solving contract programs: Finally, we propose a
recursive hill climbing algorithm that finds a locally optimal
time allocation of a contract program. Algorithm 1 describes
the RECURSIVEHILLCLIMBING algorithm that takes in a
contract program, a time budget, and an initial time allocation
vector and returns a final time allocation vector. At a high
level, this method is a local search algorithm that exchanges
a small unit of time between different pairs of vertices until
the expected utility of the contract program converges.

We describe Algorithm 1 in detail below. The resolution,
current time allocation vector, and proposed time allocation
vector are initialized (Lines 1-2). While the resolution is
greater than or equal to the resolution threshold, a loop
iterates over each two-permutation of vertices (Lines 3-4).
The time allocation of each vertex is extracted from its
contract program (Lines 5-6). If the time allocation exchange
is valid, each time allocation is calculated by either adding
or subtracting the resolution (Lines 7-9). For each vertex,
there are two cases. If it is a functional expression, its time
allocation is updated. If it is a conditional or looping ex-
pression, the algorithm is invoked recursively (Lines 10-17).
Here, we see that the functional expression are the base case
because conditional and looping expressions are composed
of functional expressions. After that, if the proposed time
allocation vector has an expected utility higher than the
current time allocation vector, the current vector is replaced
with the proposed vector (Lines 18-19). Finally, if there is
no change, the resolution is contracted by the refinement rate
to allow for fine-grained adjustments (Lines 20-21). A final
time allocation vector is returned (Line 22).

We provide the worst-case time and space complexity of
the RECURSIVEHILLCLIMBING algorithm below.

Proposition 1 (Time and Space Complexity). Algorithm 1

has a worst-case time complexity of O(2 log (
✏
⌘) · |V[M]|3)

and a worst-case space complexity of O(|V[M]|).

Proof Sketch. We begin by proving the worst-case time
complexity of Algorithm 1. First, observe that the while loop
iterates as long as the condition ✏ � ⌘ holds between the
resolution ✏ and the resolution threshold ⌘. Moreover, the
resolution ✏ is contracted by the refinement rate in each
iteration of the while loop. Hence, as the while loop iterates
x times according to the equation ✏

 x = ⌘, the while loop
iterates x = log (

✏
⌘) times. Next, the for loop iterates at most

|V[M]|2 times for each pair of |V[M]| vertices. Finally, each
iteration of the for loop results in at most 2|V[M]| recursive
invocations of the algorithm. Therefore, when multiplying
each of these terms together, the worst-case time complexity
of Algorithm 1 is O(2 log (

✏
⌘) · |V [M]|3).

We now prove the worst-case space complexity of Al-
gorithm 1. Observe that only two time allocation vectors t
and t0, each of size |V[M]|, are stored. Therefore, using an
optimized in-place memory implementation, the worst-case
space complexity of Algorithm 1 is O(|V[M]|).

TABLE I
THE CONTRACT ALGORITHMS FOR THE PICK-AND-PLACE ROBOT.

Vertex Input Output Function

v12 Z s0 Estimate current task state

v11 – v9 Si Si+1 Expand ply of task search tree
v8 Sk ⌥, c1 Select parameterized grasp type

v7 ⌥, c1 ⌧c1c0 Move end effector to pick config

v5 Z x2
o Identify obstacles at place config

v4 x2
o c2 Select place config

v3 x2
o, c1, c2 ⌧c2c1 Move end effector to place config

v1 x2
o, ⌧c2c1 , c2 ⌧c0c2 Move end effector to pre-grasp config

v6 Z x1
o Identify obstacles at grasp config

v2 x1
o, c1 ⌧c0c1 Move end effector to pre-grasp config

5

3 1

Looping Vertex L(G)

4

Conditional Vertex C(L, R)

Fig. 2. A simplified directed graph representation of a contract program
for the pick-and-place robot with vertices representing contract expressions
and edges representing interactions between contract expressions.

IV. PICK-AND-PLACE ROBOT DOMAIN

We now turn to an example contract program for a
simulated pick-and-place robot domain illustrated in Fig-
ure 2. Here, the robot has a contract program with contract
algorithms that each perform a function described in Table I.

The robot begins by estimating the current state of the
task (v12). Next, the robot plans by repeatedly expanding a
task search tree for 4 plies (v11 – v9, v8) in which the final
ply generates a grasp type. The robot then plans/executes its
grasp (v7). Finally, depending on whether it succeeds or fails,
the robot either places the object (v5, v4, v3) or evaluates
the workspace (v6) prior to resetting the end effector to its
initial configuration (v1, v2). For the input and output of each
vertex, we have that: Z is the raw sensor data; s0 is the initial
state; S

i is the task search tree after i plies starting with
S
0 = {s0} as the root task search tree; ⌥ is a grasp type;

c0, c1, and c2 are the pick/place configurations with c0 as
given offline and c1 and c2 computed online; ⌧ ba is a trajectory
from configuration a to configuration b; and x

i
o are location

estimates for the target and obstacles at configuration ci.
In a real-time intelligent system like a pick-and-place

robot, each vertex is implemented with a specific contract
algorithm. In particular, there are a range of algorithms that
can be used as a contract algorithm for each vertex of the
contract program. Monte Carlo localization [28] could be
used for state estimation in vertex v12. Monte Carlo tree
search [6] or anytime heuristic search [9] could be used for
task planning in vertices v11 – v9 and v8. RRT* [13] could be
used for trajectory optimization in vertices v7, v3, v1, and v2.
Anytime object and scene understanding [14] could be used
for object recognition in vertices v5 and v6 and selecting a

6730

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on August 03,2024 at 11:43:20 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. The expected utilities of the RHC and PA time allocation techniques
on the pick-and-place robot domain.

place configuration via scene recognition in v4. Generally,
these algorithms are either contract algorithms by design or
can be adjusted slightly to be contract algorithms [35].

The performance profile for each contract algorithm can be
built using a standard, well-studied procedure [32]: for each
contract algorithm, this procedure (1) performs simulations
to generate solution quality trajectories and (2) builds a
performance profile from these solution quality trajectories.
Given these performance profiles, the performance profiles
for functional/conditional/looping expressions can be built.

Step 1: We perform `1 simulations of `2 time steps
to generate solution quality trajectories for each contract
algorithm ↵. Formally, the i 2 [1, `1] simulations of t 2
[1, `2] time steps each generate solution quality trajectories
hq(i)1 , q

(i)
2 , . . . , q

(i)
`2
i such that each solution quality q

(i)
t is

q
(i)
t = 1� 1

e(C+⇠)t

for the growth rate C of the contract algorithm ↵ and some
noise ⇠ ⇠ N (µ,�) drawn from a Gaussian N [5].

Step 2: We build the performance profile �↵ from these
solution quality trajectories for each contract algorithm ↵.
Formally, the performance profile �↵(q|q, t) is

�↵(q|q, t) =
P`1

i=1 [q = q
(i)
t]

`1 · `2
,

for a time allocation t 2 T and a tuple of input qualities
q 2 Q = Q1 ⇥ · · ·⇥Qn.

It is important to highlight that any “well-behaved” any-
time algorithm exhibits the diminishing returns property [32]:
the improvement in solution quality is large at earlier time
steps and diminishes gradually in later time steps. Intuitively,
this is due to a potential solution being easy to improve at
early stages of computation but difficult to improve at later
stages of computation. Naturally, the performance profile
of a contract algorithm that is generated by this procedure
will exhibit the diminishing returns property. As a result,
while the performance profiles are simulated in the interest
of simplicity in this paper, any performance profile generated
from actual performance data would share a similar form
with the diminishing returns property.

V. EXPERIMENTS

We now demonstrate our approach (RHC) on the simulated
pick-and-place robot domain and show that it is effective at
determining the time allocations of a contract program.

Fig. 4. The time allocations of the RHC and PA time allocation techniques
on the pick-and-place robot domain for the specific contract expression v5.

Fig. 5. The time allocations of the RHC technique across all contract
expressions on the pick-and-place robot domain.

As a baseline, we use different parameterizations of a
proportional time allocation technique PA(�) that determines
distinct time allocations for a given contract program with
a time budget of �. This technique assigns a proportional
time allocation to each contract expression based on the
performance profile of that contract expression. Formally,
for a proportionality parameter � 2 R�0, each contract
expression vi 2 V[M] summarized by a performance profile
with a growth rate Cvi is assigned a computation time of

"
⇡ � 2 arctan(� · Cvi)

|V[M]|⇡ �
P

vj2V[M] 2 arctan(� · Cvj)

#
�.

Intuitively, contract expressions with a high growth rate are
given less time while contract expressions with a low growth
rate are given more time. Moreover, the proportionality pa-
rameter � shifts how much time is assigned to each contract
algorithm based on the growth rate of its performance profile.

For any contract program considered throughout our ex-
periments, there is a time budget � = 10. Similarly, the
performance profile of each contract expression is built by
performing `1 = 1000 simulations of the contract algorithm
of `2 = 100 time steps given a growth rate C following the
two-step procedure described earlier in the paper.

In our experiments, we perform 150 trials in which the
RHC and PA baseline techniques must determine the time
allocations of the contract program. In each trial, the contract
expressions of the contract program are assigned a random
growth rate C 2 [0, 5] to simulate different performance
characteristics. After each trial, the final expected utilities
and time allocations of each technique are recorded.

Figure 3 provides the final expected utilities of the RHC
and PA baseline techniques averaged over all trials. The
RHC technique with a mean of 644.91 between a lower and
upper quartile of 623.68 and 665.56 outperforms the best PA

6731

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on August 03,2024 at 11:43:20 UTC from IEEE Xplore. Restrictions apply.

baseline technique (0.1) with a mean of 589.28 between a
lower and upper quartile of 569.19 and 607.91. Moreover, the
RHC technique has a narrow range (163.01) around its mean
compared to the large range across some of the PA baseline
techniques, which suggests the RHC technique may be less
sensitive to the variance in the performance characteristics
(i.e., the growth factor) of each contract expression.

Figure 4 summarizes the final time allocations of the
RHC and PA baseline techniques for the specific contract
expression v5 averaged over all trials. When the proportion-
ality parameter � is zero, the PA baseline technique assigns
the same time allocation to all growth rates C. When the
proportionality parameter � is high (5.0), the PA baseline
technique assigns decreased time allocations relative to RHC
for growth rates C > 1.0 and increased time allocations
relative to RHC for growth rates C < 1.0. Importantly, the
RHC technique adjusts its time allocation to this contract
expression based on the growth rate C: the time allocations
decrease as the growth factor C increases from the minimum
C = 0.0 to the maximum C = 5.0. Overall, this suggests that
the RHC technique adjusts its time allocations to this contract
expression based on the growth rate in order to generate a
higher expected utility than the PA baseline technique.

Figure 5 describes the final time allocations of the RHC
technique across all contract expressions averaged over all
trials. This is to demonstrate the general trend of how the
RHC technique allocates time to each contract expression
based on its location within the contract program independent
of their growth factors. Here, we notice that RHC determines
that it is worthwhile to allocate time that roughly increases
with each loop of the looping expression (v11 � v9, v8).
Moreover, for the conditional expression, the first branch (v5,
v4, v3, v1) and the second branch (v6, v2) must be allocated
the same total time (2.03 seconds) but is done so in different
ways. Finally, the individual functional expressions (v12, v7)
are allocated roughly the same time (about 1.0 second).

Our approach to formally modeling robotic systems as a
contract program offers many advantages. First, by reasoning
about how algorithms can impact each other’s performance,
a robotic system does not need a time allocation specified
since it can be automatically found for a given time budget.
Next, by introducing standard programming constructs for
conditional and looping semantics, realistic architectures can
be modeled like selecting a motion planner based on the
environment or performing plies of a task planner. Finally,
novel programming constructs can easily be used if their
performance is summarized by a performance profile. In
short, this approach can formally model the architecture of
a robotic system as a contract program and optimize its
performance by adjusting time allocations to each contract
expression and the topology of the contract program.

VI. CONCLUSION

This paper proposes a novel metareasoning framework
for formally modeling the architecture of a robotic system
as a contract program with programming constructs for

functional, conditional, and looping semantics and then intro-
duces a recursive hill climbing algorithm that finds a locally
optimal time allocation for that contract program. Finally, we
demonstrate that our approach outperforms a baseline tech-
nique in a simulated pick-and-place robot. Future work will
introduce additional programming constructs from high-level
programs and develop effective time allocation methods.

REFERENCES

[1] B. Akgun and M. Stilman. Sampling heuristics for optimal motion planning in
high dimensions. In IROS, 2011.

[2] A. Bhatia, J. Svegliato, S. B. Nashed, and S. Zilberstein. Tuning the hyperparam-
eters of anytime planning: A metareasoning approach with deep reinforcement
learning. In ICAPS, 2022.

[3] A. Bhatia, J. Svegliato, and S. Zilberstein. On the benefits of randomly adjusting
Anytime Weighted A*. In 12th SOCS, 2021.

[4] A. Biedenkapp, H. F. Bozkurt, T. Eimer, F. Hutter, and M. Lindauer. Dynamic
algorithm configuration: Foundation of a new meta-algorithmic framework. In
24th ECAI, 2020.

[5] M. Boddy and T. L. Dean. Deliberation scheduling for problem solving in time-
constrained environments. AIJ, 67(2), 1994.

[6] C. B. Browne, E. Powley, D. Whitehouse, et al. A survey of Monte Carlo tree
search methods. T-CIAIG, 4(1), 2012.

[7] D. Cope, J. Svegliato, and S. Russell. Learning to plan with tree search via
deep RL. In IJCAI Workshop on Bridging the Gap Between AI Planning and

Reinforcement, 2023.
[8] C. P. Gomes and B. Selman. Algorithm portfolios. AIJ, 126(1-2), 2001.
[9] E. A. Hansen and R. Zhou. Anytime heuristic search. JAIR, 28, 2007.

[10] E. A. Hansen and S. Zilberstein. Monitoring and control of anytime algorithms:
A dynamic programming approach. AIJ, 126(1-2), 2001.

[11] E. J. Horvitz. Reasoning about beliefs and actions under computational resource
constraints. In 3rd UAI, 1987.

[12] E. J. Horvitz. Computation and action under bounded resources. PhD thesis,
Stanford University, CA, 1990.

[13] S. Karaman, M. R. Walter, A. Perez, E. Frazzoli, and S. Teller. Anytime motion
planning using the RRT*. In ICRA, 2011.

[14] S. Karayev, M. Fritz, and T. Darrell. Anytime recognition of objects and scenes.
In CVPR, 2014.

[15] S. Kiesel, E. Burns, and W. Ruml. Abstraction-guided sampling for motion
planning. In 5th SOCS, 2012.

[16] C. H. Lin, A. Kolobov, E. Kamar, and E. Horvitz. Metareasoning for planning
under uncertainty. In 24th IJCAI, 2015.

[17] S. B. Nashed, J. Svegliato, A. Bhatia, S. Russell, and S. Zilberstein. Selecting
the partial state abstractions of MDPs: A metareasoning approach with deep
reinforcement learning. In IROS, 2022.

[18] S. B. Nashed, J. Svegliato, M. Brucato, C. Basich, R. Grupen, and S. Zilberstein.
Solving Markov decision processes with partial state abstractions. In ICRA, 2021.

[19] C. J. Paul, A. Acharya, B. Black, and J. K. Strosnider. Reducing problem-solving
variance to improve predictability. Communications of the ACM, 34(8), 1991.

[20] X. Sun, M. J. Druzdzel, and C. Yuan. Dynamic Weighting A* search-based MAP
algorithm for Bayesian networks. In 20th IJCAI, 2007.

[21] J. Svegliato. Metareasoning for planning and execution in autonomous systems.
PhD thesis, University of Massachusetts Amherst, 2022.

[22] J. Svegliato, C. Basich, S. Saisubramanian, and S. Zilberstein. Metareasoning
for safe decision making in autonomous systems. In ICRA, 2022.

[23] J. Svegliato, P. Sharma, and S. Zilberstein. A model-free approach to meta-level
control of anytime algorithms. In ICRA, Paris, France, 2020.

[24] J. Svegliato, S. J. Witwicki, K. H. Wray, and S. Zilberstein. Introspective
autonomous vehicle operational management, U.S. Patent 10,649,453, May 2020.

[25] J. Svegliato, K. H. Wray, S. J. Witwicki, J. Biswas, and S. Zilberstein. Belief
space metareasoning for exception recovery. In IROS, 2019.

[26] J. Svegliato, K. H. Wray, and S. Zilberstein. Meta-level control of anytime
algorithms with online performance prediction. In 27th IJCAI, 2018.

[27] J. Thayer and W. Ruml. Using distance estimates in heuristic search. In 19th

ICAPS, 2009.
[28] S. Thrun, D. Fox, W. Burgard, et al. Monte Carlo localization with mixture

proposal distribution. In AAAI, 2000.
[29] C. Urmson and R. Simmons. Approaches for heuristically biasing RRT growth.

In IROS, 2003.
[30] L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown. SATzilla: Portfolio-based

algorithm selection for SAT. JAIR, 32, 2008.
[31] S. Zilberstein. Operational rationality through compilation of anytime algo-

rithms. PhD thesis, University of California Berkeley, 1993.
[32] S. Zilberstein. Using anytime algorithms in intelligent systems. AIM, 17(3),

1996.
[33] S. Zilberstein and A.-I. Mouaddib. Optimal scheduling of progressive processing

tasks. IJAR, 25(3), 2000.
[34] S. Zilberstein and S. J. Russell. Approximate reasoning using anytime algorithms.

In Imprecise and Approximate Computation. Springer, 1995.
[35] S. Zilberstein and S. J. Russell. Optimal composition of real-time systems. AIJ,

82(1-2), 1996.

6732

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on August 03,2024 at 11:43:20 UTC from IEEE Xplore. Restrictions apply.

