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Abstract

Deep reinforcement learning achieves superhuman performance in a range of
video game environments, but requires that a designer manually specify a reward
function. It is often easier to provide demonstrations of a target behavior than to
design a reward function describing that behavior. Inverse reinforcement learning
(IRL) algorithms can infer a reward from demonstrations in low-dimensional
continuous control environments, but there has been little work on applying IRL
to high-dimensional video games. In our CNN-AIRL baseline, we modify the
state-of-the-art adversarial IRL (AIRL) algorithm to use CNNs for the generator
and discriminator. To stabilize training, we normalize the reward and increase the
size of the discriminator training dataset. We additionally learn a low-dimensional
state representation using a novel autoencoder architecture tuned for video game
environments. This embedding is used as input to the reward network, improving
the sample efficiency of expert demonstrations. Our method achieves high-level
performance on the simple Catcher video game, substantially outperforming the
CNN-AIRL baseline. We also score points on the Enduro Atari racing game, but
do not match expert performance, highlighting the need for further work.

1 Introduction

Deep reinforcement learning has achieved great success at optimizing known reward functions in a
range of challenging environments. However, designing an appropriate reward function is difficult
even for experienced engineers, and is impossible for end-users. A natural solution is to learn the
reward function from human demonstrations: inverse reinforcement learning (IRL) (Ng et al., 2000).
We seek to scale IRL algorithms to MDPs with high-dimensional state spaces and discontinuous
dynamics, such as Atari and PyGame environments (Bellemare et al., 2013; Tasfi, 2016).

Recent deep IRL algorithms have achieved good performance on a variety of continuous control
tasks (Finn et al., 2016b; Fu et al., 2017). However, no IRL algorithm has been able to attain human-
level performance on Atari games. This is remarkable considering contemporary deep RL algorithms
outperform humans on 70% of Atari games (Hessel et al., 2018). This suggests we currently have
substantially more powerful tools for optimizing known objectives than for learning the objectives
themselves. Yet reinforcement learning is only as strong as its weakest link: both a powerful optimizer
and an accurate reward function are needed for good results. Accordingly, closing this capability gap
between reward optimization and reward learning is critical to support human-centric AI applications.

A key challenge is that video game environments have substantially higher-dimensional state spaces
compared to continuous control tasks. For example, Atari games have a 28 224-dimensional state
space.1 By contrast, even the challenging Humanoid Mujoco environment has only 376 dimen-
sions (Tassa et al., 2012), with most continuous control tasks having far smaller state spaces.

1We assume the standard preprocessing to reduce dimensionality, giving a state space of 84 × 84 × 4 =
28, 224 (Mnih et al., 2015).
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Additionally, the reward function in video games is often discontinuous. For example, a shooter game
gives positive reward when a shot touches a target, but no reward if the shot is a pixel away from
the target. By contrast, continuous control tasks typically have smooth reward functions, such as the
distance from a goal or forward velocity.

Related to this, expert demonstrations tend to be multimodal. For example, an optimal policy might
dodge a target by veering sharply to the left or the right. The direction chosen is unimportant, and
could be random or depend on small details (such as whether the agent is already slightly to the left
or right of the target). A naive reward learner, seeing demonstrations both to the left and the right in
similar states, might assign similar reward to both the left and right action. But the resulting policy
would not travel far in either direction, and might consequently crash into the target. It is therefore
necessary for a sharp decision boundary to be learned, which is typically harder to represent.

Our approach is based on the adversarial training method pioneered by GAN Guided Cost Learning
(GAN-GCL) and adversarial IRL (Finn et al., 2016a; Fu et al., 2017). As a baseline, we extended
adversarial IRL to support discrete action spaces and replaced the policy and reward networks with
CNNs (LeCun et al., 1995). We found this baseline never achieves better than random performance in
Atari games, although it is able to score some points in a simple PyGame environment, Catcher. This
is unsurprising as adversarial training is often unstable, especially in high-dimensional environments.
Indeed, a key benefit of adversarial IRL over GAN-GCL is the variance reduction from discriminating
state-action pairs rather than entire trajectories.

We use two methods to scale IRL to video games. First, we train the discriminator on samples
from previous versions of the generator (policy) in addition to the current version. This is similar
to a variance-reduction technique used in guided cost learning (Finn et al., 2016b), but omitted
from adversarial IRL. Second, we train an autoencoder on environment frames collected via random
exploration. Conventional autoencoder designs tend to neglect small, difficult to model objects such
as a moving ball. We propose a novel autoencoder architecture based on a mixture of Gaussians
model that is better suited to video game environments. The resulting low-dimensional embedding is
used as an input to the reward network (discriminator). The policy network (generator) continues to
receive raw image inputs.

Together, we find these techniques are able to stabilize training to achieve near expert-level perfor-
mance on Catcher and to score points in Enduro, an Atari racing game. These results support the
hypothesis that GAN-based inverse reinforcement learning methods are capable of learning rewards
in video games provided the variance can be managed. In further work, we plan to investigate other
methods for stabilizing GAN training in order to extend our approach to a broader class of games.

2 Related work

Inverse reinforcement learning (IRL) was first described by Ng et al. (2000). Early work assumed
optimal demonstrations and a reward function that is linear in a known set of features. The key
challenge was reward ambiguity: given an optimal policy for some MDP, there are many reward
functions that could have led to this policy. Abbeel and Ng (2004) developed a method that, in the
limit of infinite data, recovers a policy that obtains the same reward as the expert on the original MDP.
However, it will not surpass the expert in performance, and the value obtained may be arbitrarily bad
on MDPs with the same reward but different transition dynamics.

The next key wave of work came in the form of Bayesian IRL and Maximum Entropy IRL. Bayesian
IRL embraced reward ambiguity, inferring a posterior distribution over rewards rather than committing
to a given reward function (Ramachandran and Amir, 2007). By contrast, Maximum Entropy IRL
returns a reward function that matches the expected feature counts, favoring rewards that lead to a
higher-entropy stochastic policy (Ziebart et al., 2008, 2010). The feature matching constraint gives
the same guarantee as Abbeel and Ng (2004), while maximizing entropy improves generalization to
environments with different dynamics.

In addition, both Bayesian and Maximum Entropy IRL relaxed the optimal demonstrations assump-
tion, instead modeling the expert as being Boltzmann rational. That is, the probability of the expert
taking an action is proportional to the exponential of the Q-value:

πE(a | s) ∝ exp (Q∗(s, a)) .
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A policy optimizing the resulting reward function can therefore do better than the demonstrations
originally provided, a key advantage over previous work.

Most recent work has built on Maximum Entropy IRL since it is amenable to computationally efficient
implementations. The original Maximum Entropy IRL algorithm assumed known transition dynamics,
a finite state space and a linear reward over features. Successive developments have relaxed these
restrictions. Relative Entropy IRL scales to MDPs with infinite state spaces and unknown transition
dynamics, but continues to assume a linear reward (Boularias et al., 2011). By contrast, deep IRL can
learn a non-linear reward function, but requires a finite state space with known dynamics (Wulfmeier
et al., 2015). Guided Cost Learning (GCL) pioneered a hybrid of these two approaches, and was the
first algorithm able to learn non-linear reward functions over an infinite state space with unknown
transition dynamics (Finn et al., 2016b). It was quickly noticed that GCL was related to GAN
training (Finn et al., 2016a), which was then exploited with adversarial IRL (Fu et al., 2017).

Despite this large body of work, to the best of our knowledge the only attempt at applying IRL to video
games is by Uchibe (2018). This approach classifies state transitions as expert or non-expert using
logistic regression. The classifier is then used as a reward function to train a deep RL algorithm. Their
experiments show this algorithm rarely outperforms the behavioral cloning baseline, underscoring
the need for further work in this area. Our method differs by training the policy and reward jointly in
an adversarial fashion, and by employing a variety of variance reduction techniques.

Imitation learning from visual data has a long history in mobile robotics, including autonomous
driving (Pomerleau, 1989; Bojarski et al., 2016) and quadcopter control (Ross et al., 2013). Recent
work has made progress in sample efficiency (Finn et al., 2017) and learning from third-person
observations (Liu et al., 2018; Stadie et al., 2017). However, there is little work involving imitation
learning on video games.

To the best of our knowledge, deep Q-learning from demonstrations (DQfD) was the first work to
use demonstrations in Atari games (Hester et al., 2018). However, DQfD uses demonstrations to
bootstrap reinforcement learning against a known reward function, rather than learning the reward
function from demonstrations. The authors also evaluated a simple behavioral cloning baseline, which
predictably performed poorly on the majority of games. Kurin et al. (2017) collected a human dataset
on Atari games and independently evaluated behavioral cloning, obtaining similar negative results.
Recent work by Aytar et al. (2018) imitates expert game play from YouTube videos, outperforming
average human performance on three ‘hard exploration’ Atari games.

Christiano et al. (2017) applied active preference learning to Atari games, asking users to select the
best of two trajectories generated from an ensemble of policies. The policies were trained to maximize
a reward function that was being learned from user feedback in an iterative process. Christiano et al.
achieve good performance, matching a direct RL approach in most cases and in one environment
even outperforming it. Our work differs from this approach by learning directly from demonstrations,
avoiding the need for interactive user feedback.

3 CNN-AIRL

We build on adversarial IRL (AIRL), an algorithm achieving state-of-the-art performance on simulated
robotics tasks (Fu et al., 2017). The reference implementation of AIRL assumes a continuous action
space and uses a fully-connected policy and reward network, a poor fit for high-dimensional image
inputs (Fu, 2018). We developed CNN-AIRL as a baseline, making the minimal set of modifications
needed to run AIRL on video games. In this section we summarize CNN-AIRL, deferring discussion
of more substantial modifications to section 4.

Adversarial IRL formulates the inverse reinforcement learning problem as a GAN (Goodfellow et al.,
2014). We learn a reward function fθ(s, a) for taking action a in state s and a stochastic policy
π(a | s). The policy is the generator, and is trained using forward RL on the reward function fθ(s, a).
The discriminator is restricted to have the special form:

Dθ(s, a) =
exp (fθ(s, a))

exp (fθ(s, a)) + π(a | s)
.

The discriminator is trained via logistic regression to distinguish between expert demonstrations and
background samples from the generator. At optimality, f∗(s, a) = log π∗(a | s) = A∗(s, a), the
advantage function of the optimal policy (Fu et al., 2017, appendix A).
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AIRL has previously only been applied to simulated robotics tasks, with low-dimensional inputs and
continuous action spaces. In order to scale to image inputs, we substituted a convolutional neural
network for the multilayer perceptron in the reward and policy model. For the policy network, we use
the architecture described in Mnih et al. (2015). We base the reward network on the same architecture,
but modify it to use a batch normalized leaky ReLU (Maas et al., 2013) as used in DCGAN (Radford
et al., 2016).

The reward network therefore consists of three convolutional layers, followed by two fully-connected
layers. For state-only reward networks R(s), we make no further modifications. For a reward network
R(s, a) taking states and actions as input, we concatenate the one-hot coded action vector to the CNN
output, before the fully-connected layers.

Our final modification is to use Proximal Policy Optimization (PPO) (Schulman et al., 2017) to train
the policy network instead of Trust-Region Policy Optimization (TRPO) (Schulman et al., 2015),
used in the original AIRL implementation. We selected PPO since it outperforms TRPO on Atari
games (in tests where the reward is known), and is simpler to implement.

4 Stabilizing training

In the previous section, we described CNN-AIRL: a lightly modified version of AIRL that is able
to operate in video game environments. However, unsurprisingly the performance of this algorithm
proved underwhelming in tests. In this section, we propose several extensions to this baseline
approach.

4.1 Dataset expansion

Adversarial IRL (AIRL) trains the discriminator to distinguish between expert demonstrations, and
background samples from the generator. At each discriminator training step, a dataset of state-action
pairs is sampled from both the demonstrations and background samples. Gradient descent is then
performed for several iterations to minimize the cross-entropy loss. If the dataset is too small, the
discriminator may overfit. The reward provided to the generator will then have low information
content, and neither the discriminator nor the generator will converge.

In the original implementation of AIRL, the most recent rollout of the generator is used for background
samples, with an equal number of samples taken from the demonstrations. However, the length of
generator rollouts is typically fairly small: we use a rollout of 1024 timesteps. This dataset size is too
small for discriminator training. In general, there is no reason why the appropriate dataset size for
inverse RL should be the same as the number of timesteps of forward RL experience.

In dataset expansion, we increase the number of background samples by using the last k rollouts
of forward RL, similar to an approach employed in guided cost learning (Finn et al., 2016b). In
our experiments, we implement dataset expansion by running k steps of forward RL for each
discriminator training step. However, it is possible to vary the ratio of generator and discriminator
training separately; we leave separate tuning of these hyperparameters to further work.

4.2 Reward normalization

In adversarial IRL, we alternate between generator and discriminator training which update the policy
and reward networks respectively. During generator training, we run forward RL to update the policy
network based on rewards predicted by the reward network. Forward RL algorithms typically assume
a stationary reward: true in most environments, but not when the reward network is being updated.

In particular, policy gradient approaches such as TRPO or PPO typically take gradient steps depending
on an estimate of the advantage function. The advantage function in turn depends on an estimate of
the value of each state. The predicted value is based on rewards output by previous reward networks,
that may be substantially different to the current reward.

Adversarial training necessarily involves a non-stationary component, so there is no simple solution
to this problem. However, since the optimal policy is invariant under positive affine transformations
of the reward function, we can at least fix the mean and standard deviation of reward over time.
Specifically, we center and rescale rewards using the mean and standard deviation of rewards on
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the last sample of trajectories used to train the discriminator. Note this still allows a policy to
achieve above-mean reward during forward RL training, as the reward is only re-normalized after
discriminator training.

4.3 Pixel-class autoencoders

Video games are challenging in large part due to their high dimensional state space. Deep RL
algorithms are able to learn good policies, but require millions of frames of experience. However,
collecting this many human demonstrations would be slow and prohibitively expensive. Our IRL
algorithm therefore needs to be orders of magnitude more sample efficient than RL algorithms when
it comes to human demonstrations.

Although the raw input from a video game is high dimensional, the intrinsic dimensionality of the
task is much lower. For example, in Pong it is sufficient to represent the coordinates and velocity of
the paddles and ball, and the current score of each player. Crucially, it should be possible to learn a
good representation through only unsupervised exploration of the environment.

We use an autoencoder to learn a low-dimensional embedding for frames collected by random
exploration in a video game. This embedding forms the input to the reward network, allowing it to
learn from a small number of expert demonstrations. The policy network continues to receive direct
visual input, since we are not concerned with the sample efficiency of unsupervised rollouts.

We found many standard autoencoder methods failed to capture critical details such as the position of
a ball or paddle, with the object often vanishing entirely in the decoded image. This motivated us to
develop a new architecture which is better suited to reconstructing frames from small embedding
vectors. Our key insight is that Atari and other simple video games use a small number of discrete
colors in the display.

We model each pixel as being drawn from a mixture of Gaussians, with each Gaussian corresponding
to a particular type of object. Our pixel-class CNN outputs class logits zijk for each pixel (i, j), rather
than making a direct prediction of the pixel value. The class label cij is sampled from softmax(zij).
The grayscale value xij for pixel (i, j) is drawn from the Gaussian N (µcij , σ

2
cij ). The µk and σk are

variables that are jointly learned with the logits zijk. We train the CNN to maximize the likelihood of
the data under this observation model.

Prior work in image segmentation has used a mixture of Gaussians observation model (Friedman and
Russell, 1997). However, this previous work assumes a constant class probability for each pixel and
uses an EM algorithm to infer the model parameters. By contrast, we use a CNN to output the class
logits based on the image input, and perform maximum likelihood estimation via gradient descent.

5 Experiments

We evaluated our method on Catcher, a simple PyGame environment, and Enduro, an Atari racing
game. We generated synthetic expert demonstrations from a policy trained with PPO on the ground-
truth reward function. We train our IRL algorithm on eight trajectories sampled from this expert
policy, learning a joint reward-policy pair. We evaluate on an apprenticeship learning metric: the
ground-truth reward obtained by the resulting policy. To elucidate the contribution of the different
modifications we made to adversarial IRL, we also evaluate how the variance of the discriminator
varies with dataset size, and compare our pixel-class autoencoder to standard techniques.

5.1 Performance on Catcher

Catcher is a PyGame environment involving a paddle and falling blocks (example frame in fig 1a.)
A reward of +1 is received when a block touches the paddle, and −1 if it touches the ground. We
report the results of an ablation study in fig 1b. Our best methods achieve performance comparable to
the expert. The greatest improvement comes from dataset expansion, with the Raw Large variant
outperforming the baseline CNN-AIRL Raw Small version. However, there is no benefit from using
an autoencoder in this environment, with the Encoded variants achieved comparable reward to the
Raw versions, perhaps because the visual input is so simple. There is also little difference between a
state-action and state-only input to the reward network. All variants exhibit high variance.
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(a) Screenshot from random
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(b) Mean episode reward of IRL policy. Colors denote whether the discrimi-
nator input was raw images or an encoding, and whether the batch size was
small or large. Solid or dashed line indicates if the discriminator also received
an action input or just the state.

Figure 1: IRL on Catcher.
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(b) Mean episode reward of IRL policy. Colors denote whether the discrimina-
tor input was raw images or an encoding, and whether the batch size was small
or large. In this test, the discriminator always receives an action input.

Figure 2: IRL on Enduro.
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(b) Enduro.

Figure 3: False positive rate for the discriminator on unseen samples from the expert policy. A rate in
excess of 50% is indicative of overfitting.
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Input Normal Pixel-Class Input Normal Pixel-Class

Figure 4: Qualitative comparison of decoded Pong frames from a conventional and our pixel-class
autoencoder.

5.2 Performance on Enduro

Catcher provides a useful proof-of-concept environment, but is drastically simpler than most video
games. As a challenge environment, we evaluate on Enduro, an Atari racing game with more
complex dynamics (acceleration, steering, collisions, road curvature) and visual distractions (both the
background and cars change color over time). We report our results in figure 2b. As expected, the
baseline Raw Small variant fails to make progress, scoring zero points (as does the random policy).
Both our Raw Large and Encoded Large variants score some points. Qualitatively, the policies appear
to have learnt that acceleration is rewarding and are able to steer to stay on the road, but have not
learnt to avoid colliding with other vehicles. Although the performance is substantially below the
expert policy, which scores over 400 points, these results suggest the framework is capable of learning
appropriate reward functions. Further improvements in stabilizing the adversarial training will be
needed to yield full performance.

5.3 Discriminator overfitting

We have seen in the previous sections that use of a larger dataset when training the discriminator
improve IRL performance. These modifications were originally motivated by a hypothesis that
the discriminator was prone to overfit to the expert demonstrations. We test this by presenting the
discriminator with unseen trajectories sampled from the same expert policy used to generate the
in-sample expert demonstrations. Ideally, the discriminator false positive rate would be 50%: any
value in excess of this indicates it has overfit to the particular samples.

In figure 3, we report results on Catcher and Enduro, both for raw image input and a low-dimensional
encoding. Use of a larger dataset size drastically decreases the false positive rate in both environments.
On Catcher, using a low-dimensional encoding decreases the false positive rate with small datasets,
but has little effect with larger datasets.

On Enduro, the low-dimensional encoding substantially decreases the false positive rate. Remarkably,
the false positive rate for the encoding with 1024 frames (the smallest dataset tested) is lower than for
the raw input with 16 834 frames (the largest dataset). Despite this, we saw in the previous section
that dataset size has a greater effect on policy performance than the use of an encoding, suggesting
that a larger dataset may have other beneficial effects not captured in this test.
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5.4 Pixel-class autoencoder performance

The previous section showed that using an autoencoder reduces discriminator overfitting. In figure 4,
we directly compare decoded images from our pixel-class autoencoder to images produced by a
conventional autoencoder on Pong. While both methods obtain reasonably high-fidelity, our pixel-
class autoencoder achieves a substantially sharper rendering of the moving ball, with the ball in
one case almost disappearing in the conventional design (row 3, left). We also find the pixel-class
autoencoder to have comparable mean-squared error to the conventional autoencoder, despite this not
being a design objective of our autoencoder.

Our primary focus is on inverse reinforcement learning, not autoencoder design, and we believe better
autoencoder designs exist; we postpone discussion of this to the further work section. Of course, any
autoencoder improvement would tend to improve the performance of our IRL algorithm, the primary
contribution of this paper.

6 Discussion

6.1 Summary

We have developed the first adversarial inverse reinforcement learning algorithm applicable to video
game environments. Two key modifications were needed to achieve stable training: normalizing
the reward to avoid drift over time, and collecting background samples from multiple iterations of
forward RL. We additionally learn a low-dimensional embedding with an autoencoder to improve the
sample efficiency on expert demonstrations. With these modifications, we are able to achieve near
expert-level performance on Catcher, a simple PyGame environment. Our code and experimental
results are available at https://github.com/HumanCompatibleAI/atari-irl.

6.2 Limitations and future work

Our performance on Atari games improves compared to the baseline vanilla CNN-AIRL approach,
but remains substantially below expert-level on the games we evaluated on. This highlights the need
for further work to scale inverse reinforcement learning to Atari games.

Increasing the number of background samples reduces, but does not eliminate, discriminator over-
fitting. In concurrent work, Peng et al. (2018) developed a variational discriminator bottleneck that
stabilizes a range of adversarial learning tasks, including adversarial IRL on simple point-mass
environments. Application of this method might further reduce overfitting, improving performance in
the Atari domain.

Use of an autoencoder to learn a low-dimensional representation of the state substantially improved
performance in our experiments. However, autoencoders are optimized to recover the original
image, which includes many details that are irrelevant to the reward. We expect the recent Causal
InfoGAN method that takes into account the sequential nature of the data would learn a more suitable
embedding (Kurutach et al., 2018).

There is also scope for improving the data used to train the autoencoder. We currently collect
frames via random exploration, but this is unlikely to reach many important states. It would be
better to use a more systematic approach for unsupervised exploration, such as Diversity is All You
Need (Eysenbach et al., 2018). Alternately, one could periodically re-train the autoencoder using
frames collected from rollouts of the policy.

Currently, we use the Proximal Policy Optimization (PPO) RL algorithm for generator training (Schul-
man et al., 2017). However, Q-learning methods such as DQN typically attain higher reward on Atari
games than policy-gradient algorithms such as PPO. Unfortunately, Q-learning methods are likely to
be particularly sensitive to the reward function changing after each discriminator training step. A
resolution to this, perhaps extending our reward normalization heuristic, could substantially improve
performance.
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