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Modern intensive care units (ICUs) utilize a multitude of
instrumentation devices to provide measurements of various
important physiological variables and parameters. While data
are valuable, understanding the data and acting upon them is
what yields the benefits in terms of improved health outcomes.
Due to the uncertainty in our knowledge of patient physiology
and the partial, noisy/artifactual nature of the observations we
adopt a probabilistic, model-based approach. The core of this
approach involves calculating a posterior probability distribution
over a set of unobserved state variables given a stream of
data and a probabilistic model of patient physiology and sensor
dynamics. The probability estimate of the state, includes various
physiological and pathophysiological variables which provides
a diagnosis on which the nurse or the physician can act. The
proposed approach is also capable of detecting artifacts, sensor
failures, drug maladministration and other various problems in
the ICU setting. The overarching goals of the proposed approach
are estimating the current health state of the patient, projecting
the future health state, and synthesizing possible intervention
plans.

Index Terms—Model-based probabilistic inference, intracra-
nial pressure, arterial blood pressure, artifacts, state estimation,
pathophysiology.

I. INTRODUCTION

Due to advances in electronics, modern ICUs are capable of
collecting and archiving ample amounts of clinical data. An
ICU patient is continuously monitored by various sensors as
asynchronous interventions, tests and additional measurements
are carried out. While data are valuable, understanding and
acting upon them is what provides benefits in terms of
improved health outcomes and reduced costs.

Current monitoring technology is largely based on data
display. The monitor displays signals from various sensors and
provides statistics such as short-term averages. Some monitors
also deploy automated alarms based on either simple threshold
based rules or single-channel analysis. However, false alarm
rates of these monitors often exceed 90%, leading to alarm
fatigue [1], [2], [3].

An ideal system should not only report all pertinent mea-
surements to clinicians, but should also summarize informa-
tion by inferring the states of various latent physiological
and pathophysiological variables [4], [5], [6]. We propose
a model-based probabilistic inference framework that can
handle artifact-ridden data, variability in patient physiology
and unknown disease states.
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We describe the patient’s physiology and the sensor dy-
namics as a probabilistic model using a dynamic Bayesian
network. We use existing works on human physiology to
describe how the state of the patient evolves over time and
employ a nontrivial sensor model that is capable of explaining
various artifactual readings in the ICU setting. Then, the main
task of the ICU monitoring system is estimating the state
of the patient accurately given a sequence of observations.
Due to the nonlinear, non-Gaussian behavior of our model;
exact inference is intractable. Hence, we resort to approximate
inference via sequential Monte Carlo (SMC) methods.

In section 2, we describe the model-based probabilistic
inference approach and list motivating reasons for such an
approach. In section 3, we apply the proposed approach to
the problem of estimating the intracranial hemodynamics of
traumatic brain injury (TBI) patients. We then explain in
detail the physiology and sensor models and also present
some inference results. We conclude by discussing the required
extensions to the proposed models and the limitations of
the current approach. Our work is the continuation of the
framework proposed in [7].

II. MODEL-BASED PROBABILISTIC INFERENCE

Due to the uncertainty in our knowledge of patient phys-
iology, and the partial, noisy/artifactual nature of the ob-
servations, we adopt a probabilistic, model-based approach.
As mentioned earlier, the core task of the ICU monitoring
system then becomes estimating the state of a patient given
a sequence of observations by computing a posterior proba-
bility distribution. Recent trends in machine learning suggest
adopting a purely data-driven, model-free approach. However,
this may not be the best fit for the intensive care domain due
to the following reasons: 1) The data is complex and artifact-
ridden. Data may be missing from some sensors for extended
periods and there are many artifactual readings some persisting
over extended periods. 2) There is a disparity between the
number of available signals and the dimensionality of the state
space. We only have access to few measurements whereas
the latent state-space is high-dimensional. 3) Models of the
underlying physiology are available and sensor dynamics can
be explained. By being model-free, the available knowledge
and information is not exploited.

A. Probabilistic Modeling

Most physiological models are typically expressed as
determinisitic differential equations. A classic example is the



Guyton model which aims to describe the whole human cir-
culation system in terms of various interconnected subsystems
[8]. Deterministic modeling is not a good fit as patient-specific
parametrization is unknown and many pathophysiological
states manifest stochastic behavior.

We use two different models: The transition (physiology)
model, p(states; | states;_1, ), (Where states; stands for the
physiological states at time step ¢ and 6 for the patient-specific
parameters), describes how the state of the patient evolves with
respect to time. The variable state; may include physiological,
pathophysiological states, sensor artifacts and failure states,
drug administration and so on. Hence, this approach can be
extended to handle various possible scenarios of interest in
an ICU setting. The sensor model, p(observations; | states;),
describes how a patient and sensor state are related to the
observations.

We represent the model using the dynamic Bayesian net-
work (DBN) framework. DBNs are concise descriptions of
stochastic differential equations and they can handle both
discrete and continuous variables [9].

B. State Estimation

As noted previously, the core task of ICU monitoring is
calculating a posterior probability distribution over states given
an observation history, p(states; | observationsg.). This task
is called state estimation and is one of the most widely studied
problems in statistics, artificial intelligence, and control. Exact
state estimation, however, is intractable for most systems. Our
model, being nonlinear, non-Gaussian, and hybrid (containing
discrete and continuous state variables), is no exception. To
compute the required posterior densities, we resort to an ap-
proximation scheme known as sequential Monte Carlo (SMC),
or particle filtering. Particle filtering has successfully been
applied to many different state estimation and tracking tasks
[10], [11]. Particle filtering can also be applied to the task of
prediction by approximating p(states; 1 | observationsg.; ).

C. Parameter Estimation

Every human has a unique set of parameters. Learning
these parameter values, p(f | observationsg.), is a crucial
part of the proposed framework; failing to do so will lead
to inaccurate state estimates. Vanilla particle filtering fails
under the presence of unknown static parameters due to the
sample impoverishment phenomenon. To counter this, we
resort to computationally intensive static parameter estimation
algorithms like Resample-Move [12] and Particle MCMC
(PMCMCO) [13].

D. Synthesizing Intervention Plans

DBN models may include exogenous intervention variables,
allowing them to predict the anticipated effects of hypo-
thetical future actions. Constructing treatment plans under
partial observability is a computationally hard problem and
falls into the domain of partially observable Markov decision
problems (POMDP). The planning problem for the intensive
care medicine constitutes of hundreds of state variables, thou-
sands of possible actions and a horizon that may span weeks.

This problem is well beyond the capability of state-of-the-art
POMDP solvers.

III. APPLICATION: INTRACRANIAL HEMODYNAMICS

We apply our proposed approach on the neurocritical care
of traumatic brain injury (TBI) patients. TBI is the developed
world’s leading cause of mortality and morbidity [14]. For
most purposes, available measurements include intracranial
pressure (ICP), arterial blood pressure (ABP), blood oxygen
level and in some cases cerebral blood flow velocity (CBFV)
collected at a resolution of 1-second (1Hz). The problem is
depicted in Figure 1. Our goal is calculating the posterior
probability on the latent variables given the observed variables
(shaded nodes).
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Fig. 1. High-level DBN representation of intracranial hemodynamics

We have three main subsystems: 1) ABP sensor model 2)
ICP sensor model 3) Intracranial hemodynamics model. The
ABP model is explained in detail in section IV-A. We use a
simple random-walk type model to describe the evolution of
true diastolic, mean, and systolic ABP values. Our ABP sensor
model is also capable of explaining major artifacts like blood
draw, zeroing and line clog.

Latent true mean ABP value is an exogenous input to
the intracranial hemodynamics model. We are adopting the
intracranial dynamics model developed by Ursino and col-
leagues [15], [16]. This model can be extended to include
various pathophysiological states such as autoregulation fail-
ure, hematoma, edema, internal bleeding, vasospasm etc. Some
results on state and parameter estimation are presented in [7].

Although not shown in Figure 1, transcranial Doppler mea-
surements of CBFV [17] may be available as well. Under these
circumstances, noninvasive estimation of ICP via the proposed
model-based probabilistic approach using noninvasive mea-
surements like ABP and CBFV is possible. There have been a
few recent works in the literature that rely on a model-based
approach to achieve the noninvasive reconstruction goal [18],
[19].



In section IV-B, we also present a simple ICP sensor model
which can describe cerebrospinal fluid drainage artifacts.

IV. SENSOR MODEL
A. ABP Sensor Model

As stated by Aleks et. al., blood pressure informs much
of medical thinking and is typically measured continuously
in the ICU. The most common way of determining blood
pressure in the ICU is to place a transducer on an arterial
line, a catheter that is inside one of the patients small arteries;
this data is then displayed on a bedside monitor. Due to the
high variance of pressure during the cardiac cycle, we use
three measurements: systolic (the maximum reached during
the cardiac cycle), diastolic (the corresponding minimum), and
mean blood pressures[20].

In [20], using the model-based probabilistic inference
methodology, over 90% of false ABP alarms (threshold-based)
were eliminated while only missing fewer than 1% of the true
alarms. The aforementioned work used a minute-resolution
DBN. We reproduced their results and then used this model
to create a second-resolution blood pressure model. As we
predicted, the second-resolution model is able to capture
events that the minute-resolution model was unable to capture.
For example, most events that lasted less than 10 seconds are
not detected by the minute-model, but are picked up by the
second-resolution model.

So far, we modeled three major ABP sensor artifacts: zero
events, bag events, and line clogging. Zero events occur when
an ICU staff calibrates the instrumentation device, effectively
zeroing out all the signals. It is seen as a severe and sudden
drop in all of the values due to the transducer reading
atmospheric pressure. Bag events occur when the transducer
reads the intravenous (IV) bag pressure instead of the patient’s
blood pressure and is seen as a dramatic spike in the observed
values. Finally, line clogs occur when there is a kink or
an obstruction in the line to the transducer. This zeros the
variation in pressure, causing the systolic and diastolic to
converge to the mean value.

Figure 2 shows real data from an ICU patient over the span
of 100 minutes. From top to bottom, one can see the observed
systolic, mean, and diastolic blood pressures. Just by looking
at data, it is obvious that handling the artifacts and the missing
data is crucial for the success of a real-time decision support
system.

1) Model

We developed a one second-resolution model that is capable
of generating artifacts and physiological signals. The DBN
representation of the developed generative model is depicted
in Figure 3.

At the top of the DBN are the true pulse, true mean, and
systolic fraction (the ratio of the difference of the diastolic and
systolic pressures and the mean). These values give us the true
systolic and diastolic values, the ground truth values that our
algorithm attempts to infer. We simply used a random-walk
type model to describe the evolution of these values. A better
cardiovascular dynamics model will significantly improve the
performance of the proposed approach.
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Fig. 2. Sample ABP trace

The values near the bottom are the apparent systolic, dias-
tolic, and mean blood pressure— values that include artifacts
and are similar to what the transducer would be measuring.
The observed values just below include some additional signal
noise and represent what would typically be seen on the
monitor.

At any given time, a patient can be in a normal, zero,
bag, or clog state. Depending on which state the patient is
in, newPot[S,D,M] will reflect the new potential that each
apparent pressure will converge to. A probabilistic decision
is then made on whether patients stays in their current state.
Finally, we propagate to the next time step from the current
values using our mathematical models. This can be seen in
Figure 3 as the arrows point from time step ¢ to 7+1.

2) Bag Events

One artifact is the bag event, which occurs when the
transducer reads the positive pressure from the IV bag elevated
at a height. Figure 4(a) shows what the event would look like
on an ICU monitor.

The inference results using a particle filter with N = 20000
particles is illustrated in Figure 4(b). The three blue lines
represent the mean belief of the diastolic, mean, and systolic
ABP values, which do not follow the spike of the bag event.
The lines at the bottom report the beliefs for each event
occurring; in this case, only the bag event registers. The purple
shade around the blue lines describe the uncertainty in our
estimates.

It is also interesting to see how the posterior density over
the bag pressure evolves. The posterior density starts at the
prior and gets more and more ambiguous over time. Once the
bag event is inferred, the bag value is quickly updated and the
particle filter is almost certain of the bag pressure value. This
behavior is also theoretically expected.

3) Zero Events

The second artifact incorporated into our DBN is a zeroing
event. As mentioned, this occurs when the transducer is
exposed to atmospheric pressure which is approximately zero
pressure. Figure 5(a) shows an example of such an event.

This event is similar to a bag event in that the sensor
no longer reads patient data. A working inference algorithm
should detect this event and show that the true diastolic, mean,
and systolic values remain in a safe range. Figure 5(b) shows
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Fig. 3. Dynamic Bayesian network representation of the arterial blood pressure sensor model
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Fig. 4. (a) Sample blood draw trace; (b) Probabilistic belief on systolic, mean, diastolic, and bag latent variables
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Fig. 5. (a) Sample zeroing trace; (b) Probabilistic belief on systolic, mean, diastolic, and zeroing latent variables

how the inference performs on this event. The blue lines again  that the inference no longer trusts the current observations and
represent mean belief values for systolic, diastolic, and mean the beliefs on the ground truth variables get more and more
blood pressures in our inference model. We can see that the uncertain with time.

zero event is detected and the values reflect that. Note that the

purple shade gets wider during the event. This is due to the fact
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Fig. 6. (a) Sample line clog trace; (b) Probabilistic belief on systolic, mean,

4) Clog Events

The last ABP artifact modeled is a line clog, which causes
loss of pulse-to-pulse pressure. As seen in Figure 6(a), the
observed values for systolic and diastolic blood pressure
converge to the mean for the entirety of the event.

The inference results are depicted in Figure 6(b) . The
particles are capable of tracking the clogging artifact as well
as interpolating the missing systolic and diastolic values.

B. ICP Sensor Model

For the neurocritical care of TBI patients, intracranial pres-
sure (ICP) is the most important measurement for diagnosis
and treatment. Current treatment procedure keeps the cerebral
perfusion pressure (CPP), which is defined as the gradient
between mean arterial pressure (MAP) and ICP, in a safe range
in order to keep the patients brain supplied with oxygen. The
simplest treatment strategy to keep ICP below a certain level is
cerebrospinal fluid (CSF) drainage. CSF is drained when ICP
exceeds some set threshold (usually 20 or 25 mmHg). During
the drainage, the ICP sensor reads a random pressure value.
A sample drainage trace is illustrated in Figure 7.
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Fig. 7. Probabilistic belief on intracranial pressure during CSF drainage

Unlike blood pressure artifacts, drainage also affects the
physiology. During the drainage, the patient’s true ICP slowly
falls due to the volume loss (Monro-Kellie hypothesis [15]).
The particle filter, after noticing the sharp drop from 22 mmHg
to 14 mmHg, immediately detects a drainage event since the
intracranial physiology model is incapable of explaining such
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diastolic, and line clog latent variables

an instantaneous change. It is important to notice that the in-
tracranial pressure belief nicely estimates in a physiologically
reasonable way during the drainage event.

V. CONCLUSION

We described a model-based probabilistic framework capa-
ble of representing highly complex physiological phenomena.
Using state-of-the-art statistical learning algorithms, we are
able to do combined state and parameter estimation. The pro-
posed approach can be used for estimating physiological and
pathophysiological states, sensor artifacts and failure states,
and drug administration.

The sensor models are still quite inadequate; various other
artifacts still need to be added in order to handle real-life
clinical data. Artifacts we are considering to add to our DBN
in the immediate future are: line flushes, sensor detachment,
patient coughing or thrashing, and a nurse rolling the patient.
Although our preliminary results seem promising, we still need
to validate the artifact cleaning approach on more real data.

The current physiology model we are using is also fairly
restrictive as it doesn’t describe various pathophysiological
phenomena. We need to extend the model provided by Ursino
to handle different disease states. Furthermore, we currently
do not have a pharmacokinetics model that can explain the
dynamics after drug administration. Drugs such as mannitol
are frequently used in the clinical care of TBI patients [21]. We
would next want to extend our generative model to describe
the effects of mannitol administration to infer the onset of drug
administration as well as the dosage.

We also still need to validate the performance of the
pathophysiological state estimation by comparing inferential
results of our algorithms against the physician’s diagnosis
after a provocative test or intervention. Finally, we should
compare our proposed approach for noninvasive estimation
against other model-based methods [18] as well as data-driven
methods [22], [23].
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