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Abstract
The paper explores a very simple agent design

method called Q-decomposition, wherein a com-

plex agent is built from simpler subagents. Each

subagent has its own reward function and runs

its own reinforcement learning process. It sup-

plies to a central arbitrator the Q-values (accord-

ing to its own reward function) for each possible

action. The arbitrator selects an action maximiz-

ing the sum of Q-values from all the subagents.

This approach has advantages over designs in

which subagents recommend actions. It also has

the property that if each subagent runs the Sarsa

reinforcement learning algorithm to learn its lo-

cal Q-function, then a globally optimal policy is

achieved. (On the other hand, local Q-learning

leads to globally suboptimal behavior.) In some

cases, this form of agent decomposition allows

the local Q-functions to be expressed by much-

reduced state and action spaces. These results

are illustrated in two domains that require effec-

tive coordination of behaviors.

1. Introduction
A natural approach to developing agents for complex

tasks is to decompose the monolithic agent architecture into

a collection of simpler subagents and provide an arbitrator

that combines the outputs of these subagents. The principal

architectural choices in such a design concern the nature of

the information communicated between the arbitrator and

the subagents and the method by which the arbitrator se-

lects an action given the information it receives.

We will illustrate the various architectural choices us-

ing a very simple environment (Figure 1). The agent starts

in state S 0 and can attempt to move Left, Up, or Right, or it

can stay put. With probability ǫ, each movement action has

no effect; otherwise, the agent reaches a terminal state with

rewards of dollars and/or euros as shown. If we assume

rough parity between dollars and euros, then the optimal

policy is clearly to go Up. The question is how to achieve
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Figure 1. A simple world with initial state S 0 and three terminal

states S L, S U , S R, each with an associated reward of dollars and/or

euros. The discount factor is γ ∈ (0, 1).

this with a distributed architecture in which one subagent

cares only for dollars and the other only for euros.

One very common design, called command arbitration,

requires each subagent to recommend an action to the arbi-

trator. In the simplest such scheme, the arbitrator chooses

one of the actions and executes it (Brooks, 1986). The

problem with this approach is that each subagent may sug-

gest an action that makes the other subagents very unhappy;

there is no way to find a “compromise” action that is rea-

sonable from every subagent’s viewpoint. In our example,

the dollar-seeking subagent will suggest Left whereas the

euro-seeking subagent will suggest Right. Whichever ac-

tion is chosen by command arbitration, the agent is worse

off than it would be if it went Up.

To overcome such problems, some have proposed com-

mand fusion, whereby the arbitrator executes some kind of

combination (such as an average) of the subagents’ recom-

mendations (Saffiotti et al., 1995; Ogasawara, 1993; Lin,

1993; Goldberg et al., in press). Unfortunately, fusing the

subagents’ actions may be disastrous. In our example, aver-

aging the direction vectors for Left and Right yields NoOp,
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which is the worst possible choice. Furthermore, command

fusion is often inapplicable—as, for example, when two

chess-playing subagents recommend a knight move and a

bishop move respectively.

The weaknesses of command arbitration have been

pointed out previously by proponents of utility fu-

sion (Rosenblatt, 2000; Pirjanian, 2000). In a utility-fusion

agent, each subagent calculates its own outcome probabili-

ties for actions and its own utilities for the outcome states.

The arbitrator combines this information to obtain a global

estimate of the utility of each action. Although the seman-

tics of probability combination is somewhat unclear, the

method does make it possible to produce meaningful com-

promise actions. Rosenblatt reports much-improved per-

formance for an autonomous land vehicle, compared to

command arbitration. Unfortunately, his paper does not

identify the semantics or the origin of the local utility func-

tions. We will see below that global optimality requires

some attention to communicating global state when updat-

ing local utilities, if fusion is to work.

Our proposal is the Q-decomposition method, which re-

quires each subagent to indicate a value, from its perspec-

tive, for every action. That is, subagent j reports its action

values Q j(s, a) for the current state s to the arbitrator; the

arbitrator then chooses an action maximizing the sum of the

Q j values. In this way, an ideal compromise can be found.

The primary theoretical assumption underlying Q-

decomposition is that the agent’s overall reward function

r(s, a, s′) can be additively decomposed into separate re-

wards r j(s, a, s′) for each subagent—that is, r(s, a, s′) =
∑

j r j(s, a, s′). Thus, for a mobile robot, one subagent might

be concerned with obstacle avoidance and receive a nega-

tive reward for each bump, while another subagent might

be concerned with navigation and receive a positive reward

for making progress towards a goal; the agent’s overall re-

ward function must be a sum of these two kinds of rewards.

Of course, additive decomposition can always be achieved

by choosing the right subagent reward functions. Heuris-

tically speaking, we are interested in decompositions that

meet two criteria. First, we want to be able to arrange the

“physical” agent design so that each subagent receives just

its own reward r j. Second, each subagent’s action-value

function Q j(s, a), which predicts the sum of r j rewards the

agent expects to receive over time, ought to be simpler to

express, and easier to learn, than the global Q-function for

the whole agent. The arbitrator receives no reward signals

and maintains no Q-functions; it only sums the subagent Q j

values for a particular state to determine the optimal action.

In many cases, it should be possible to design subagents so

that they need sense only a subset of the state variables and

need express preferences only over a subset of the compo-

nents that describe the global actions.

We would like to ensure that the agent’s behavior is

globally optimal, even if it results from a distributed de-

liberation process. We show that this is achieved if each

subagent’s Q j-function correctly reflects its own future r j

rewards assuming future decisions are made according to

the global arbitration policy. The next question is how to

arrange for each subagent to learn the right Q j-function us-

ing a local reinforcement learning procedure, ideally one

that does not need to access the Q j-functions or rewards of

the other subagents.

We show in Section 3.1 that if each subagent uses the

conventional Q-learning algorithm (Watkins, 1989), global

optimality is not achieved. Instead, each subagent learns

the Q j values that would result if that subagent were to

make all future decisions for the agent. This “illusion of

control” means that the subagents converge to “selfish” es-

timates that overestimate the true values of their own re-

wards with respect to a globally optimal policy. For our

dollar/euro example, local Q-learning leads in some cases

to a global policy that chooses NoOp in state S 0.

The principal result of the paper (Section 3.2) is the

simple observation that global optimality is achieved by lo-

cal reinforcement learning with the Sarsa algorithm (Rum-

mery & Niranjan, 1994), provided that on each iteration

the arbitrator communicates its decision to the subagents.

This information allows the subagents to become realistic,

rather than optimistic, about their own future rewards.

Sections 4 and 5 investigate Q-decomposition in worlds

that are somewhat less trivial than the dollar/euro exam-

ple. The first is the well-known “racetrack” problem with

two subagents: one wants to make progress and the other

wants to avoid crashes. The second example is a simulated

fishery conservation problem, in which several subagents

(fishing boats) must learn to cooperate to extract the maxi-

mum sustainable catch. This example illustrates how con-

flicts between selfish actors can lead to a “tragedy of the

commons”.

2. Background and definitions

From a “global” viewpoint, we will assume a standard

Markov decision process 〈S,A, P, r, γ〉, with (finite) state

space S, actions A, transition measure P, bounded reward

function r : S × A × S → R, and discount factor γ ∈

(0, 1]. From a “local” viewpoint, however, we assume that

the reward signal is decomposed into an n-element vector

r of bounded reward components r j, each defined over the

full state and action space, such that subagent j receives r j

and such that r =
∑n

j=1 r j.

Denote policies by π : S → A, and associate with each

reward component r j and policy π the expected discounted

future value Qπ
j

: S ×A → R of a (state, action) pair:

Qπj (s, a) = E
[

∑

s′ r j(s, a, s′) + γQπ
j
(s′, π(s′))

]

From the additive decomposition of the global reward

function, it follows that the action-value function Qπ for the

entire system, given policy π, is the sum of the subagents’



action-value functions:

Qπ(s, a) = E
[

r(s, a, s′) + γQπ(s′, π(s′))
]

=
∑n

j=1 Qπ
j
(s, a)

It also follows that an arbitrator that has to evaluate the

global action-value function for a particular state si only

needs to receive the vector Q j(si, ·) from each subagent.

For any suitable transition measure P, there is a unique

fixed point Q∗ : S×A → R satisfying the Bellman equation

Q∗(s, a) = E
[

∑n
j=1 r j(s, a, s′) +maxa′∈A γQ

∗(s′, a′)
]

(1)

The policy π∗ : S → A corresponding to this action-value

function is the optimal policy for the MDP.

3. Local reinforcement learning schemes

3.1. Local Q learning: The illusion of control

Suppose that each subagent’s action-value function Q j

is updated under the assumption that the policy followed by

the agent will also be the optimal policy with respect to Q j.

In this case, the value update is the usual Q-learning update

(Watkins, 1989), but relies only on value information local

to each subagent. In detail,

Q j(st, at)← (1 − α
(t)

j
)Q j(st, at) +

α
(t)

j

[

r j(st, at, st+1) + γmax
a∈A

Q j(st+1, a)

]

(2)

(α
(t)

j
is a learning rate that decays to 0 over time.) Observe

that at is used only to associate the reward signal r j with a

particular action; the learner does not require at to evaluate

the discounted future value γmaxa∈A Q j(st+1, a).

For each j, denote the fixed point of this update proce-

dure by Q̃ j and the corresponding policy by π̃ j.

3.1.1. Convergence

Even though π̃ j may not optimize the sum of rewards

over all subagent values, and even though the arbitra-

tor may never execute this policy, the following theorem

demonstrates that this sort of off-policy update leads to the

convergence of the Q j estimates to a collection of locally

greedy (“selfish”) estimates.

Theorem 1. (Theorem 4 in (Tsitsiklis, 1994).) Suppose

that each (s, a) ∈ S × A is visited infinitely often. Under

the update scheme described in equation (2), each Q j will

converge a.s. to a Q̃ j satisfying

Q̃ j(s, a) =
∑

s′∈S

P(s′|s, a)

[

R j(s, a, s′) + γmax
a′∈A

Q̃ j(s′, a′)

]

(3)

Tsitsiklis sets out several technical assumptions, all of

which are satisfied in the current setting, and all of which

are omitted for brevity. This update is analogous to that

proposed by Stone and Veloso (1998), who assume that

the action space may be partitioned into subspaces, one for

each subagent, and that rewards realized by each subagent

are independent given only the local action of each sub-

agent.

3.1.2. Q learning for dollars

Suppose an agent in the dollars-and-euros world revises

its action-value estimates according to the selfish Q update

of equation (2). Let Q̃d denote the action-value function for

the dollars subagent, and Q̃e the action value function for

the euros subagent. The policy s0 7→ Left optimizes Q̃d:

Q̃d(s0, Left) = (1 − ǫ)

∞
∑

k=0

ǫkγk

=
1 − ǫ

1 − γǫ

Q̃d(s0,NoOp) = γQ̃d(s0, Left)

=
(1 − ǫ)γ

1 − γǫ

Q̃d(s0,Right) = γǫQ̃d(s0, Left)

=
γǫ(1 − ǫ)

1 − γǫ

Q̃d(s0,Up) = 0.6(1 − ǫ) + γǫQ̃d(s0, Left)

= (1 − ǫ)
(

0.6 +
γǫ

1−γǫ

)

The values are symmetric for Q̃e, with the optimal action

for Q̃e from s0 being Right.

When the two subagent value functions are combined,

a perverse thing happens. For certain values of ǫ and γ,

the “optimal” behavior is NoOp, even though an agent that

never tries to escape can never achieve a reward:

Q̃(s0, Left) = Q̃d(s0, Left) + Q̃e(s0, Left)

=
(1 − ǫ) + ǫ

1 − ǫγ

=
1

1 − ǫγ

= Q̃(s0,Right)

Q̃(s0,NoOp) =
2(1 − ǫ)γ

1 − ǫγ

When the discount factor is sufficiently large (γ > 0.5),

the sum of selfish action-value estimates indicate that the

agent is better off doing nothing than settling on one of the

absorbing states. Informally, the dollars subagent prefers

Left, but assigns a fairly high value to NoOp because it

can go Left at the next time step. The euros agent like-

wise prefers Right, but assigns a fairly high value to NoOp

because it can go Right after that. As a result, the expected

value of receiving both the dollars and the euros on the next

time step dominates the value of receiving one or the other

on the current time step, even though only one can occur.

The “illusion of control” leads to an incorrect policy.

3.2. Local Sarsa: Global realism

In equation (2), each subagent updated its estimate of

(discounted) future rewards by assuming that it could have



exclusive control of the system. While this may be a use-

ful approximation (as when value functions depend on sub-

spaces of S ×A with small overlap), it does not in general

guarantee that Q̃ will have the same values, or yield the

same policy, as Q∗. The relationship between Q̃ and Q∗ is

discussed below. For now, consider an alternative that gives

a collection of Q j functions whose sum converges to Q∗.

Let Q∗
j

: S ×A → R denote the contribution of the jth

reward function to the optimal value function Q∗ defined in

Equation (1):

Q∗j(s, a) = E
[

r j(s, a, s′) + γQ∗j(s′, π∗(s′))
]

(4)

To converge to Q∗
j
, the updates executed by each subagent

must reflect the globally optimal policy. Update schemes

that do this must replace the locally selfish updates de-

scribed above with updates that are asymptotically greedy

with respect to Q∗.

The Sarsa algorithm (Rummery & Niranjan, 1994),

which requires on-policy updates, suggests one approach.

Rather than allowing each subagent to choose the succes-

sor action it uses to compute its action-value update, each

subagent uses the action at+1 executed by the arbitrator in

the successor state st+1:

Q j(st, at)← (1 − α
(t)

j
)Q j(st, at) +

α
(t)

j

[

r j(st, at, st+1) + γQ j(st+1, at+1)
]

(5)

This requires that the arbitrator inform each subagent of the

successor action it actually followed, but the communica-

tion overhead for this is linear in the dimension ofA.

3.2.1. Convergence

Rummery and Niranjan establish that the Sarsa update

enforces convergence to Q∗ in the case when an agent

maintains a single action-value function and acts greedily

in the limit of infinite exploration.

Lemma 1. (Rummery & Niranjan, 1994) Suppose that an

agent receives a single reward signal r : S × A × S → R,

and maintains a corresponding Q function by the update

Q(st, at)← (1 − α(t))Q(st, at) +

α(t)
[

r(st, at, st+1) + γQ(st+1, at+1)
]

(6)

If all (s, a) ∈ S×A are visited infinitely often, S andA are

finite, and the policy pursued by the agent is greedy in the

limit of infinite exploration, then under the update scheme

of equation (6), Q will converge a.s. to Q∗ as defined in

equation (1).

The following theorem demonstrates that this update

procedure yields estimates converging to Q∗
j
, as defined

in equation (4), when the arbitrator asymptotically chooses

the optimal action.

Theorem 2. Suppose that all (s, a) ∈ S × A are visited

infinitely often and the policy pursued by the arbitrator is

greedy in the limit of infinite exploration. Suppose also that

S and A are finite. Under the update scheme of equation

(5), each Q j will converge a.s. to a Q∗
j

satisfying equation

(4).

In order to guarantee that the local Sarsa update pro-

vides convergence to the global optimum, it suffices to ob-

serve that the local Sarsa update is just the monolithic Sarsa

update in algebraic disguise:

∑n
j=1 Q j(st, at)←

∑n
j=1(1 − α

(t)

j
)Q j(st, at) +

∑n
j=1 α

(t)

j

[

R j(st, at, st+1) + γQ j(st+1, at+1)
]

Q(st, at)← (1 − α(t))Q(st, at) +

α(t) [R(st, at, st+1) + γQ(st+1, at+1)
]

The individual Q j converge to Q∗
j

because the policy under

which they are updated converges to π∗, so that in the limit,

they are updated under a fixed policy.

3.2.2. Sarsa for dollars

The local Sarsa update yields an intuitively correct pol-

icy for the dollars-and-euros world. The optimal policy is

to choose Up from s0, and the net value of NoOp in s0 van-

ishes because the update method of equation (5) requires

that all subagents assume a single policy.

Q∗d(s0, Left) = Q∗e(s0,Right)

= (1 − ǫ) +
0.6γǫ(1 − ǫ)

1 − γǫ

Q∗d(s0,Right) = Q∗e(s0, Left)

=
0.6γǫ(1 − ǫ)

1 − γǫ

Q∗d(s0,Up) = Q∗e(s0,Up)

=
0.6ǫ

1 − γǫ

Q∗d(s0,NoOp) = Q∗e(s0,NoOp)

=
0.6γǫ(1 − ǫ)

1 − γǫ

It is easily shown from these values that Up is optimal

for all ǫ ∈ [0, 1] and all γ ∈ (0, 1). In the undiscounted

case, the supervisor incurs no penalty for repeatedly choos-

ing NoOp for a very long time, but it will never achieve a

reward if it does so forever.1

1In MDP terminology, an agent that chooses to stay forever is
pursuing an “improper” policy. Convergence still holds under cer-
tain restrictions on the reward functions (Bertsekas & Tsitsiklis,
1996).



3.3. Remarks

Note that Q̃ j provides an optimistic estimate of Q∗
j

by

definition of the selfish action-value function:

Q̃(s, a) =
∑

s′∈S

P(s′|s, a)

n
∑

j=1

[

R j(s, a, s′) + γmax
a′∈A

Q̃ j(s′, a′)

]

≥
∑

s′∈S

P(s′|s, a) max
a′∈A

n
∑

j=1

[

R j(s, a, s′) + γQ̃ j(s′, a′)
]

≥
∑

s′∈S

P(s′|s, a) max
a′∈A

n
∑

j=1

[

R j(s, a, s′) + γQ∗j(s′, a′)
]

= Q∗(s, a)

The sum of selfish components is therefore an optimistic

estimate of the optimal value over all components. This

can lead to overestimates of future value, as in the case of

the three-state gridworld. For equality of the selfish and

globally-optimal policies, we require

Q∗(s, a) = Q̃(s, a)

because equivalent policies will converge to identical

action-value estimates.

4. The racetrack world

4.1. Description

An agent seeking to circulate around a racetrack must

trade off his speed against the cost in time and money of

damaging his equipment by colliding with the wall or with

other racers. However, these goals are opposed to one an-

other: the safest race car driver is the one who never starts

his first lap, and the fastest one looks to win at all costs.

Define a racetrack as a rectangular gridworld with an

excluded region (the “infield”) in the center, so that the sur-

rounding open spaces (the “track”) are of uniform width.

Represent the state of an agent by its position (the (x, y) in-

dex of the grid square it currently occupies) and velocity

(in squares per unit of time). At each time step, the agent

may alter each component of its velocity by −1, 0, or +1

unit/second, giving a total of nine actions. Actions succeed

with probability 0.9; the agent accelerates 45◦ to the left or

right of the desired vector with probability 0.03 each, the

agent accelerates 90◦ to the left or right of the desired vec-

tor with probability 0.01 each, and the agent does nothing

with probability 0.02. If an agent collides with a wall, its

position is projected back onto the track, and each com-

ponent of its velocity is reduced by 1. If the agent does

not accelerate away from the wall, it will continue to “slip”

parallel to the wall, but will not cross into the infield.

An agent receives a reward of 10 for completing one

lap, and a penalty of −1 for each collision with the wall.

An agent also receives a shaping reward (Ng et al., 1999)

proportional to the measure of the arc swept by its action.

4.2. Implementation

This paper evaluates a single racer on a 10-unit-wide

track with a 15 × 20 infield. Training consisted of 4000

episodes, with ten test episodes occurring after every ten

training episodes. To provide an incentive for finishing

quickly, experiments assumed a penalty of −0.1 per time

step, but no discount factor. Exploration occurred uni-

formly at random; the exploration rate decreased from 0.25

to 0.0625 over the first 2500 episodes, and remained con-

stant thereafter. The update step size α diminished from

0.3 to 0.01 over the 4000 episodes. Both training and test

episodes were truncated at 1000 steps; preliminary tests in-

dicated that an agent could get stuck by hitting a wall at

low speed, then choosing not to accelerate in any direction.

4.3. Results

Figure 2 compares the values achieved by trained us-

ing local Q and local Sarsa updates, as well as global Q

and global Sarsa updates. This is not an ideal domain to

illustrate the suboptimality of local Q updates, because the

dynamics of the racetrack world couple the objectives of

completing a lap quickly and avoiding collisions. Not only

does a racer suffer a negative reward when it collides with

a wall, but it loses speed, which diminishes the discounted

value of its eventual completion reward. However, the local

Sarsa learner outperformed the local Q learner by roughly

1 standard deviation after 4000 training episodes.

It is also worth noting the similarity in performance be-

tween global and local Sarsa. As the above algebra sug-

gests, the two methods should yield identical performance

under identical representations, and this is borne out by

Figure 2. Global Q learning, although not hobbled by the

“illusion of control”, underperforms Sarsa. The results of

individual episodes suggest that the global Q learner suf-

fered more collisions than the Sarsa learners, even though

the number of steps required to complete a lap compared

favorably, and this resulted in the difference in value.

5. The fisheries problem

5.1. Description

Consider the problem of allocating resources in a com-

mercial fishery. A commercial fishing fleet wishes to max-

imize the aggregate discounted value of its catch over time,

which requires that it show at least some concern for the

sustainability of the fish population. Individual fishermen,

however, may choose to act selfishly and maximize their

own profit, assuming that others in the fleet will reduce

their catch for the viability of the fishery. If all fishermen

follow the selfish policy, the result is a “tragedy of the com-

mons”: fish stocks collapse and the fishery dries up.

To model this effect, and compare the performance of

the local Q and Sarsa algorithms, consider a fishery with n

boats that alternates between a “fishing” season and a “mat-

ing” season. Assume that a fish population of size f (t) re-
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Figure 2. Values for local Q (dashed line), local Sarsa (solid line),

global Q (dot-dashed line), and global Sarsa (dotted line) updates

in the racetrack world. Arrowheads indicate one standard devi-

ation for local Q; dots indicate one standard deviation for local

Sarsa.

produces according to a density-dependent model (Ricker,

1954):

f (t + 1) = f (t) exp
[

R
(

1 −
f (t)

fmax

)]

where R for a fish population without immigration or em-

igration is the difference between the birth rate and the

death rate, and fmax is the “carrying capacity” of the en-

vironment (the population at which growth diminishes to

0). At the beginning of each fishing season, the fish are

assigned to one of n regions with equal probability. Let

f j(t) denote the number of fish in the jth region at time t,

with
∑

j f j(t) = f (t). The “fisheries commissioner” (arbi-

trator) selects the proportion of the season a j(t) that each

boat will fish, based on the total fish population f (t). Let

η ∈ (0, 1) denote the efficiency of each fishing boat. The

number of fish caught by the jth boat, c j(t), is distributed

Poisson(ηa j(t) f j(t)) and is capped at f j(t).
2 The reward re-

alized by boat j at time t is given by

r j(c j(t), a j(t)) = c j(t) − ζa
2
j(t)

for some constant ζ. The cost of fishing increases quadrat-

ically with a j to reflect the increase in crew and equipment

fatigue over the course of a season.

5.2. Implementation

This paper evaluates n = 10 fishing boats, f (0) =

1.5 × 105 fish, a population growth rate of R = 0.5, a

carrying capacity of fmax = 2 × 105 fish, an efficiency of

η = 0.98, and a maximum fishing cost of ζ = 103. Ex-

periments proceeded over 1000 episodes, and each episode

terminated when fewer than 200 fish remained or when the

2One can imagine fishing to be a queuing process wherein the
fish line up to be caught.

fishery had survived 100 years. With a discount factor of

γ = 0.9, the contribution of the 100th episode to the initial

value was reduced by a factor of 2.65×10−5. The step size α

for learning updates was 0.1 for the first 100 episodes, and

0.05 thereafter. Exploration occurred uniformly at random;

the exploration rate decreased from 0.4 to 0.05 over the first

400 training episodes, and remained constant thereafter.

These experiments included both decomposed and

monolithic agents. For the decomposed agents, each

action-value estimate Q j depended on three features: the

current population f (t), the proportion a j(t) fished by the

jth boat, and the total proportion a− j(t) =
∑

i, j ai(t) fished

by the other boats, so that Q j was defined over a 3-

dimensional space.3 A radial basis function (RBF) approx-

imator represented the action-value estimates Q j for the de-

composed agents, with values updated by bounded gradient

steps. The monolithic agents required that their value func-

tions span the full (n + 1)-dimensional space, a task that

would have been impossible using an RBF approximator

with the same resolution as was used in the 3-dimensional

space.4 Instead, a sigmoid neural network with a hidden

layer of 100 nodes was used.

5.3. Results

Presented in Figure 3 are the values achieved by the

selfish and optimal decomposed learners in the fishery

problem, as well as monolithic Q and Sarsa learners. Ev-

ery ten training episodes, ten test episodes were executed

and the values averaged. As anticipated, selfish updates

quickly fell victim to the “tragedy of the commons” (Fig-

ure 4). Each boat exhausted the fish stocks in its region

because the fishery had computed the value of this self-

ish policy without regard for the actions of the other boats.

As a result, the fish population crashed within a couple

of years. Concurrent Sarsa’s “realistic” updates led to a

sustainable policy. Each boat only harvested a fraction of

the fish in its region, so enough remained for the popula-

tion to recover in the next mating cycle. Both monolithic

learners demonstrated slower value improvement than the

decomposed Sarsa learner because they represented exam-

ples over the joint state and action space and not the re-

duced subspaces of the decomposed learners. However,

the monolithic Q learner did not suffer from the difficulties

faced by the selfish decomposed learner.

6. Related work and conclusions

Q-decomposition extends the monolithic view of rein-

forcement learning in two directions: it identifies a natural

3Multinomial sampling to construct bins and Poisson sam-
pling to simulate fishing justify this aggregation.

4The decomposed learners used 725 basis components on a
9 × 9 × 25 grid, with the highest resolution along the a− j-axis.
Such a discretization for a global learner would require 31 × 109

kernels.
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Figure 3. Values for local Q (dashed line), local Sarsa (solid line),

global Q (dot-dashed line), and global Sarsa (dotted line) updates

in the fishery world. Arrowheads indicate one standard deviation

for local Q; dots indicate one standard deviation for local Sarsa.

decomposition of action-value estimates in terms of addi-

tive reward signals, and considers the tasks of action selec-

tion and value-function updates in terms of communication

between an arbitrator and several subagents. Both direc-

tions provide broad avenues for future work.

The concept of Q-decomposition, and the correspond-

ing notion of “subagents,” may seem superficially related

to particular methods for representing value functions,

or for aligning the interests of multiple subagents. Q-

decomposition only requires that value function updates

assume a particular form to guarantee optimal agent be-

havior. In some cases, like the fishery world, this additive

decomposition results in a more compact value function.

Other authors (Koller & Parr, 1999) have explored approx-

imations that represent the true value function as a linear

combination of basis functions, with each basis function

defined over a small collection of state variables. In order

to maintain these approximations, value function updates

must be projected back onto the basis at every time step,

because the evolution of the MDP over time can introduce

dependencies not represented in the basis. However, some

subagent rewards may be unconditionally independent of

some components of the state, or may depend only on ag-

gregate values, as in the fishery world. By exposing these

independencies, Q-decomposition furnishes a means of se-

lecting basis components without sacrificing accuracy.

Representational savings are also possible by combin-

ing Q-decomposition with graphical models of conditional

utilities. While it may be possible to elicit and main-

tain conditional utilities for one-step problems (Bacchus

& Grove, 1995; Boutilier et al., 2001), the dependencies

introduced by both the transition model and reward de-
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Figure 4. Characteristic depletion of fish stocks over one episode

by local Q (dashed line) and local Sarsa (solid line).

composition become more difficult to manage over time

in sequential tasks. These dependencies limit the extent

to which a problem may be exactly decomposed. Guestrin

et al. (2002) avoid the difficulties of exact updates by fix-

ing an approximation basis and a “coordination graph” ex-

pressing dependencies shared between Q-components. Q-

values may be computed in this setting by summing the

factors of the coordination graph. The coordination struc-

ture allows optimal selections to be communicated only

to those components that require them, eliminating a cen-

tral arbitrator for action selection. Gradient updates for a

parametric basis follow because the gradient of the sum

of components is a sum of gradients, one per basic term.

Message-passing techniques for value estimation and value

updating have clear advantages over methods requiring a

central arbitrator, and deserve exploration in the context of

Q-decomposition and exact updates.

Q-decomposition uses all value function components

all the time to choose actions. In this sense, it differs from

“delegation” techniques like feudal reinforcement learning

(Dayan & Hinton, 1993), MAXQ (Dietterich, 2000), and

the hierarchical abstract machines of Parr (1997) and An-

dre (2002). These methods also decompose an agent into

subagents, but only one subagent (or one branch in a hier-

archy of subagents) is used at a time to select actions, and

only one subagent receives a reward signal. Feudal RL sub-

divides the state space at multiple levels of resolution, and

each of the subagents at a particular resolution assigns re-

sponsibility for a subset of its state space to one of its “vas-

sals”. MAXQ-decomposed agents and hierarchical abstract

machines partition the decision problem by tasks, giving a

hierarchical decomposition analogous to a subroutine call

graph. Each component in this procedural decomposition

maintains a value function relative to its own execution, and



does not receive a reward when it is not in the call stack. Q-

decomposition complements these methods: a subagent in

a delegation architecture could maintain a Q-decomposed

value function.

Devolution of value function updates moves monolithic

reinforcement learning into the “multi-body” setting, and

suggests a spectrum of learning methods distinguished by

the degree of communication between modules and a cen-

tral arbitrator. At one extreme, traditional RL methods as-

sume closely-coupled components: a single value function

defining a monolithic policy. Q-decomposition allows for

multiple value functions, each residing in a subagent, but

still requires each subagent to report its value estimates to

an arbitrator, and receive in turn the action that the arbi-

trator chooses. Further relaxations of the communications

requirements of Q-decomposition include action decom-

position and partial observability of actions. In the for-

mer case the action space A may be partitioned into sub-

spaces A j corresponding to subagent reward components;

in the latter, subagents maintain histories of observations

〈o(1), . . . , o(t − 1), o(t)〉 from which they must estimate at

to compute value updates.

Multiagent learning problems eliminate the central

arbitrator, making optimality more difficult to achieve,

but similar issues of communication between participants

arise. Traditional game theory considers the uncommu-

nicative extreme of this spectrum, where participants do

not share policies or value functions. Claus and Boutilier

(1998) have proposed the “individual learner” and “joint

action learner” concepts to distinguish between agents in

cooperative games that choose actions to maximize indi-

vidual rewards, and agents that choose actions to maximize

joint rewards. A joint action learner observes the actions

of its peers, and maintains belief state about the strate-

gies they follow, with the goal of maximizing the joint

reward. An independent learner ignores the actions of its

peers when “optimizing” its policy, analogous to a local Q

learner. There is still no central arbitration mechanism, but

inverse reinforcement learning techniques (Ng & Russell,

2000) might be used to deduce the policies of other agents

and bridge the communications gap.

In treating only local Q learning and local Sarsa, this

paper has evaluated two points in the continuum of pos-

sible representations. These fairly simple-minded ap-

proaches nonetheless provide evidence of the value of Q-

decomposition as a tool for functional decomposition of

agents, and suggest a variety of future work.
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