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Abstract

In this paper we provide algorithms for determining
the belief state of an agent, i.e., its knowledge about
the state of the world. We describe our domains
using a logical action language that allows nonde-
terministic actions and partial observability. Our
algorithms update an initial belief state with every
execution of an action and when collecting obser-
vations. This iterative updating process is called
logical filtering.
Our algorithms are computationally superior to cur-
rent methods that are used in nondeterministic plan-
ning. Several classes of dynamic systems that we
identify allow particularly efficient filtering. In
some cases our algorithms compute the filtering of
action/observation sequences of arbitrary length ef-
ficiently while maintaining compact representation
of belief states over time. Other cases allow effi-
cient approximation of the belief state under rea-
sonable conditions. Some of the properties of do-
mains that we identify can be used to launch fur-
ther investigation into efficient projection, execu-
tion monitoring, planning and diagnosis.

1 Introduction
An agent acting in the world must find answers to questions
about the state of the world after it performed some actions
and made some observations. For example, a block-stacking
robot needs to determine the state of the world after picking
up blockA. It can use such knowledge in planning its actions,
determining if an action succeeded, and choosing among cor-
rective actions if it did not.

There are several ways to answer questions about the state
of the robot after it did some actions and made some observa-
tions. One approach is to use automated reasoning techniques
directly on a representation of the sequence of actions (e.g.,
[Kautz, McAllester, & Selman, 1996]). Another approach is
to use regression of the question to a query on the initial state
(e.g., [Levesque et al., 1997]). Finally, we can maintain a rep-
resentation of the robot’s belief state (its knowledge about the
state of the world) and update this representation with actions
and observations. This latter approach is called filtering, and

it is particularly attractive with long sequences of actions and
observations (e.g., [Doucet et al., 2000]).

The two computational difficulties involved with filtering
are the time needed to update the belief state and the space re-
quired to represent it. Many of the early filtering approaches
(e.g., Wiener [Wiener, 1949] and even Gauss) have tackled
this problem in the context of stochastic processes, culmi-
nating in the the Kalman filter [Kalman, 1960]. There, the
belief state is represented as a Gaussian, some variables can
be observed, and world progress (the transition relation) is
expressed using linear equations and Gaussian noise. The
Kalman filter has limited applicability but has been studied
and used extensively and successfully in the control literature.
Its two attractive properties are that it is efficient to compute
and its belief state representation is compact. It is the only
tool known to science today that has those properties.

In this paper we investigate an approach to logical filter-
ing, which assumes a representation of the transition between
situations in the world in a logical (or logic-like) language.
We provide a formal treatment and algorithms for proposi-
tional logical filtering for domains that have nondeterministic
actions or that have an incomplete description of the initial
state. We represent a belief state using a logical formula over
the fluents that define world states. Our algorithms update a
belief state by creating a new formula that describes the re-
sult of performing an action and making observations. This
framework allows us to also model domains in which there
are no actions known to us, but only events (with some known
(nondeterministic) transition model) and observations (as in
HMMs).

We identify several classes of nondeterministic dynamic
systems that allow efficient filtering. We show that filter-
ing can always be distributed over logical disjunction in the
belief state formula, and can also be distributed over logical
conjunction and negation if some conditions hold about the
dynamic system. We point out one class of such dynamic sys-
tems that we call permutation domains. In those domains, ac-
tions serve as one-to-one mappings between states, for those
states in which they can be applied. This gives rise to more
efficient algorithms for some representations of belief state
formulae, such as NNF, DNF, CNF, and CNF of prime im-
plicates. Our algorithms approximate the belief state in those
domains that are not permutation domains.

We show that if our action theory has some natural prop-



erties then filtering of k-CNF formulae (CNF with clauses of
size at most k, when k is given beforehand) can be done so
that the result is a k-CNF formula. Consequently, we main-
tain a compact representation of the belief state in those do-
mains where this can be done and k is small.

We show that filtering in many nondeterministic STRIPS
domains can be done efficiently while keeping the belief-
state representation compact. For example, in permutation
domains, if our belief state formula and actions’ effects are
in k-CNF, and every action has a precondition that includes
at most k symbols not affected by this action, then our belief
state is in k-CNF after applying any action (we allow mak-
ing an observation in k-CNF). We get a similar result for all
nondeterministic STRIPS domains (not necessarily permut-
ing) that satisfies the conditions above about actions’ effects
and precondition, if our belief state is in k-CNF that includes
all its prime implicates.

Our algorithms are computationally superior to earlier
methods used in nondeterministic planning, and in some
cases they enable efficient filtering with action/observation
sequences of arbitrary length while maintaining small rep-
resentation size (see Section 1.1). Our filtering operator is
only the second example (first is Kalman filters) known to
science today where a natural compact representation of a be-
lief state can be maintained efficiently over an arbitrarily long
sequence of transitions.

1.1 Related Work
The computation of filtering is relatively simple when the
initial state of the system is fully known and the actions
and events in this system are fully known and are deter-
ministic (e.g., [Fikes, Hart, & Nilsson, 1981; Lin & Reiter,
1997]). The problem of performing logical filtering in non-
deterministic domains is computationally more difficult. In
particular, the related problem of logical temporal projection
is known to be coNP-hard when the state of the world is
not fully known, or when actions have nondeterministic ef-
fects [Liberatore, 1997; Baral, Kreinovich, & Trejo, 2000;
Amir, 2002].

Traditionally, computational approaches for filtering take
one of three approaches: 1) Enumerate the world states pos-
sible in every belief state and update each of those states sepa-
rately, together generating the updated belief state (e.g., [Fer-
raris & Giunchiglia, 2000; Cimatti & Roveri, 2000; Bertoli
et al., 2001]), 2) List the sequence of actions and prove a
query by regression or by using the theory of action directly to
prove a query for the sequence of actions and observations in
question (e.g., [Reiter, 2001; Lifschitz, 2000]), or 3) approxi-
mate the belief state representation (e.g., [Son & Baral, 2001;
Doucet et al., 2000].

The first two approaches cannot be used when there are too
many possible worlds (e.g., when the domain includes more
than a few dozens of fluents and there are more than 240 possi-
ble states) or when the sequence of actions is long (e.g., more
than 1000 actions). However, many dynamic systems have a
large number of fluents (especially when they are proposition-
alized) and we would like to track them in an efficient manner
over very long sequences of actions (> 100, 000). Examples
include robot localization, tracking of objects and their rela-

tionships, and data mining. In many domains our approach
is efficient yet general enough to capture and fulfill such de-
mands. The last approach is not always usable, it requires an
approximation that fits the given problem, is computationally
slow still, and it gives rise to many mistakes that are some-
times dangerous. For example, few people will fly an aircraft
that uses an approximate controller for landing.

2 Logical Filtering
In this section we define the transition model and action de-
scription language that we use to describe nondeterministic
dynamic domains. Our model supports sequences of actions,
and is not intended for concurrent actions or ramifications of
actions (although it may be extended to such). It is kept sim-
ple so that we can examine the computational properties of
the system easily. We take some elements from action lan-
guage AR [Giunchiglia, Kartha, & Lifschitz, 1997].

In what follows, for a set of propositional formulae, Ψ,
L(Ψ) is the signature of Ψ, i.e., the set of propositional sym-
bols that appear in Ψ. L(Ψ) is the language of Ψ, i.e., the
set of formulae built with L(Ψ). Similarly, L(L) is the lan-
guage of L, for a set of symbols L. Cn(Ψ) is the set of log-
ical consequences of Ψ (i.e., those formulae that are valid
consequences of Ψ in propositional logic), and CnL(Ψ) is
Cn(Ψ) ∩ L, the set of logical consequences of Ψ in the lan-
guage L. For a set of symbolsLwe sometimes writeCnL(Ψ)
for CL(L)(Ψ).

2.1 Nondeterministic Transition Model
A transition system is a tuple 〈P,S,A,R〉, where

• P is a finite set of propositional fluents;

• S ⊆ Pow(P) is the set of world states;

• A is a finite set of actions;

• R ⊆ S ×A× S is the transition relation.

The intuition for this transition system description is that
P is the set of features that are available for us in the world,
every element in S is a world state (i.e., a subset of P , con-
taining propositions that are true in this world state), A is the
set of actions in the system (these may be actions that change
the state of the world, sensing actions, or a combination of
both) and R(〈s, a, s′〉) means that state s′ is a possible result
of action a in state s.

A belief state is a set of world states σ ⊆ S. The belief
state in the result of performing an action, given a belief state
σ, is the belief state comprising of all the world states that
may result from that action and a world state in σ.

Notice that we do not introduce observations in this transi-
tion model. Instead, we assume that observations are given to
us (if at all) as logical sentences after performing an action.
We return to this subject in Section 2.3 and again in Section
6 when we introduce observation models.

2.2 Action Description Language
The transition model and belief state update function given
above can represent a rich set of dynamic systems. In this sec-
tion we describe a specification language that defines some of



those dynamic systems and that we will use as our basic lan-
guage in the rest of this paper. In this language we describe
actions whose effects may be nondeterministic and declara-
tions describing our knowledge about the initial state of the
system.

A logical nondeterministic domain description D is a fi-
nite set of statements of the following kinds: value propo-
sitions of the form “initially F ” describe the initial state and
effect propositions of the form “a causes F if G” describe the
effects of actions, for F and G being state formulae (propo-
sitional combinations of fluent names). We say that F is the
head and G is the tail of those rules.

For a domain description D we define PD, AD to be the
set of propositional fluents and actions mentioned in D, re-
spectively. The following semantics describes the way a state
changes after an action:

• If, before the execution of an action a, the state formula
G is true, and the domain description contains a rule “a
causes F if G”, then this rule is activated, and after the
execution of action a, F becomes true.

• If for some fluent f no activated effect rule includes the
fluent f in its head, this means that the execution of ac-
tion a does not influence the truth value of this fluent.
Therefore, f is true in the resulting state if and only if it
was true in the old state.

• If an action a has a set of rules with a combined incon-
sistent effect F (e.g., F = FALSE) and that set of rules
is activated in s, then there is no state that is the result of
a in s (we take this to mean that a is not executable in
s).

• The result of applying an action a for which no rule is
activated in s is the state s (we consider the action as
possible in this state, but having no impact).

The last two principles ensure that the conditions of the rules
act as conditions for the action’s effects (if no conditions are
met, then there are no effects), and an action is not executable
iff it leads to contradictory effects (e.g., if we include a rule
saying that “a causes FALSE if G”). In the latter case for s
and a, there is no transition tuple 〈s, a, s′〉 in R.

Formally, for a domain descriptionD we define a transition
relation RD(s, a, s′) as follows.

• A fluent f ∈ PD is possibly affected by action a in state
s, if there is a rule “a causes F if G” in D such that G
is true in s and f ∈ L(F ).

• Let I(a, s) denote the set of fluents in PD that are not
possibly affected by action a in state s.

• Let F (a, s) be a set of all the heads of activated effect
rules in s (i.e., if “a causes F if G” is activated in s,
then F ∈ F (a, s)). We consider the case of F (a, s) = ∅
(no activated effect rules) as F (a, s) ≡ TRUE.

• Define (recalling that world states are sets of fluents)

RD =

{
〈s, a, s′〉

∣∣∣∣
(s′ ∩ I(a, s)) = (s ∩ I(a, s))
and F (a, s) is true in s′

}

(1)
When there is no confusion, we write R for RD.

We explain this definition. First, inertia is applied to all
fluents that do not appear in an activated rule (regardless of
whether they are positive or negative in the current state).
Then, our knowledge about those fluents that are possibly af-
fected is determined by the head of the activated effect ax-
ioms after releasing those fluents from persistence (they are
not assumed to stay the same even if they might).

EXAMPLE Let F = holdA ∨ holdB, and assume that
the rule “pickUpBlock causes F if TRUE” is the only rule
activated in state s for action a = pickUpBlock. Then, all
of 〈s, a, s1〉, 〈s, a, s2〉, 〈s, a, s3〉, are in our transition relation
RD, for s1, s2, s3 such that holdA ∈ s1, holdB ∈ s2 and
holdA, holdB ∈ s3 (i.e., we allow nondeterminism to not
only choose between the effects holdA, holdB but also pos-
sibly affect both holdA, holdB).

This example may seem unintuitive at first because if
holdA, holdB are both true in s, then one of our resulting
states is s2 in which holdA is not true. This is sanctioned by
our effect rule for a, which explicitly allow this effect. If we
want to state inertia so that this does not happen (e.g., that
this state is possible only if we started from a state in which
holdA was already FALSE), then we need to provide explicit
rules that say so. We regard this as the responsibility of the
knowledge engineer or an automated process that may gener-
ate those rules for us (as in [Lin & Reiter, 1994] and others).

Our choice of this semantics for nondeterminism is mainly
for its simplicity (thus, also computational properties) and
its natural properties. It resembles the specification of a sit-
uation calculus theory after a solution to the frame prob-
lem has already been applied [Lin, 1996; Reiter, 2001].
There are other action languages and semantics that are
used for specifying nondeterministic dynamic systems [Gel-
fond & Lifschitz, 1998; Reiter, 2001; Levesque et al., 1997;
Thielscher, 2000]. Mostly, they can be translated into our
system without much technical effort, so we avoid further dis-
cussion of those here.

2.3 Filtering
In partially observable domains, we update our knowledge as
a result of executing an action and collecting observations in
the resulting state. The following definition of filtering as-
sumes that σ is a set of world states. We use our transition
operator R to define the resulting belief state from each ac-
tion. When there is no transition in R for s, a, we end up
with an empty belief state (no state is possible). An observa-
tion o is a formula in our language (e.g., holdA ∨ holdB is a
possible observation).

Definition 2.1 (Logical Filtering Semantics) Let σ ⊆ S be
a belief state. The filtering of a sequence of actions and ob-
servations 〈a1, o1, . . . , at, ot〉 is defined as follows:

1. Filter[ε](σ) = σ;

2. Filter[a](σ) = {s′ | 〈s, a, s′〉 ∈ R, s ∈ σ};

3. Filter[o](σ) = {s ∈ σ | o is true in s};

4. Filter[〈ai, oi, . . . , at, ot〉](σ) =
Filter[〈ai+1, oi+1, . . . , at, ot〉]

(Filter[oi](Filter[ai](σ))).



We call Step 2 progression step with a and Step 3 filtering
step with o.

One approach to computing the belief state after a sequence
of actions and observations is to represent a belief state as a
set of states. A more sophisticated approach is to represent
the belief state more compactly, but still compute the result-
ing belief state for every original world state and represent
the set of resulting states in a more compact form. This ap-
proach is taken (implicitly) in works on planning as model
checking (e.g., [Cimatti & Roveri, 2000; Bertoli et al., 2001;
Rintanen, 2002]) and planning as satisfiability (e.g., [Ferraris
& Giunchiglia, 2000]), where it has proved to be computa-
tionally expensive in domains with more than a few state fea-
tures, even if BDDs are used for the update operations.

An alternative approach is to perform logical progression
in a form similar to the one described by [Lin & Reiter, 1997].
The difference is that now we wish to do so in the context of
nondeterministic actions and observations. The computation-
ally difficult part is going to be finding the result of applying
the action to the belief state. This is the topic of the next
section.

3 Basic Algorithm for Logical Filtering
An actual procedure for logical filtering may perform exces-
sive work if it represents a belief state explicitly as a set of
states. In this section we present a simple algorithm for fil-
tering that avoids representing or enumerating all the states
possible in a belief state.

3.1 Basic Filtering Algorithm
Recall that I(a, s) was defined in Section 2.2 to be the set
of literals that are not affected by action a in state s. In this
section we make the simplifying assumption that for all states
s, s′ in which a has some effect (i.e., I(a, s), I(a, s′) 6= P),
I(a, s) = I(a, s′). This assumption means that we always
release from the frame assumption a constant set of fluents,
Eff(a), for a given action a, as long as at least one rule for
a is applicable in s. This has the effect that it is simple to
specify those fluents that remain constant. Eff(a) is the set
of fluents that are not in Eff(a). In what follows, most of
our notation is developed for an implicit action, and we add
that action explicitly only when confusion may arise if it is
omitted.

We represent a belief state σ as a logical formula ϕ such
that a state is in σ iff it satisfies ϕ. The filtering algorithm
we present applies two steps, a progression step and a filter-
ing step, to a belief state formula ϕ in order to produce the
next belief state. Before we define these steps we detail some
formal tools.

For a set of effect rules r1, . . . , rl for action a, each of the
form “a causes Fi if Gi”, write F ′

i = Fi[f1,...,fn/f ′
1
,...,f ′

n],
for {f1, . . . , fn} = F the set of fluents in our domain, F ′ =
{f ′1, . . . , f

′
n} a set of new symbols for fluents, and [x/y] in the

subscript means that we replace all instances of the symbol x
in the formula by instances of the symbol y (for sequences
of symbols we replace the symbols in respective locations).
The intuition is that the fluents in F are taken with respect to

some time t, and those in F ′ are the same fluents taken with
respect to time t+ 1.

We add the following set of rules for action a:
C = {“a causes p if p” | p /∈ Eff(a)}∪

{“a causes ¬p if ¬p” | p /∈ Eff(a)}∪
{“a causes p if p ∧ Ḡ” | p ∈ Eff(a)}∪
{“a causes ¬p if ¬p ∧ Ḡ” | p ∈ Eff(a)}

for Ḡ = ¬G1 ∧ ... ∧ ¬Gl, the assertion that no precondi-
tion of a holds. This has a similar effect to adding frame
axioms to a set of effect axioms in an action language. We let
r1, ..., rm be the complete set of rules for a and call the new
rules, C = {rl+1, ..., rm}, completion rules for a. Finally,
recall that CnF ′

means the classical consequence relation re-
stricted to the language that includes only F ′.

We define filtering of belief-state formulae as follows. (We
reuse the symbol Filter[.](.) for filtering a belief-state for-
mula; There is no confusion about this reuse because a belief
state formula is never a set of world states and a set of world
states is never a belief state formula.)

1. Filter[a](ϕ) =

(CnF ′

(ϕ ∧
∧

i≤m((ϕ⇒ Gi) ⇒ F ′
i )))[f ′

1
,...,f ′

n/f1,...,fn];

2. Filter[o](ϕ) = ϕ ∧ o.
Thus, a simple algorithm for computing

Filter[〈a1, o1, ..., at, ot〉](ϕ) is to apply these rules recur-
sively, setting ϕ0 = ϕ and ϕi = Filter[oi](Filter[ai](ϕi−1)
for i > 0 using the two equalities defined above. This algo-
rithm is correct, as the following theorem shows.
Theorem 3.1 If ϕ is a belief state formula and {r1, . . . , rl}
is the set of effect rules for action a, each of the form “a
causes Fi if Gi”, and rl+1, ..., rm are the completion rules
for a as added above, then

Filter[a]({s ∈ S | s satisfies ϕ}) =
{s ∈ S | s satisfies Filter[a](ϕ)}

PROOF See Section A.1

This theorem says that our algorithm takes a formula that
represents a set of states and produces a formula that repre-
sents the set of states sanctioned by Definition 2.1.

The algorithm implied by Theorem 3.1 (iterative applica-
tion of filtering of a belief-state formula with an action and
observation) can be implemented using a consequence finder
in a limited language, such as those based on ordered resolu-
tion (e.g., [del Val, 1999]).

Also, one way to make the belief state representation of
the resulting state more succinct is to take the representation
of the new belief state to be the conjunction of prime im-
plicates of Filter[a](ϕ) instead of all the consequences in
that language. This can be done by several consequence find-
ers, such as [Baumgartner, Furbach, & Stolzenburg., 1997;
Iwanuma, Inoue, & Satoh, 2000; del Val, 1999].

In addition, if our belief-state formula is a conjunction of
all of its prime implicates, then there are specialized methods
that we can use to speed up the computation of the progres-
sion and filtering steps. This topic is outside the scope of this
paper for lack of space, and we leave it for a different report.

From here forth, when we say filtering we refer to filtering
of a belief-state formula, unless otherwise mentioned.



3.2 Distribution Properties
We can decompose the filtering of a formula ϕ along logical
connectives once we establish several distribution properties
for filtering.

Corollary 3.2 (Distribution over Connectives) If ϕ,ψ are
formulae in the language L(F) and {r1, . . . , rl} is the set of
effect rules for action a, each of the form “a causes Fi if Gi”,
and rl+1, ..., rm are completion rules as added above, then

1. Filter[a](ϕ ∨ ψ) ≡ Filter[a](ϕ) ∨ Filter[a](ψ)

2. |= Filter[a](ϕ ∧ ψ) ⇒ Filter[a](ϕ) ∧ Filter[a](ψ)

3. |= Filter[a](¬ϕ) ⇐ ¬Filter[a](ϕ) ∧
Filter[a](TRUE)

PROOF See Section A.2

The intuition coming out of this theorem is the following.
Filtering ϕ ∨ ψ can be done by filtering ϕ and ψ separately
and then combining the results. Also, filtering ϕ ∧ ψ can be
approximated by filtering ϕ and ψ separately and then com-
bining the result. The formula that is the conjunction of the
separate filtering of ϕ and ψ is a weaker formula that the fil-
tering of ϕ∧ψ. Thus, everything that follows from that com-
bination is also true in every state that is the result of the orig-
inal filtering. Finally, filtering of ¬ϕ can be approximated in
the other direction. The formula that is the negation of fil-
tering ϕ is a stronger formula than the filtering of ¬ϕ. Thus,
everything that follows from the filtering of ¬ϕ necessarily
holds in the negation of the filtering of ϕ and that of TRUE.

While the last two are only approximations (according to
Corollary 3.2), they can be used in a safe way. If we only
distribute filtering over disjunction and conjunction (but no
negation), then our approximation is safe. For example, we
will not land a plane if it is not possible to do so, but there
may be times where it will be OK to land the plane but we
will not know it.

3.3 Permutation Domains
For an interesting class of dynamic systems we can say some-
thing stronger. In this class we include systems in which ev-
ery action acts as a permutation on the states in S. In other
words, every action acts as a one-to-one mapping from states
to states, i.e., RD(s, a, s′) is a one-to-one mapping of a state
and an action to a resulting state. We call domains that satisfy
this requirement permutation domains.

Example permutation actions include: Turning a row in a
Rubik’s cube; flipping a light switch turns the light on if it
was off and off if it was on; Purchasing coffee has the effect
of increasing the amount of coffee we have and decreasing
the amount of money we have. Notice that we allow different
actions to map different states to the same state (e.g., accel-
erating by 5MPH when driving 40MPH results in the same
state as when decelerating by 5MPH when driving 50MPH).

Corollary 3.3 (Distribution for Permutation Domains)
Let D be a permutation domain. If ϕ,ψ are formulae in
the language L(F) and {r1, . . . , rl} is the set of effect rules
for action a, each of the form “a causes Fi if Gi”, and
rl+1, ..., rm are completion rules as added above, then

1. Filter[a](ϕ ∨ ψ) ≡ Filter[a](ϕ) ∨ Filter[a](ψ)

2. Filter[a](ϕ ∧ ψ) ≡ Filter[a](ϕ) ∧ Filter[a](ψ)

3. Filter[a](¬ϕ) ≡ ¬Filter[a](ϕ) ∧ Filter[a](TRUE)

PROOF See Section A.3

From this corollary we get that the decomposition strategy
offered above is an exact computation for permutation do-
mains and not only an approximation. It can be applied to
CNF formulae and any other propositional formula.

A somewhat weaker requirement that still allows us to use
distribution over conjunction and negation connectives is ask-
ing that: For every state s and action a, there is at most one s′

such that RD(s, a, s′). Following the proof-line of Corollary
3.3 shows that even with this weaker requirement the distri-
bution holds. For example, STRIPS domains can be weakly
permuting in the sense that, if a condition holds for an action,
then it changes the state of the world in a one-to-one way, but
if it does not hold, then the action is not executable. For ex-
ample, pickUp(A,B) is an action that picks up A from B. It
is executable only when A is clear, is on B and the hand is
empty. It is one-to-one when it is possible because every two
resulting states that are identical can be reverse-engineered to
see what the previous state was. Similar situation holds with
putOn(A,B).

4 Filtering NNF Belief States
Computation of filtering can become burdensome in large do-
mains, even if we use decomposition of the kind suggested in
the last section. Particularly, we still have to perform general-
purpose logical deduction for every formula that we filter.

A formula is in negation normal form (NNF) if all nega-
tions are in front of atoms (e.g., CNF formulae and DNF for-
mulae are in NNF). In this section we describe more efficient
algorithms that are available when we make the general as-
sumption that our belief state formula ϕ is in NNF.

4.1 Negation Normal Form (NNF) Filtering
A simple computation that is in the spirit of Corollary 3.2 but
is not equivalent to our definition for filtering of an action is
Filter[a](ϕ)

?
=

∧
i≤l, ϕ⇒Gi

Fi. It says that we conclude the
results of those rules that are activated for a, i.e., if G1 can be
proved from our current belief state, then we should believe
F1 in the result of the action a. This simple conjunction de-
scribes some of the knowledge that we hold about the state
of the world after action a, but it does not hold all of it. For
example, if ϕ impliesGi∨Gj , then our effect axioms will im-
ply that Fi ∨ Fj holds in the result of a, but neither of Fi, Fj

holds by itself.
We can enhance the last formula and find an equivalent

definition for filtering that under some conditions has better
computational properties.

Filter[a](ϕ) ≡
∧

i1,...,iu≤m, ϕ|=Gi1
∨...∨Giu

(Fi1 ∨ . . . ∨ Fiu
). (2)

This formula has the benefit that the only inference that
needs to be done is that of checking if ϕ⇒ Gi1 ∨ . . . ∨Giu

.
On the other hand, it requires an exponential number in m of



such tests. Since m > 2n (recall, m is the number of rules,
including the completion rules), this is worse computationally
than the method of enumerating all the states.

In what follows we show how to avoid using most of the
completion rules when filtering a CNF formula. This allows
us to avoid the main difficulty with using equation (2). The
main intuition is that we may omit most of those rules if we
know that ϕ includes only a small subset of F , the fluent
symbols of our domain. This is not be the case, in general, be-
cause we may know many things about many different parts
of our domain. Nevertheless, if we can decompose ϕ into
small parts that can be filtered separately, then each of the
parts will include only a small subset of F , and filtering each
of the parts separately will become easy.

We need a few definitions before we can make use of this
intuition. First, assume that we order the rules of a such that
r1, ..., rt (t ≤ l) satisfy L(Fi) ∩ L(Gi) = ∅, and rt+1, ..., rl
satisfy L(Fi) ∩ L(Gi) 6= ∅. Furthermore, let rm+1 be the
(additional) rule “a causes Ḡ if Ḡ”. Then, define B to be

B =
∧

i≤t

(¬Gi∨Fi) ∧
∧

i1,...,iu∈{t+1,...,l,m+1}

(G̃i1,...,iu
∨

∨

f≤u

Fif
) (3)

for G̃i1,...,iu
≡ CnEff(a)(

∧
f≤u ¬Gif

), the consequences of∧
f≤u ¬Gif

in the language that does not include fluents from
Eff(a). We explain this below.
B is a term that is always implied by Filter[a](TRUE),

i.e., the progression of zero knowledge with the action a. It
is not equivalent to Filter[a](TRUE), but it is required to
complete the definition of the general case. The first set of
conjuncts of B is the result of applying a rule “a causes Fi

if Gi” whose preconditions are not affected by executing a.
Even when we know nothing before performing a, we will
know that either the effect occurred or the precondition did
not hold and still does not hold. The second set of conjuncts
applies a similar intuition for the case of effect rules that may
affect the truth value of their original preconditions. Even
when we know nothing before performing a, we will know
that either the effect occurred or the precondition did not hold
and some fraction of it still does not hold (this fraction may
or may not be empty).

Define C(L) to be the set of completion rules of a for flu-
ents in L, i.e.,

C(L) = {i > l | the head of ri ∈ C is in L}

Theorem 4.1 below shows that the following equivalence
holds:

Filter[a](ϕ) ≡
∧

i1, ..., iu ∈ {1, ...l, m + 1} ∪ C(L(ϕ)),
ϕ |= Gi1

∨ ... ∨ Giu

(Fi1 ∨ ... ∨ Fiu
)

∧
B (4)

The intuition for this formula is that progressing ϕ with an
action a can be computed by looking at all the possible com-
bination of preconditions of effect rules and completion rules
for L(ϕ). If we can prove that G1 ∨ G2 holds from ϕ, then
we can conclude that F1 ∨F2 holds in the result of executing
a. The conclusions that are not accounted for with this intu-
ition are the effects that we infer from the completion rules in

C(L(G1, ..., Gl)) together with the effect rules for a. Those
conclusions are summarizes in B, which is independent of ϕ.

We can now state the main theorem of this Section. It holds
for all domains expressed using our action language.
Theorem 4.1 If ϕ is a belief state formula and {r1, . . . , rl}
is the set of effect rules for action a, each of the form “a
causes Fi if Gi”, then equivalence (4) holds.

PROOF See Section A.4.

This formula together with the decomposition property of
Corollaries 3.2,3.3 suggests much faster algorithms for com-
puting the filtering of an NNF. We describe this result in the
following theorem and corollaries. The complete algorithm
is in Figure 1.

PROCEDURE NNF-Filter(〈ai, oi〉0<i≤t
,ϕ)

∀i ≤ t, ai is an action and oi is an observation. ϕ is a belief-state
formula.

1. If t = 0, return ϕ.

2. Set B as in (3) for a but in NNF form.

3. Return NNF-FilterStep(ot,
B∧ NNF-ProgressStep(at,

NNF-Filter(〈ai, oi〉0<i≤(t−1),ϕ))).

PROCEDURE NNF-ProgressStep(a,ϕ)
a is an action. ϕ is a belief-state formula. r1, ..., rl, rm+1 as in
Section 4 for a.

1. If ϕ is a literal, then

(a) Set ϕ′ = TRUE.
(b) While there is a set i1, ..., iu ∈ {1, ..., l, m+1}∪C(ϕ)

that has not been tried already or subsumed by a kept
combination, do
• If ϕ |=

∨
f≤u

Gif
, then set ϕ′ ← ϕ′ ∧ F where F

is an NNF form of
∨

f≤u
Fif

.

(c) Return ϕ′.

2. If ϕ = ϕ1 ∨ ϕ2, then return
NNF-ProgressStep(a, ϕ1) ∨ NNF-ProgressStep(a, ϕ2).

3. It must be that ϕ = ϕ1 ∧ ϕ2. Return
NNF-ProgressStep(a, ϕ1) ∧ NNF-ProgressStep(a, ϕ2).

PROCEDURE NNF-FilterStep(o,ϕ)
o is an observation. ϕ is a belief-state formula.

1. Set o′ to be an NNF form of o. Return ϕ ∧ o′.

Figure 1: Filtering an NNF formula.

Corollary 4.2 (NNF Filtering) Let ϕ be a formula in NNF
with h literals and let a be an action with l effect rules whose
preconditions mention t symbols cumulatively. Then, filtering
of ϕ with action a can be approximated safely in time O(h ·
2l · 2t). If D is a permutation domain, then this computation
is exact.

PROOF See Section A.5

4.2 DNF Belief States
A weakness of the NNF filtering above is that it is only an ap-
proximation (albeit a safe one) for domains that are not per-



muting. Another weakness of the result above is that we do
not have a bound on the size of the resulting formula. It may
as well be that the resulting formula has exponential size in
the size of the original belief-state formula. For these reasons
we turn to special cases of NNF, namely, DNF and CNF.

In this section we focus on the case in which ϕ is given to
us in DNF (a disjunction of conjunctions), i.e., ϕ = D1 ∨
. . . ∨ Ds. In this case the computation can be simplified as
follows: For each Di compute the belief state Filter[a](Di)
separately. Then, compute

Filter[a](ϕ) =
∨

i≤s

Filter[a](Di)

This is analogous to case splitting (e.g., in Natural Deduc-
tion [Gentzen, 1969]) and is a valid computation, as stated in
Corollary 3.2.

An action a has an exhaustive set of rules if the precondi-
tions of the rules for a cover all the cases (i.e., for every state
s there is an effect rule for a that is activated in this state).

Corollary 4.3 (Iterating DNF Filtering) Letϕ = D1∨. . .∨
Ds be a belief state formula in DNF and a an action with l
effect rules. Assume that every effectFi is in DNF and that the
total number of disjuncts in F1, ..., Fl is d. Further assume
that every precondition Gi is in CNF with ci ≤ c conjuncts
and that there is a total of t symbols appearing in the Gi’s.
Then, computing the filtering of ϕ with a can be done exactly
in time O(h · 2l · 2t), producing a DNF formula with no more
than 2s ·

(
d

d/2

)
· cl disjuncts.

If a has an exhaustive set of rules, then the resulting DNF
formula has no more than s ·

(
d

d/2

)
· cl disjuncts.

PROOF See Section A.6.

As a conclusion from the last corollary we note that when
the set of rules is exhaustive and there is only a single ac-
tion rule (e.g., the action is always executable with the same
effect) and the action is deterministic, then the number of dis-
juncts in the formula does not grow as the filtering progresses.

Another consequence is that despite results on the hard-
ness of projection in nondeterministic or partially known do-
mains [Liberatore, 1997; Baral, Kreinovich, & Trejo, 2001;
Amir, 2002], simple queries in domains with few actions rules
per action and few disjuncts in the effects of action rules can
be answered efficiently by first performing filtering without
observations (progression) and then using the DNF form of
the result to answer the query, if the initial DNF form is com-
pact.

In some cases, we can say more about the number of dis-
juncts and their form in the result of filtering a DNF formula.
Consider the case when B is a tautology. An example when
this can occur is when every precondition Gi of a rule ri for
action a is equal to some Fj (e.g., this can happen when our
domain is a permutation domain). Our assumption that all ef-
fect rules state an effect for all of Eff(a) serves to guarantee
that L(Gi) ∩ L(Fi) 6= ∅.

When B is a tautology, the result of the filtering is captured
by the first part of formula (4). If we also guarantee that ¬Ḡ
is always provable from ϕ (e.g., when our action rules for

a is exhaustive), then Lemma A.2 guarantees that the DNF
form of the filtering of a disjunct Di with L(Di) ⊆ Eff(a)
includes only disjuncts that are the result of conjoining effects
of a (the Fi’s). We can extend this to any Di by saying that
any disjunct of the resulting DNF from filtering Di includes
only disjuncts that conjoin effects of a with each other and
the part of Di that is not in Eff(a).

From this, if we have only one action (e.g., when we have
a fixed transition model for the system, such as in HMMs),
then filtering ϕ of s disjuncts with an arbitrary number of
executions of a does not put the number of disjuncts in the
resulting DNF over s ·

(
d

d/2

)
when d is as in Corollary 4.3.

In fact, a similar analysis shows that when we do not require
that B is not a tautology or that the effect rules of action a are
exhaustive, then the number of disjuncts in the filtering of an
arbitrary number of executions of a is at most s ·

(
d+c

(d+c/2)

)
,

when d and c are as in Lemma A.2.

4.3 CNF Belief States
The following corollary describes conditions under which fil-
tering can maintain a formula that is in k-CNF, thus keeping
the representation compact.

Corollary 4.4 (Iterating CNF Filtering) Let ϕ = C1 ∧ ...∧
Cs be a k-CNF formula, and let action a have l effect rules
with effects expressed in DNF and a total of t symbols ap-
pearing in the preconditions. Assume that the total number
of disjuncts in all the effects of rules of a is f ≤ k, and the
preconditions of rules of a have CNF form with each rule ri

having a number of conjuncts ci ≤ k − f . If every clause Ci

satisfies one of

1. L(Ci) ⊆ Eff(a) (all literals are possibly affected) or

2. L(Ci) ∩ Eff(a) = ∅ (no literal is modified) or

3. |L(Ci) \ Eff(a)| ≤ k − f − ci (few literals are not
affected),

and one of

1. Ci |= G1 ∨ ... ∨Gl or

2. Ci |= Ḡ (all completion rules are used for Ci),

then filtering of ϕ with action a can be approximated safely
in timeO(s·2l ·2t), producing a k-CNF formula as the result.
If D is a permutation domain, then this computation is exact.

PROOF See Section A.7.

In the last corollary, if we have an exhaustive set of rules
(i.e., the preconditions of the rules for a cover all the cases),
then we can drop the condition on the preconditions of rules
of a (i.e., we no longer require that ci ≤ k−f or that they are
in CNF). In this case it is always true that G1 ∨ ... ∨ Gl is a
tautology, so the second condition on Ci holds immediately.

4.4 Prime-Implicate Belief States
It turns out that not only permutation domains allow filtering
with distribution over conjunctions. Surprisingly, if our be-
lief state is represented as the conjunction of all of its prime
implicates (we call such belief state formulae prime implicate
belief states), then we can distribute the computation to each



of the conjuncts and conjoin the result of filtering each small
subgroup of them separately. This is a direct result of equiv-
alence (2).

Theorem 4.5 (Filtering Prime Implicates: DNF Precond.)
Let ϕ = C1∧ ...∧Cs be a k-CNF formula that is a prime im-
plicate belief state. Let action a have l effect rules with effects
expressed in k-CNF and preconditions expressed in t-DNF
with at most d disjuncts. Then filtering of ϕ with action a can
be computed exactly in time O(2l·|Pre(a)∪Eff(a)| · (sz + z))
for z = tl·d · (l · d+ 1). If |= ¬Ḡ, then the computation takes
O(2l · (sz + z)) time, with z = tl·d.

PROOF See Section A.8

When Ḡ cannot happen (i.e., |= ¬Ḡ), then we have only
tl·d clauses. Also, we can use Gi’s in d-CNF with at most t
clauses in each and get that each Gi1 ∨ ... ∨ Giu

has a rep-
resentation as a conjunction of tl · (dt + 1) clauses, or tl if
|= G1 ∨ ... ∨Gl.

Corollary 4.6 (Filtering Prime Implicates: CNF Precond.)
Let ϕ = C1∧ ...∧Cs be a k-CNF formula that is a prime im-
plicate belief state. Let action a have l effect rules with effects
expressed in k-CNF and preconditions expressed in d-CNF
with at most t clauses. Then filtering of ϕ with action a can
be computed exactly in time O(2l·|Pre(a)∪Eff(a)| · (sz + z))
for z = tl · (dt + 1). If |= ¬Ḡ, then the computation takes
O(2l · (sz + z)) time, with z = tl.

5 Nondeterministic STRIPS Domains
STRIPS domains present a special case of the results that we
discussed above. In such domains every action has a single
rule (no conditional effects) and actions can be executed only
when their preconditions hold. In this section we look at such
domains but relax some of the original STRIPS assumptions.
For example, we allow nondeterministic effects, we represent
both negative and positive information in the belief state (i.e.,
we use an open world STRIPS), and allow the belief state to
be any CNF formula in the fluents of the domain.

More precisely, every action a has exactly two effect rules,
r1, r2. Their preconditions are such that G1 ≡ ¬G2. Also,
F2 ≡ FALSE. Thus, action a can be executed only when
G1 holds. Consequently, when we filter with action a then we
implicitly get the assertion that the preconditions of a held in
the last world state.

The assumption that there is only one rule that determines
a’s effects and otherwise the action is not executed has dra-
matic effects on the filtering of the belief state. For a set of
literals l1, ..., lk we get that

Filter[a](l1 ∨ ... ∨ lk) ≡{
Ta ∃i ≤ k li ∈ L(Eff(a))
Ta ∧

∨
i≤k li l1, ..., lk /∈ L(Eff(a))

(5)
Consequently, we get the following theorem.

Theorem 5.1 (Iterating STRIPS Filtering: CNF) Let D
be a STRIPS domain, ϕ be a k-CNF formula with s clauses
and a an action with effect rule “a causes F1 if G1”. If F1

is in CNF with at most k literals in each clause (or DNF

with at most k disjuncts) and |L(G1) \ L(F1)| ≤ t, for
some t ≤ k, then Filter[a](ϕ) can be approximated safely
in time O(s · k + 2t), yielding a k-CNF formula. If D is a
permutation domain, then this computation is exact.

PROOF See section A.9.

As a consequence of this corollary we get that we can
maintain a compact representation for STRIPS domains that
satisfy the conditions of the corollary. These include a wide
variety of domains. Practically all STRIPS domains used
in planning today exhibit these properties, i.e., actions that
have limited effects and preconditions, relatively speaking.
In particular, when every action has no more than k fluents in
its preconditions, and every effect has no more than k non-
deterministically chosen effects (e.g., all traditional STRIPS
domains are deterministic, thus satisfying this requirement),
then the belief state can be kept in k-CNF, thus having no
more than (2n)k clauses (in fact, no more than

(
n
k

)
· 2k

clauses). If k is small for a certain domain (e.g., up to 4),
then this is an important guarantee on the computational fea-
sibility of performing filtering for this domain.

Theorem 5.2 (Factoring STRIPS filtering: Prime Implicat.)
Let D be a STRIPS domain and let ϕ = C1 ∧ ... ∧ Cs be a
k-CNF formula that is a prime implicate belief state. Let a
an action. Then,

Filter[a](
∧

i≤s

Ci) ≡
∧

i≤s

Filter[a](Ci).

PROOF See Section A.10.

Corollary 5.3 (Iterating STRIPS filtering: Prime Implicat.)
Let D be a STRIPS domain and let ϕ = C1 ∧ ... ∧ Cs be
a k-CNF prime implicate belief state. Let a an action with
effect rule “a causes F1 if G1”. If F1 is a CNF prime
implicate formula with at most k literals in each clause (or
DNF with at most k disjuncts), and |L(G1) \ L(F1)| ≤ t, for
some t ≤ k, then Filter[a](ϕ) can be computed exactly in
time O(s · k + 2t), yielding a k-CNF prime implicate belief
state.

PROOF See Section A.11.

This means that we can filter any prime implicate belief
state in any nondeterministic STRIPS domain, regardless of
whether the domain is permuting or not. This filtering stays
compact, with the size of the largest clause depending only
on the prime implicate representation of the effects and the
number of propositional symbols that are in the preconditions
of an action but not in its effects.

An interesting special case of the last corollary is when
the belief state is represented as a formula in 2-CNF. Every
prime implicate of a formula in 2-CNF is a clause with at
most two literals. Thus, Such knowledge states can be filtered
in appropriate STRIPS domains (not necessarily permuting)
with every action, producing a 2-CNF belief state.



6 Observation Model

7 Conclusions
In this paper we presented the task of logical filtering and
gave it a computational treatment. The results we obtained
here have implications for monitoring and controlling dy-
namic systems. In many cases we present a closed-form com-
putation of the filtering and in others show how to approxi-
mate this computation. In some cases we can guarantee that
the size of the representation of the filtered formula can be
bounded and kept small. In those cases, logical filtering can
be used to control processes that run over very long periods
of time. Examples of such systems are abundant and include
robot motion control, natural language processing, and agents
that explore their world, such as mobile robots, adventure-
game players, Internet crawlers and space crafts.

We made use of several assumptions in this paper in dif-
ferent contexts and with different consequences. We pre-
sented permutation domains and exhaustive action-rule sets
as characteristics of the domain that make filtering easier. We
showed that the commonly used assumption that every action
has a relatively small number of rules (at most polynomial in
n), and that effects, preconditions and terms in the belief state
typically use a small vocabulary, all have a drastic effect on
the computational effort needed for filtering and on the size
of the resulting belief state.

The need to track the state of the world is a basic one, and
many works have appealed to it implicitly in the past. How-
ever, the computational treatment of such tracking has been
avoided so far, partially due to the absence of a developed
theory of nondeterministic domains, and partially due to neg-
ative results about the general cases of this task. Nonethe-
less, this problem and methods for its solution have received
much attention in control theory. The results we obtained here
promise to find their application in this domain and may be
combined with stochastic filtering techniques.

A Proofs
This section will include all the proof in the submitted version
(currently they are in the body of the paper).

A.1 Proof of Theorem 3.1

PROOF We show that the two sets of world states have the
same elements. We show first that the left-hand side of the
equality is contained in the right-hand side.

Take s′ ∈ Filter[a]({s ∈ S | s satisfies ϕ}). We show that
s′ satisfies Filter[a](ϕ). From Definition 2.1 there is s ∈ S
such that s ∈ {s ∈ S | s satisfies ϕ} such that 〈s, a, s′〉 ∈ R.
In other words, there is s ∈ S such that s satisfies ϕ and
〈s, a, s′〉 ∈ R.

To prove that s′ satisfies Filter[a](ϕ) we need to show
that ϕ ∧

∧
i≤m(ϕ ⇒ Gi) ⇒ F ′

i )). together with the truth
assignment s′ to F ′ is satisfiable. We show that the truth as-
signment s to F satisfies this formula together with the truth
assignment s′ to F ′. It is not satisfying this formula only if
one of the conjuncts (ϕ ⇒ Gi) ⇒ F ′

i or ϕ is falsified. This
cannot be the case for ϕ by our choice of s.

Assume by contradiction that this is the case for some i.
Then, the truth assignments of s, s′ to F ,F ′ sanction that
ϕ ⇒ Gi holds but F ′

i does not. From the way we defined R
(i.e., RD in equation (1)) we can conclude that F (a, s) is true
in s′ and that s′ ∩ I(a, s) = s ∩ I(a, s). However, F (a, s)
is the conjunction of heads of activated rules and I(a, s) is
the set of unaffected fluents. If i ≤ l (i.e., ri is an original
rule), then ϕ ∧ (ϕ ⇒ Gi) implies that Gi holds in s and
the rule ri is activated. Thus, F (a, s) includes Fi, and Fi

is true in s′. This contradicts our assumption that F ′
i does

not hold with the truth assignment s′ to F ′. Thus, there is
no such conjunct in

∧
i≤m(ϕ ⇒ Gi) ⇒ F ′

i )) and the truth
assignment s, s′ to F ,F ′, respectively, satisfies this formula.
From the definition of Filter[a](ϕ) and Craig’s interpolation
theorem for propositional logic (See Theorem A.1) we get
that s′ satisfies Filter[a](ϕ).

For the opposite direction (showing the right-hand side
is contained in the left-hand side), take s′ ∈ S that sat-
isfies Filter[a](ϕ). We show that s′ ∈ Filter[a]({s ∈
S | s satisfies ϕ}). From Craig’s interpolation theorem for
propositional logic we get that there is a truth assignment s
for F such that the truth assignment s, s′ to F ,F ′, respec-
tively, together satisfy ϕ ∧

∧
i≤m(ϕ ⇒ Gi) ⇒ F ′

i )) (other-
wise, there is no such truth assignment, and Filter[a](ϕ) is
not satisfiable; in particular, s′ does not satisfy it). In a man-
ner similar to the first part of this proof (observing the way R
is defined) we can show that R(s, a, s′) and the second part
is done.

A.2 Proof of Corollary 3.2
PROOF We show this theorem for the set-of-states repre-
sentation of belief states, and it will follow for the formula-
based representation.

1. Take a state s′ that satisfies Filter[a](ϕ ∨ ψ).
Then, there is a state s that satisfies ϕ ∨ ψ such that
RD(s, a, s′). Thus, s satisfies one of ϕ or ψ because s
is a complete setting of the fluents. Thus, s′ is in one of
Filter[a](ϕ), Filter[a](ψ). From Theorem 3.1 it follows
that Filter[a](ϕ ∨ ψ) ⇒ Filter[a](ϕ) ∨ Filter[a](ψ).

For the other direction, take s′ that satisfies Filter[a](ϕ)∨
Filter[a](ψ). Then, it satisfies one of Filter[a](ϕ),
Filter[a](ψ). Thus, there is a state s such that RD(s, a, s′)
and s satisfies one of ϕ,ψ. Thus, s satisfies ϕ ∨ ψ and s′

satisfies Filter[a](ϕ ∨ ψ). From Theorem 3.1 it follows that
Filter[a](ϕ ∨ ψ) ⇐ Filter[a](ϕ) ∨ Filter[a](ψ).

2. Take a state s′ that satisfies Filter[a](ϕ ∧ ψ).
Then, there is a state s that satisfies ϕ ∧ ψ such that
RD(s, a, s′). Thus, s satisfies both of ϕ and ψ. Thus,
s′ is in both of Filter[a](ϕ), Filter[a](ψ). We conclude
that every s′ that satisfies Filter[a](ϕ ∧ ψ) also satisfies
Filter[a](ϕ) ∧ Filter[a](ψ). From Theorem 3.1 it follows
that Filter[a](ϕ ∧ ψ) ⇒ Filter[a](ϕ) ∧ Filter[a](ψ).

3. Take s′ that satisfies ¬Filter[a](ϕ) ∧
Filter[a](TRUE). Then, there is no state s such that
RD(s, a, s′) and s satisfies ϕ. Thus, for every state
s such that RD(s, a, s′) s satisfies ¬ϕ. Since s′ sat-
isfies Filter[a](TRUE) there is a state s such that
RD(s, a, s′). Thus, this s satisfies ¬ϕ and s′ satis-



fies Filter[a](¬ϕ). From Theorem 3.1 it follows that
Filter[a](¬ϕ) ⇐ ¬Filter[a](ϕ) ∧ Filter[a](TRUE).

A.3 Proof of Corollary 3.3
PROOF Corollary 3.2 supplies the proof of 1, the “⇒”
direction of 2, and the “⇐” direction of 3. Thus, we are left
to prove the “⇐” direction of 2 and the “⇒” direction of 3.

For “⇐” of 2, let s′ be a world state that satisfies
Filter[a](ϕ) ∧ Filter[a](ψ). Then, it satisfies both of
Filter[a](ϕ), Filter[a](ψ). For Filter[a](ϕ) there is a state
s such that RD(s, a, s′) and s satisfies ϕ. Similarly, for
Filter[a](ψ) there is a state s1 such that RD(s1, a, s

′) and
s1 satisfies ψ. However, since a acts as a one-to-one map-
ping from S to S, there is only one state in S that maps to s′.
Thus, s = s1, and s satisfies ψ. Thus, s satisfies ϕ∧ψ and s′

satisfies Filter[a](ϕ ∧ ψ). From Theorem 3.1 it follows that
|= Filter[a](ϕ ∧ ψ) ⇐ Filter[a](ϕ) ∧ Filter[a](ψ).

For “⇒” of 3, let s′ be a world state that satisfies
Filter[a](¬ϕ). Then, there is a state s that satisfies ¬ϕ
such that RD(s, a, s′). Thus, s does not satisfies ϕ. Since
a acts as a one-to-one mapping from S to S, there is only
one state that maps to s′ after a. Thus, there is no state s1
that satisfies ϕ and for which RD(s1, a, s

′). Thus s′ does not
satisfy Filter[a](ϕ) meaning that it satisfies ¬Filter[a](ϕ).
Clearly, s′ also satisfies Filter[a](TRUE). We get that s′

satisfies ¬Filter[a](ϕ) ∧ Filter[a](TRUE). From Theo-
rem 3.1 it follows that |= Filter[a](¬ϕ) ⇒ ¬Filter[a](ϕ)∧
Filter[a](TRUE).

A.4 Proof of Theorem 4.1
PROOF Let Ψ be the formula on the right-hand side of (4).

Showing that Filter[a](ϕ) |= Ψ : Take Fi1 ∨ ...∨Fiu
that

is implied by formula (4). Then, ϕ |= Gi1 ∨ ... ∨Giu
, by the

same formula. When we look at the definition of filtering of
a formula (Theorem 3.1) we notice that every Gif

, f ≤ u,
appears in this definition or Gif

= Ḡ. The latter belongs to
rm+1, which is the only rule that we use in (4) that is not a
completion rule or an original rule. However, rm+1 follows
from the completion rules in C. Thus, Fi1 ∨ ... ∨ Fiu

follows
from the definition of filtering.

We show that B follows from Filter[a](ϕ). For a rule ri

with i ≤ t, we know that L(Gi) ∩ Eff(a) = ∅. Thus, the
completion rules of a ensure that ¬Gi holds after executing
a if it holds before executing a. However, ¬Gi ∨ Gi is a
tautology (thus, in particular, it follows from ϕ), so we get
that ¬Gi ∨ Fi holds in the result of executing a.

Similarly, for a disjunction of rule preconditions,∨
f≤uGif

the disjunction ¬(
∨

f≤uGif
)∨

∨
f≤uGif

is a tau-
tology. From case analysis and Theorem 3.1 we get that in the
consequence of executing a we know G̃i1,...,iu

∨
∨

f≤u Fif
.

Showing that Ψ |= Filter[a](ϕ) : We use the equiva-
lence stated in formula (2) by showing that every disjunction∨
f ≤ uFif

present in (2) is implied by Ψ.

Take
∨

f≤u Fif
to be a conjunct in (2), and assume that

it is minimal (i.e., no other conjunct includes a strict subset
of Fif

’s). Then, ϕ |=
∨

f≤uGif
. If all rif

, f ≤ u, are
original rules of a (not completion rules) or completion rules
for literals in L(ϕ), then they all appear in (4), and therefore∨

f≤u Fif
appears in (4).

W.l.o.g. assume that we ordered if such that

• rif
, f ≤ t, are original rules for a,

• rif
, t < f ≤ v, are completion rules literals in L(ϕ),

• rif
, v < f ≤ w, are completion rules for literals in

Eff(a) \ L(ϕ), and

• rif
, w < f ≤ u, are completion rules for literals in

Eff(a) \ L(ϕ).

Denote the literals that are the heads of the completion rules
lif

, t < f ≤ u, respectively. If v = u (there are no literals of
the second and third sort), then we are done, by the previous
paragraphs. Thus, assume that v < u.

We show that
∨

f≤u Fif
is implied by Ψ.

ϕ |=
∨

f≤v

Gif
∨

∨

v<f≤w

(lif
∧ Ḡ) ∨

∨

w<f≤u

lif

by the way we sorted Fif
, and the fact that the disjunction∨

f≤u Fif
is one of the conjuncts in (2).

Let ψ =
∨

f≤v Gif
. Then, ϕ |= ψ ∨ (Ḡ ∧

∨
v<f≤w lif

) ∨∨
w<f≤u lif

. From this we get ϕ |= ψ ∨
∨

v<f≤u lif
.

We make use of Craig’s interpolation Theorem:

Theorem A.1 ([Craig, 1957]) Let α, β be sentences such
that α ` β. Then there is a formula γ involving only non-
logical symbols common to both α and β, such that α ` γ
and γ ` β.

We know that L(
∨

v<f≤u lif
) ∩ L(ϕ) = ∅. Craig’s inter-

polation theorem implies that ϕ |= ψ or ψ ∨
∨

v<f≤u lif
is a

tautology. We assumed minimality of
∨

f≤u Fif
in (2), so the

first case cannot be.
Thus, it must be that ψ∨

∨
v<f≤u lif

is a tautology. Placing
the meaning of ψ in this formula we get that

∨
f≤tGif

∨∨
t<f≤u lif

is a tautology. This means that ¬(
∨

f≤tGif
) |=∨

t<f≤u lif
.

We know that ¬(
∨

f≤tGif
)∨

∨
f≤tGif

is a tautology be-
cause a ∨ ¬a is a tautology for every sentence a. We look at
two cases:

Case 1: L(
∨

f≤tGif
) ∩ Eff(a) = ∅ : From this as-

sumption, for every f ≤ t we have ¬Gif
∨ Fif

as a con-
junct in B. For each j ≤ t we get the implied sentence
¬Gij

∨
∨

f≤t Fif
. The conjunction of those sentences for

j ≤ t implies
∧

j≤t(¬Gij
∨

∨
f≤t Fif

) which is equivalent to
¬(

∨
f≤tGif

) ∨
∨

f≤t Fif
.

We already concluded above that ¬(
∨

f≤tGif
) |=∨

t<f≤u lif
, so we get that

∨
t<f≤u lif

∨
∨

f≤t Fif
is logically

entailed by B and we are done (this last formula is exactly∨
f≤u Fif

with some replacement of positions of disjuncts).



Case 2: L(
∨

f≤tGif
) ∩ Eff(a) 6= ∅ : Our earlier con-

clusion ϕ |=
∨

f≤v Gif
∨

∨
v<f≤w(lif

∧ Ḡ) ∨
∨

w<f≤u lif

implies that ϕ |=
∨

f≤v Gif
∨ Ḡ ∨

∨
w<f≤u lif

or ϕ |=∨
f≤v Gif

∨
∨

w<f≤u lif
, depending on whether v < w or

v = w, respectively. For the rest of this proof we write θ for
Ḡ or FALSE, according to whether Ḡ appears in this disjunc-
tion or not, respectively.

Craig’s interpolation theorem implies that either ϕ |=∨
f≤v Gif

∨ θ or
∨

f≤v Gif
∨ θ ∨

∨
w<f≤u lif

is a tautol-
ogy. This is because lif

is not in L(ϕ). We look at these two
cases separately.

We assumed minimality of
∨

f≤u Fif
in (2), so the first

case can be only if w = u (i.e., no literals of the third kind).
Thus, in this case, ϕ |=

∨
f≤v Gif

∨ θ, which is a precondi-
tion for a conjunction in (4). Thus, (4) includes the sentence∨

f≤v Fif
∨ θ in its conjunction.

Now, we know that Ḡ |= ¬(
∨

f≤tGif
) because

{Gif
}f≤t ⊆ {Gi}i≤l. Also, we already concluded that

¬(
∨

f≤tGif
) |=

∨
t<f≤u lif

. We get that
∨

f≤v Fif
∨ Ḡ

logically entails
∨

f≤v Fif
∨

∨
t<f≤u lif

which is equivalent
to

∨
f≤u Fif

. Thus,
∨

f≤v Fif
∨ θ implies

∨
f≤u Fif

, so (4)
implies

∨
f≤u Fif

and we are done with this case.
Finally, the second case is that of

∨
f≤v Gif

∨ θ ∨∨
w<f≤u lif

is a tautology. (Notice that it is possible that we
can conclude a stronger disjunction when v = w, but we ig-
nore this case because a treatment of the weaker case implies
a treatment for this one.)

W.l.o.g. assume that the literals lif
for t < f ≤ v are

ordered such that there is v′ ≤ v with lif
∈ L(Eff(a)) for

all f such that t < f ≤ v′ and lif
∈ L(Eff(a)) for all

f such that v′ < f ≤ v. Then, the formula
∨

f≤v Gif
∨

θ ∨
∨

w<f≤u lif
is equal to

∨
f≤tGif

∨
∨

t<f≤v′(lif
∧ Ḡ) ∨∨

v′<f≤v lif
∨ θ ∨

∨
w<f≤u lif

.

Again, we take θ′ to be either Ḡ or FALSE, if Ḡ ap-
pears in this formula or not, respectively. This implies that∨

f≤tGif
∨

∨
v′<f≤v lif

∨ θ′ ∨
∨

w<f≤u lif
is a tautology.

Consequently, ¬(
∨

f≤tGif
) ∧ ¬θ′ |=

∨
v′<f≤v lif

∨∨
w<f≤u lif

. W.l.o.g., assume that we ordered {Gif
}f≤t

such that there is t′ ≤ t such that L({Gif
}f≤t′)∩Eff(a) =

∅ and ∀f (t′ < f ≤ t ⇒ L(Gif
) ∩ Eff(a) 6= ∅. Then,

we rewrite the last formula into ¬(
∨

t′<f≤tGif
) ∧ ¬θ′ |=∨

f≤t′ Gif
∨

∨
v′<f≤v lif

∨
∨

w<f≤u lif
.

Craig’s interpolation theorem implies that there is a
formula ξ such that ξ ∈ L(Eff(a)) ∩ L(Ḡ) and
¬(

∨
t′<f≤tGif

) ∧ ¬θ′ |= ξ and ξ |=
∨

f≤t′ Gif
∨∨

v′<f≤v lif
∨

∨
w<f≤u lif

.

Let im+1 = m + 1 if θ′ = Ḡ or im+1 = ∅ other-
wise. From the definition of G̃it′+1,...,it,im+1

we get that

G̃it′+1,...,it,im+1
|= ξ.

Thus, the formula G̃it′+1,...,it,im+1
∨ θ′ ∨

∨
t′<f≤t Fif

log-
ically entails

∨
f≤t′ Gif

∨
∨

v′<f≤v lif
∨

∨
w<f≤u lif

∨ θ′ ∨∨
f≤t Fif

. Also, for every f ≤ t′ we have ¬Gif
∨ Fif

in B.

We get that

(
∨

f≤t′ Gif
∨

∨
v′<f≤v lif

∨
∨

w<f≤u lif
∨ θ′ ∨

∨
f≤t Fif

)

∧
∧

f≤t′(¬Gif
∨ Fif

)

entails
∨

v′<f≤v lif
∨

∨
w<f≤u lif

∨ θ′ ∨
∨

f≤t Fif
). If

θ′ = FALSE, then this formula subsumes
∨

f≤u Fif
. On

the other hand, if θ′ = Ḡ, then, the same formula logically
entails

∨
t<f≤u lif

∨
∨

f≤t Fif
) because ¬(

∨
f≤tGif

) |=∨
t<f≤u lif

and Ḡ |= ¬(
∨

f≤tGif
).

Thus, we are done because B includes G̃it′+1,...,it
∨ θ′ ∨∨

t′<f≤t Fif
, so B |=

∨
f≤u Fif

as needed.

A.5 Proof of Corollary 4.2
PROOF We filter each of the literals separately and then
combine the results. This is justified by Corollaries 3.2,3.3,
where we apply distribution for conjunction and disjunction
recursively until we get to single literals.

To filter a literal li in ϕwe need to find the strongest formu-
lae of the formGi1 ∨ ...∨Giu

for i1, ..., iu ∈ {1, ..., l}∪C(li)
that are implied by li. This can be done by enumerating all
disjunctions of this form. There are 2l+2 such combinations
because there are a total of l + 2 rules for every literal (there
is one completion rule relevant for every literal, and we add
rm+1). For every such a disjunction, checking that li implies
it can be done in time 2t by exhaustive enumeration of all
truth assignments on the t symbols comprising the precondi-
tions of a. Finally, computing B can be done in timeO(2l ·2t)
as well.

A.6 Proof of Corollary 4.3
PROOF

Lemma A.2 For a formula ϕ, with L(ϕ) ⊆ Eff(a) and
ϕ |= ¬Ḡ,

Filter[a](ϕ) =
∧

i1, ..., iu ∈ {1, ...l},
ϕ ⇒ Gi1

∨ ... ∨ Giu

(Fi1 ∨ ... ∨ Fiu
)

∧
B

We filter each of the literals separately and then combine
the results using the recursive algorithm presented in Corol-
lary 4.2. However, here we break only disjunctions and leave
the conjunctions untouched.

Every disjunctDi is a conjunction of literals l1∧...∧lu. For
each such conjunction, asserting it and then testing whether
Gi1∨...∨Giu

follows can be done in time 2t. We can compute
the DNF formula by distributing formula 4 over conjunctions.

We are left to prove that there are no more than
(

d+c
(d+c)/2

)
·

s resulting disjuncts in this filtering. We do so by showing
that the filtering of every Di is a DNF with at most

(
d+c

(d+c)/2

)

disjuncts. We divide the proof into three cases.
If L(Di) ∩ Eff(a) = ∅, then the only disjuncts coming

as a result of filtering Di are those coming from the conjunc-
tion of Di and B. The largest number of combinations of
n elements that do not subsume each other (no combination
is a subset of another) is

(
n

n/2

)
. Thus, the DNF form of B



can have at most
(

d
min(d/2,l)

)
· cl disjuncts because there are

at most l choices from the Fi’s in creating disjuncts from B
and there are c disjuncts to choose from in each occurrence
of a ¬Gi (and we have a different Gi in each conjunct of B).
Thus, the total number of disjuncts in the filtering of Di is at
most

(
d

min(d/2,l)

)
· cl.

If L(Di) ⊆ Eff(a), then there are three cases according
to the relationship between Di and Ḡ. If Di |= Ḡ, then the
filtering is Di ∧ B, as above. Thus, in this case, the proof is
done. If Di |= ¬Ḡ, then the filtering is in the form of equa-
tion (4) but with no completion rules involved. In this case,
the second part of B is subsumed by one of the disjunctions in
the first part of equation (4). Thus, we are left with a choice
among the d disjunctions in the Fi’s and then a choice of at
most l elements among the disjuncts of the Gi’s. This leaves
us with at most

(
d

d/2

)
· cl disjuncts in the filtering of Di. Fi-

nally, if Di 6|= Ḡ and Di 6|= ¬Ḡ, then we get that the filtering
of Di is the disjunction of the filtering of Di ∧ Ḡ, Di ∧ ¬Ḡ.
This is Di ∧ B ∨ (4) for some formula of the form (4) that
does not include completion rules. Using the previous cases
we get that there are at most 2

(
d

d/2

)
· cl disjuncts in this case.

In the third case L(Di) ∩ Eff(a), L(Di) \ Eff(a) 6= ∅.
Here, the same argument as in the last paragraph shows that
we have at most 2

(
d

d/2

)
· cl disjuncts in the filtering of Di.

In the case of an exhaustive set of rules we always know
that Di |= ¬Ḡ, so the factor 2 above never applies.

A.7 Proof of Corollary 4.4
PROOF We filter each of the literals separately and then
combine the results using the recursive algorithm presented
in Corollary 4.2.

First, we notice that under the conditions f ≤ k and cj ≤
k − f (cj is the number of conjuncts of rule rj of a) B is in
k-CNF.

Now, for a given clause Ci there are several possible fil-
tering, depending on Ci’s literals and on whether Ci |=
G1 ∨ ... ∨Gl or Ci |= Ḡ.

If L(Ci) ⊆ Eff(a), then the filtering is dependent on
whether Ci |= Ḡ or Ci |= ¬Ḡ (one must be the case by
the Corollary’s assumption). If Ci |= Ḡ, then the filtering is
Ci ∧ B, which is in k-CNF.

If Ci |= ¬Ḡ, we look at the filtering of each of the literals
of the clause separately (using Corollary 3.2). For a literal l
in Ci, l |= ¬Ḡ because l |= Ci. Thus, we have a filtering of
l which is a formula of the form of equation (4), but with no
completion rules used (p ∧ Ḡ is not consistent with l). The
disjunction of those formulae is the filtering of Ci, according
to Corollary 3.2. On the other hand, for every two sub-clauses
c1, c2 of Ci, the disjunctions of clauses from Filter[a](c1)
and Filter[a](c2) is either subsumed by B (which appears in
the filtering ofCi) or is a sub-clause of F1∨...∨Fl. It follows
that filtering of Ci is in k-CNF because B and F1 ∨ ... ∨ Fl

are in k-CNF.
If L(Ci)∩Eff(a) = ∅, then the only conclusion possible

isCi∧B. This is in k-CNF becauseCi and B are both k-CNF.
The same principle of the first two cases applies also in

the case of |L(Ci) \ Eff(a)| ≤ k − f − ci. Take C1
i , C

2
i

to be two subclauses of Ci such that Ci ≡ C1
i ∨ C2

i and
L(C1

i ) ∩ Eff(a) = ∅ and L(C2
i ) ⊆ Eff(a). In this case

the filtering of C1
i is C1

i ∧ B and the filtering of C2
i is of the

form of equation (4). It follows that the size of every clause
in the filtering of Ci is at most f + ci + |L(C1

i )| ≤ k because
|L(C1

i )| = |L(Ci) \ Eff(a)| ≤ k − f − ci and the size of
each clause in the filtering of C2

i is at most f + ci. We get
that this filtering is in k-CNF.

A.8 Proof of Theorem 4.5
PROOF Every element of a disjunction Gi1 ∨ ... ∨ Giu

is
either the precondition of an effect rule, a single literal (com-
pletion rule for literals not in Eff(a)) or a conjunction of a
single literal with Ḡ (completion rule for literals in Eff(a)).
Thus, each such disjunction is equivalent to a conjunction of
(1) Ḡ, (2) a disjunction of a set of literals and (3) a disjunc-
tion of preconditions of effect rules. The latter has at most l ·d
disjuncts each with at most t literals. Taking one literal from
each of those disjunct leads to a representation of the latter
part as a conjunction of tl·d clauses. Ḡ has l · d conjuncts,
each of at most t literals. Enumerating all the clauses that re-
sult from the combination of those parts yields a conjunction
of at most tl·d · (l · d + 1) clauses (we add 1 because if Ḡ
participates, then l ∧ Ḡ ∨ ... breaks into (l ∨ ...) ∧ (Ḡ ∨ ...)).

Now, always if ϕ |= A ∧ B, then ϕ |= A and ϕ |= B.
Thus, if A and B are clauses, then ϕ |= A ∧ B iff there
are prime implicates of ϕ such that one subsumes A and the
other subsumes B. More generally, if Ag , i ≤ z, are clauses,
then ϕ |=

∧
g≤z Ag iff there are z prime implicates of ϕ,

Cj1 , ..., Cjz
such that Cig

|= Ag , for all g ≤ z.
We get that for z being the number of clauses that represent

Gi1 ∨ ... ∨Giu
,

Filter[a](ϕ) =
∧

i1,...,iu≤m, ϕ|=Gi1
∨...∨Giu

(Fi1 ∨ . . . ∨ Fiu
) ≡∧

i1,...,iu≤m,
∧

g≤z Cjg |=
∧

g≤z Ag
(Fi1 ∨ . . . ∨ Fiu

) ≡∧
∃j1,...,jz ;i1,...,iu

∧
g≤z Cjg |=

∨
f≤u Gif

(Fi1 ∨ . . . ∨ Fiu
) ≡∧

j1,...,jz≤s

∧
i1,...,iu≤m

∧
g≤z Cjg |=

∨
f≤u Gif

(Fi1 ∨ . . . ∨ Fiu
) ≡∧

j1,...,jz≤s Filter[a](
∧

g≤z Cjg
)

This shows that every conclusion of Filter[a](ϕ) is a con-
clusion from some z clauses Ci for i ≤ s. Thus, the con-
junction of filtering the conjunction of every z clauses from
ϕ results in a formula equivalent to the filtering of ϕ.

Now, we know that Filter[a](ϕ) includes every clause
Ci that satisfies L(Ci) ∩ Eff(a) = ∅ (follows from
(2)). It follows that we can eliminate from consideration
in

∧
j1,...,jz≤s Cjg

those clauses Ci that satisfy L(Ci) ∩

(Eff(a)∪Pre(a)) = ∅, for Pre(a) =
⋃

i≤l L(Gi), because
every clause that they may imply is subsumed by the clause
Gi1 ∨ ...Giu

= Ci, for Gi1 , ..., Giu
being the set of precondi-

tions of completion rules for literals that appear in Ci. Thus,
theseCi’s can be filtered separately from the rest. Call this set
of indexes I1 (i.e., ∀i ∈ I1 L(Ci)∩(Eff(a)∪Pre(a)) = ∅).

On the other hand, every prime implicate clause that we
choose for the conjunction

∧
j1,...,jz≤s Cjg

determines a set
of literals outside Pre(a) that it can subsume, and that should
be in the disjunction Gi1 ∨ ... ∨ Giu

. We get that every con-
junction of prime implicate clauses determines (uniquely) a



disjunction Gi1 ∨ ... ∨ Giu
that it entails (it may entail a

stronger formula, but the way we match clause sets with these
disjunctions allows us the slack of knowing that if this for-
mula is not the strongest we can entail, then there is another
conjunction that will entail it for us). In particular, let G be
the set of g ≤ z such that L(Cig

) ∩ Pre(a) = ∅. Then,∧
g≤z Cjg

|= Gi1 ∨ ... ∨ Giu
implies that if g ∈ G, then Cig

subsumes Gi1 ∨ ... ∨Giu
. Thus, Filtering Cig

implies some-
thing stronger than the one selected for

∧
g≤z Cjg

|= Gi1 ∨

...∨Giu
. Thus, we can filter allCi’s withL(Ci)∩Pre(a) = ∅

separately from the rest.
We get that we can filter all clauses Ci such that L(Ci) ∩

(Pre(a)∩Eff(a)) = ∅ separately, and consider only clauses
Ci with L(Ci)∩ (Pre(a)∩Eff(a)) 6= ∅ in the second stage
(when we choose z clauses and filter them together).

As above, for every disjunction Gi1 ∨ ... ∨ Giu
entailed

by ϕ there is such a choice of z prime implicate clauses
that entails this disjunction. The choice of those clauses is
unique, as described above. Thus, when we choose a set of
clauses it is enough to ignore the part of those clauses that is
in Pre(a) and use the rest to find the effects that they gen-
erate in Pre(a). In other words, it is enough to iterate over
choices of disjunctions among G1, ..., Gl, Ḡ and the literals
in Pre(a).

Here is the algorithm. For every choice from G1, ..., Gl, Ḡ
and the set of literals in Pre(a) \ Eff(a) find the CNF rep-
resentation of the disjunction of those Gi’s (there are at most
z clauses, as discussed above). For every clause C in this
CNF select nondeterministically a prime implicate clauses Ci

whose restriction to Pre(a) subsumes C. The joint selection
implies the disjunction of those Gi’s and some literals from
Pre(a). Add the proper disjunction Fi1∨...∨Fiu

to the result
of the filtering. Also, if Ḡ is in the set of original Gi’s that
we selected, then let A be the set of literals of Eff(a) that
appear in some Ci. Nondeterministically select a subset of A
and let D be the disjunction of those literals. If the conjunc-
tion of our chosen clauses implies the disjunction ofGi, when
we replace Ḡ with D, then add the disjunction of the original
Fi and D to the filtering. (This takes care of the case that we
prove the disjunction of some effect-rule preconditions and
the preconditions of some Eff(a)-literals completion rules.)

This algorithm has 2l·|Pre(a)∪Eff(a)| possible implications
to check. Each implication involves generating the z-sized
CNF, and every clause may match s subsuming clauses from
ϕ. For each combination of such clauses from ϕ we generate
their implied result in the filtered formula. Thus, the time to
compute all the implied clauses from this filtering algorithm
is O(2l·|Pre(a)∪Eff(a)| · (sz + z)).

For the case of |= ¬Ḡ we know that there is no need to
include Ḡ in the selection algorithm above. Also, we can
omit the second part of the algorithm above. This means that
in this case there are only 2l possible implications to check.
Consequently, the time of the resulting algorithm in this case
is O(2l · (sz + z)).

A.9 Proof of Theorem 5.1

PROOF First, we notice that the following hold in a

STRIPS domain for every action a:

Filter[a](TRUE) ≡ F1 ∧ Cn
Eff(a)(G1).

Let Ta = Filter[a](TRUE). We get that for a literal l,

Filter[a](l) ≡

{
Ta l ∈ L(Eff(a))
Ta ∧ l l /∈ L(Eff(a))

Thus, for a set of literals l1, ..., lk we get that equation (5)
holds.

Thus, the main computation involved in filtering a k-CNF
formula is computing Ta. In turn, the only computation
needed there is finding the k-CNF form of CnEff(a)(G1).
This can be done in time O(2t) and we need to do it only
once per action (in fact, we can do that prior to the compu-
tation of filtering, and speed up the real-time filtering of the
belief state).

Then, we use a simplified version of the algorithm de-
scribed in Figure 1. We break the k-CNF formula into its
clauses, and filter each of them separately using the equiva-
lence above. This is done in time O(k) per clause, thus yield-
ing a total time of O(s · k).

To see that we maintain a k-CNF all is needed is to notice
that each conjunction that results from filtering a clause in
ϕ is a clause in F1 (which has at most k literals) or a clause
with literals in L(Eff(a))∩L(G1) (which has at most t ≤ k
literals). The only other clause that can be in the result of the
filtering is a clause Ci with L(Ci) ∩ Eff(a) = ∅. This Ci

has k literals because ϕ is a k-CNF formula.

A.10 Proof of Theorem 5.2
PROOF From formula (2) and the proof of Theorem 4.5
we already know that clauses Ci with L(Ci) ∩ (Pre(a) ∪
Eff(a)) = ∅ can be filtered separately.

Looking at equivalence (2) and the proof of Theorem 4.5
we see that every disjunction

∧
f≤uGif

is implied by some
conjunction of prime implicate clauses from ϕ such that
L(Ci) ∩ Pre(a) 6= ∅.

However, G1 always holds because this is a STRIPS do-
main. On the other hand, the only disjunctions that are not
subsumed by G1 are those that do not include it, i.e., those
that include literals that do not appear inEff(a) (they belong
to completion rules that do not include ¬Ḡ as a precondition,
i.e., literals in Eff(a)). Thus, each of these disjunctions is a
single clause C. If ϕ |= C, then there is a clause in {Ci}i≤s

such that Ci subsumes C because all the prime implicates of
ϕ are in {Ci}i≤s.

Thus, for some Ci, Filter[a](Ci) will imply the match-
ing clause sanctioned by (2). We get that every result of
Filter[a](

∧
i≤s Ci) is implied by

∧
i≤s Filter[a](Ci), i.e.,

Filter[a](
∧

i≤s Ci) |=
∧

i≤s Filter[a](Ci). Corollary 3.2
provides the opposite direction.

A.11 Proof of Corollary 5.3
PROOF Theorem 5.2 guarantees that we can filter each
of the clauses separately and conjoint the result. However,
from equivalence (5) we know that the filtering of each clause



is equivalent to Filter[a](TRUE) conjoined with either that
clause or TRUE.

First, look at the clauses that are kept from ϕ and those
prime implicates that are given by CnEff(a)(G1). For ev-
ery original clause that is kept for the new belief state (af-
ter filtering with a), either a it is a prime implicate in the
new belief state or it is subsumed by a prime implicate of
CnEff(a)(G1). If it is not subsumed, then it is a prime im-
plicate by definition. If it is subsumed, then the clause that
subsumed it is a prime implicate by definition. A similar situ-
ation holds in the other direction (clauses of CnEff(a)(G1)).
In either case, those clauses that are left are in k-CNF. Since
they are all in L(overlineEff(a)), there is nothing else that
can subsume them (the only other thing we add is F1).

Finally, we look at the prime implicates of F1. They are
in the language L(Eff(a)). For every original clause that
intersects with this language, that clause is not transferred to
the new belief state. Thus, there is no clause that can subsume
any prime implicate of F1. Since every prime implicate of
F1 has at most k literals, the resulting belief state is a prime
implicate belief state that is in k-CNF.
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