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Abstract. Logic and probability theory are two of the most important
branches of mathematics and each has played a significant role in ar-
tificial intelligence (AI) research. Beginning with Leibniz, scholars have
attempted to unify logic and probability. For “classical” AI, based largely
on first-order logic, the purpose of such a unification is to handle uncer-
tainty and facilitate learning from real data; for “modern” AI, based
largely on probability theory, the purpose is to acquire formal languages
with sufficient expressive power to handle complex domains and incor-
porate prior knowledge. This paper provides a brief summary of an in-
vited talk describing efforts in these directions, focusing in particular on
open-universe probability models that allow for uncertainty about the
existence and identity of objects.
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1 Introduction

From its earliest days, AI adopted the idea of declarative system reasoning over
explicitly represented knowledge with a general inference engine. Such systems
require a formal language to express knowledge about the real world; and the
real world has things in it. For this reason, in 1958, McCarthy [16] proposed
first-order logic—the mathematics of objects and relations—as the foundation
for what we now call “classical AI.”

The key benefit of first-order logic is its expressive power, which leads to
concise—and hence easily learnable—models. For example, the rules of chess
occupy 100 pages in first-order logic, 105 pages in propositional logic, and 1038

pages in the language of finite automata. The power comes from separating
predicates from their arguments and quantifying over those arguments: so one
can write rules about On(p, c, x, y, t) (piece p of color c is on square x, y at move
t) without having to fill in each specific value for c, p, x, y, and t.

A second research tradition, sometimes called “modern AI,” developed around
another important property of the real world: pervasive uncertainty about both
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its state and its dynamics. Modern AI is based on probability theory, which pro-
vides principled methods for learning and making predictions from observations.
The key advance underlying modern AI was the development of Bayesian net-
works [22] and the related family of undirected graphical models [6]. Bayes nets
provided a formal language for probability models and enabled rapid advances in
machine learning, vision, natural language understanding, and knowledge-based
systems. The expressive power of Bayes nets is, however, limited. They assume
a fixed set of variables, each of which can take on a value from a fixed range;
thus, they are a propositional formalism, like Boolean circuits. The rules of chess
and of many other domains are beyond them.

What happened next, of course, is that classical AI researchers noticed the
pervasive uncertainty, while modern AI researchers noticed, or remembered, that
the world has things in it. Both traditions arrived at the same place: the world
is uncertain and it has things in it. To deal with this, we have to unify logic and
probability.

But how? Even the meaning of such a goal is unclear. Early attempts by
Leibniz, Bernoulli, De Morgan, Boole, Peirce, Keynes, Carnap, and Gaifman
(surveyed in [8,10]) involved attaching probabilities to logical sentences. This
line of work influenced AI research [9,3,14] but has serious shortcomings as a
vehicle for representing knowledge. An alternative approach, arising from both
branches of AI and from statistics, draws on the compositional semantics of
Bayes nets. Some tools use programming constructs to build very large Beys nets
with repeated structure [7,4,15], while others adopt the syntactic and semantic
devices of logic (composable function symbols, logical variables, quantifiers) to
create declarative, first-order probabilistic languages [5,23,25,12,11].

Despite their successes, these approaches miss an important consequence of
uncertainty in a world of things: there will be uncertainty about what things are
in the world. Real objects seldom wear unique identifiers or preannounce their
existence like the cast of a play. In the case of vision, for example, the existence
of objects must be inferred from raw data (pixels) that contain no explicit object
references at all. If, however, one has a probabilistic model of the ways in which
worlds can be composed of objects and of how objects cause pixel values, then
inference can propose the existence of objects given only pixel values as evidence.
Similar arguments apply to areas such as natural language understanding, web
mining, and computer security.

The difference between knowing all the objects in advance and inferring their
existence and identity from observation corresponds to an important but often
overlooked distinction between closed-universe languages such as SQL and logic
programs and open-universe languages such as full first-order logic.

This distinction is best understood in terms of the possible worlds under each
type of semantics. Figure 1(a) shows a simple example with two constants and
one binary predicate. Notice that first-order logic is an open-universe language:
even though there are two constant symbols, the possible worlds allow for 1, 2, or
indeed arbitrarily many objects. A closed-universe language enforces additional
assumptions that restrict the set of possible worlds:
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Fig. 1. (a) Some of the first-order possible worlds for a language with two constant
symbols, A and B, and one binary predicate. Arrows indicate the interpretation of
each constant symbol and the relations between objects. (b) The analogous figure
under closed-universe semantics.

– The unique names assumption requires that distinct terms must refer to dis-
tinct objects.
– The domain closure assumption requires that there are no objects other than
those named by terms.

These two assumptions mean that every possible world contains the same
objects, which are in one-to-one correspondence with the ground terms of the
language (see Figure 1(b)).1

A formal probability model must specify the probability of every possible
world given the vocabulary (predicates, functions, constants) of the model’s syn-
tactic representation. Obviously, the set of worlds under open-universe semantics
is larger and more heterogeneous, which makes the task of defining open-universe
probability models more challenging. The core part of the talk is concerned
with a first-order, open-universe probabilistic language called Bayesian logic or
BLOG [18,19]. BLOG was developed primarily as the PhD thesis research of
Brian Milch [17]. The key results derived for BLOG are the following:

– Every well-formed BLOG model specifies a well-defined probability distribu-
tion over the possible worlds constructed from the vocabulary of the model.

– There exist Monte Carlo algorithms that provably converge (subject to tech-
nical conditions on the conditional distributions of the model) to the correct
posterior probability for any first-order query for any well-formed BLOG
model [20,1].

1 The difference between open and closed universes can also be illustrated
with a common-sense example. Suppose a system knows just two sentences,
Father(William)=Bill and Father(Junior)=Bill. How many children does Bill
have? Under closed-universe semantics—e.g., in a database system—he has exactly
2; under open-universe semantics, between 1 and ∞.
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The generic algorithms (importance sampling and MCMC applied to a dynam-
ically constructed ground representation) are often too slow for practical use
on large models. Several avenues are being pursued for speeding up inference,
including special-purpose block samplers for variables constrained by determin-
istic relationships [13], static analysis to identify submodels amenable to efficient
inference, lifted inference to avoid grounding by manipulating symbolic distri-
butions over large sets of objects [24,26], and compiler techniques to generate
model-specific inference code.

More than two dozen BLOG models have been developed, covering a wide
variety of standard machine learning models as well as applications including
citation matching [21] and global seismic monitoring for the Comprehensive Nu-
clear Test-Ban Treaty [2].

2 Prospects

These are very early days in the process of unifying logic and probability. We
need much more experience in developing models for a wide range of applica-
tions. Undoubtedly there are new modeling idioms, programming constructs,
and inference algorithms to discover.

The development of Bayes nets in the late 1980s connected machine learning
to statistics and reconnected (modern) AI with vision and language. It is possible
that first-order probabilistic languages, which have both Bayes nets and first-
order logic as special cases, can serve a similar, but more inclusive, unifying
role.
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