RATIONALITY AND INTELLIGENCE

STUART RUSSELL COMPUTER SCIENCE DIVISION UC BERKELEY Joint work with Eric Wefald, Devika Subramanian, Shlomo Zilberstein, Othar Hansson, Andrew Mayer, Gary Ogasawara, Tim Huang, Ron Parr, Keiji Kanazawa, Daphne Koller, Jonathan Tash, Peter Norvig, and Jeff Forbes.

Includes ideas by Eric Horvitz, Michael Fehling, Jack Breese, Michael Bratman, Tom Dean, Martha Pollack, and others.

Outline

- 1. Constructive definitions of Intelligence
- 2. Some silly old definitions
- 3. A silly new definition

Three kinds of AI

Modelling human cognition "Look! My model of humans is accurate!"

Building useful artifacts "Look! PBTS made a small fortune!"

Creating Intelligence "Look! My system is Intelligent!!" "No it isn't!" "Yes it is!" etc.

Why constructive definitions?

Avoid silly arguments, G & T. Need a formal relationship between input/structure/output and Intelligence while avoiding overly narrow definitions that lead to sterile and irrelevant research!

Constructive definitions

Suppose a definition Int is proposed

"Look! My system is Int!"

- 😌 🕱 Is the claim interesting?
- Solution is the claim sometimes true?
- So that research do we do on Int?

Candidates for Int

And the candidates for Best Formal Definition of Intelligence are as follows:

- ♦ Int₁: Perfect rationality
- \Diamond Int₂: Calculative rationality
- \Diamond Int₃: Metalevel rationality
- ♦ Int₄: Bounded optimality

Agents and environments

Agents perceive **O** and act **A** in environment E An agent function $f : O^* \rightarrow A$ specifies an act for any percept sequence

Global measure V(f, E) evaluates f in E

$Int_1 = perfect rationality$

Agent f_{opt} is perfectly rational: f_{opt} = argmax_f V(f, E)
i.e., the best possible behaviour
"Look! My system is perfectly rational!"
⊘ Very interesting claim
⊘ VERY seldom possible
⊘ Research relates global measure to local constraints, e.g., maximizing utility

Machines and programs

Agent is a machine M running a program p This defines an agent function f = Agent(p, M)

$Int_2 = calculative rationality$

The calculative toolbox

The toolbox is almost empty!! Need tools for learning, modelling, deciding, compiling in environments that are (non)deterministic, (partially) observable, discrete/continuous, static/dynamic

Complexity

Calculative rationality describes "in principle" capability

NP/PSPACE-completeness ⇒ trade off decision quality for computation

Int₃: metalevel rationality

Agent(p, M) is metalevelly rational if it controls its computations optimally

"Look! My system is metalevelly rational!"

89 (3) (3)

3

- Very interesting claim
- VERY seldom possible

Research on rational metareasoning

Rational metareasoning

Do the Right Thinking:

- \diamond Computations are actions
- ♦ Cost=time Benefit=better decisions
- \diamond Value \approx benefit minus cost

General agent program:

Repeat until no computation has value > 0: Do the best computation

Do the current best action

Fine-grained metareasoning

Explicit model of effects of computations \Rightarrow selection as well as termination

Compiled into efficient formula for value of computation

Applications in search, games, MDPs show improvement over standard algorithms

Algorithms in AI

Metareasoning replaces clever algorithms!

Int₄: bounded optimality

Agent(p_{opt}, M) is bounded-optimal iff p_{opt} = argmax_pV(Agent(p, M), **E**) i.e., the best program given M.

Look! My system is bounded-optimal!

Very interesting claim

3

Always possible

Research on all sorts of things

Nonlocal constraints!

Translates into nonlocal constraints on action \Rightarrow Optimize over programs, not actions

Similar conclusions reached in other fields:
Economics: Herb Simon and others
Game theory: Prisoners' Dilemma Robert Aumann, Wed. 10.30 a.m.
Philosophy: Dennett's Moral First-Aid Manual
Politics: Toffler's* Creating a New Civilization

Asymptotic bounded optimality

Strict bounded optimality is too fragile

p is asymptotically bounded-optimal (ABO) iff
∃k V(Agent(p, kM), E) ≥ V(Agent(p_{opt}, M), E)
I.e., speeding up M by k compensates
for p's inefficiency

Worst-case ABO and average-case ABO generalize classical complexity

Sequence is ABO for any deadline distribution As good as knowing the deadline in advance!

Metalevel reinforcement learning

Object-level reinforcement learning: learn long-term rewards for actions from short-term rewards

Metalevel reinforcement learning: learn long-term rewards for computations

Criterion for "valid" update rules: convergence to bounded optimality

What next?

Prove convergence to bounded optimality within fixed software architectures

- \diamond Prove dominance between architectures
- \diamond Develop a "grammar" of AI architectures

 \diamond Learning and bounded optimality

Bounded optimal solutions

Conclusions

 Computational limitations
 Brains cause minds
 Tools in, algorithms out (eventually)
 Bounded optimality: Fits intuitive idea of Intelligence A bridge between theory and practice
 Crisis: LAP-FOPLBMLDTHTNPOPMEA