Markovian State and Action Abstractions for MDPs via Hierarchical MCTS

Aijun Bai Siddharth Srivastava Stuart Russell
UC Berkeley United Tech. Research Center UC Berkeley
aijunbai @berkeley.edu srivass @utrc.utc.com russell @cs.berkeley.edu
Abstract concrete state space. However, abstraction results in a non-

State abstraction is an important technique for scal-
ing MDP algorithms. As is well known, however,
it introduces difficulties due to the non-Markovian
nature of state-abstracted models. Whereas prior
approaches rely upon ad hoc fixes for this issue, we
propose instead to view the state-abstracted model
as a POMDP and show that we can thereby take ad-
vantage of state abstraction without sacrificing the
Markov property. We further exploit the hierarchi-
cal structure introduced by state abstraction by ex-
tending the theory of options to a POMDP setting.
In this context we propose a hierarchical Monte
Carlo tree search algorithm and show that it con-
verges to a recursively optimal hierarchical policy.
Both theoretical and empirical results suggest that
abstracting an MDP into a POMDP yields a scal-
able solution approach.

1 Introduction

Markov decision processes (MDPs) provide a rich framework
for planning and learning under uncertainty. In this paper, we
focus on the problem of online planning in MDPs. An online
planning algorithm finds the best action for the current state
by exploring an expectimax search tree starting from the cur-
rent state [Barto et al., 1995; Hansen and Zilberstein, 2001;
Kocsis and Szepesviri, 2006]. Take Monte Carlo tree search
(MCTS) [Browne et al., 2012] as an example. It has been
observed that the performance of MCTS is typically dom-
inated by the effective search depth [Kearns et al., 2002;
Hostetler et al., 2014], which in turn is determined by the
branching factor of the search tree. In MDPs, the branching
factor consists of action branching and stochastic branching.
Action branching depends on the number of available actions;
stochastic branching depends on the number of possible out-
comes for an action. Most online planning algorithms build
search trees in the ground state space; for large problems, the
branching factor leads to poor performance as the feasible
search depth is too small.

State abstraction is an important technique for reducing the
stochastic branching factor by treating a group of states as a
unit [Dearden and Boutilier, 1997; Li et al., 2006]. The space
of abstract states is typically much smaller than the original

Markovian model, because the transition probability of reach-
ing the next abstract state and the reward received by taking
an action within an abstract state depend on the occupancy
probability over concrete states represented by that abstract
state. The occupancy probability depends on the history of all
past actions and abstract states. As an example, in the 3-state
MDP depicted in Figure 1a, an edge represents a determinis-
tic transition that is invoked by executing the labeled action.
If we group states 1 and 2 into an abstract state .S 2, then the
probability of reaching state 3 after taking action a in Sy o
equals the probability of being actually in state 1, which de-
pends exactly on the number of times that the agent has exe-
cuted action b in ground state 1 and action @ in ground state 2
in the past history prior to entering state 3.

Safe state abstraction methods avoid the non-Markovian
problem by ignoring only irrelevant state variables [Diet-
terich, 1999b; Andre and Russell, 2002] or exploiting par-
ticular structure in the transition function (e.g., bisimulation
and homomorphism) [Dearden and Boutilier, 1997; Givan et
al., 2003; Jiang et al., 2014; Anand et al., 2015]. Such meth-
ods result in (near) lossless abstractions but are often inap-
plicable. One popular proposal to resolve this situation is to
introduce an ad hoc weighting function (a.k.a. an aggregation
probability), which functions like an occupancy probability
for each concrete state given the abstract state [Bertsekas,
1995; Singh et al., 1995; Li et al., 2006]. Superficially, this
ensures that the abstract transition and reward functions can
be written in a Markovian way. It is usually assumed that the
weighting function is manually specified and remains con-
stant in computation. We argue that such approaches can-
not be accurate enough to capture the true dynamics of the
abstract system, where the occupancy probability is in fact
non-stationary, depending on the whole history of past ac-
tions and abstract states, or in other words, the policy being
computed/executed!

In this paper, we show that a ground MDP with state ab-
straction turns out to be a POMDP with the original ground
MDP as the underlying MDP and the set of abstract states as
the set of observations. Belief states in the resulting POMDP
replace the otherwise necessary weighting function, with the
advantage that the belief state can be calculated by Bayesian
updating. We show that algorithms such as POMCP can be
naturally extended to do online planning for the ground MDP.

Observing that the set of abstract states introduces automati-
cally a hierarchical structure, we further define temporal tran-
sitions between abstract states as abstract actions by extend-
ing the theory of options [Sutton et al., 1999] to a POMDP
setting, and develop a hierarchical MCTS algorithm that han-
dles Markovian state and action abstractions for MDPs within
a POMDP formulation. Theoretically, we show that the per-
formance loss in terms of action values due to approximation
in state abstraction is bounded by a constant multiple of a
state aggregation error introduced by grouping states with dif-
ferent optimal actions; the resulting algorithm converges to a
recursively optimal hierarchical policy consistent with the in-
put state and action abstractions. Perhaps counterintuitively,
we find that a hierarchical MCTS algorithm solving the ab-
stracted POMDP can outperform ground MCTS by orders of
magnitude.

2 Background

2.1 MDPs and POMDPs

An MDP is a tuple (S, A, T, R,~), where S and A are the
state and action spaces, T'(s|s, a) and R(s, a) are the transi-
tion and reward functions, and ~y is a discount factor [Bell-
man, 1957]. A solution for an MDP is an optimal policy
7 . § — A that maximizes the expected cumulative dis-
counted reward (the value function) for all states. The optimal
value function V'* satisfies the Bellman equation:

V*(s) = max {R(s, a) + vy Z T(5'|5,a)V*(s')} (D

€A
“ s'eS

A partially observable MDP, or POMDP, is a tuple
(S,A,Z,T,R,Q,~), where Z is the observation space
and Q(z|s,a) is the observation function. A sequence
of actions and observations defines a history h =
{ag,z1,a1,22- -+ ,a4_1,2¢}, which determines uniquely a
belief state b with b(s|h) being the probability of being in
state s given h. Let end(h) be the last observation in h and
let B and #H be the set of all belief states and histories re-
spectively. A POMDP can be equivalently transformed into
an MDP defined over the belief space B (or the history space
‘H). The Bellman equation for a POMDP in terms of histories
is as follows:

R(h,a) + Z Pr(z|h, a)V*(haz)} ,
z€Z
2
where R(h,a) =) g R(s,a)b(s|h), Pr(z|h,a) is the
probability of observing z after taking action a at history A,
and haz denotes the history resulting from taking action a at
history h and observing z afterwards.

2.2 Monte Carlo Tree Search

For online planning in (PO)MDPs, the idea of MCTS is to
build a best-first search tree by simulating a tree policy and a
rollout policy to estimate the optimal action values using sam-
pled trajectories. Upper confidence bounds for trees (UCT) is
one of the most popular implementations of MCTS for MDPs
using the UCB action-selection heuristic to guide the tree

ac

V*(h) = maj‘({

(a) A 3-state MDP.

(b) The rooms example.

Figure 1: State abstraction examples.

search [Kocsis and Szepesvari, 2006]. Partially observable
Monte Carlo planning (POMCP) extends UCT to POMDPs
by employing particle filtering and root sampling, where each
simulation starts with a state sampled from the belief state
b(s|h) represented as a set of particles at the root node [Silver
and Veness, 2010].

3 The Approach

3.1 State Abstraction

Consider a ground MDP M = (S, A, T,R,v). Let X =
{x1,x2,---} be a partition on S, and ¢ : S — X be an
abstraction function, such that ¢(s) € X is the abstract state
corresponding to ground state s. As an example, Figure 1b
illustrates a rooms domain, where a robot needs to navigate
from position S to position G. In the figure, black cells repre-
sent walls; all other cells are valid ground states. Cells sharing
the same color correspond to the same abstract state, which
in turn represents a room.

A so-called weighting function w has been introduced in
the literature to ensure that the abstract transition and reward
functions can be written in a Markovian way:

(2 |z,a) = Z Z T(s'|s,a)w(s,z), (3)

w(s)=z p(s')=a

> R(s,a)u(s,z),)

w(s)==

and

where w(s, x) approximates the abstract-state-specific occu-
pancy probability Pr(s|x) of being in ground state s given
that the agent is in abstract state x [Bertsekas, 1995; Li et al.,
2006]. An abstract MDP (X, A, T,,, R,) is then defined on
the abstract space X. Solving this abstract MDP gives a pol-
icy m, : X — A, which can be translated to the ground MDP
M. The problem here is that the true occupancy probability
Pr(s|h), with h being the whole history of past actions and
abstract states, is non-stationary. It cannot reasonably be ap-
proximated as a constant weighting function conditioned only
on abstract state; in fact, it follows a Bayesian update

s> T(s'|s,a) Pr(s|h), (5)

seS

Pr(s'|haz) = nl[z

where 1 is the indicator function and 7 is a normalizing fac-
tor. On the other hand, if we introduce () as a conditional
probability function such that Q(z|s) = 1[z = ¢(s)] for any

x € X and s € S, then the abstract problem turns out to
be a POMDP (S, A, X, T, R,,~) with X and () being the
observation space and the observation function respectively.
We denote the resulting POMDP by POMDP(M,) indicat-
ing that it is created by applying abstraction function ¢ on the
ground MDP M.

From a POMDP perspective, the weighting function ap-
proach actually tries to approximate the belief state b(s|h)
using a constant distribution w(s, z) with end(h) = x, and
finds a memoryless policy 7, as a mapping from observa-
tion space X to action space A. It has been shown that a
memoryless policy for a POMDP can be arbitrarily worse
than an optimal policy for the POMDP, which in turn can
be arbitrarily worse than an optimal policy for the under-
lying MDP [Singh et al., 1994]. Thus, the weighting func-
tion approach is not well motivated from a POMDP point
of view. In contrast, finding directly a near-optimal policy
for POMDP(M, ¢) could be a considerably better choice for
planning with state abstraction over the ground MDP M. Ad-
ditionally, bounded optimality results within the POMDP for-
mulation can also be established given a bounded state ab-
straction.

Exactly solving POMDP(M, ¢) via a dynamic program-
ming method such as value iteration is usually infeasible due
to the continuous nature of the belief space. However, from
an online planning point of view, it can be observed that
the search tree in POMDP(M,) typically has a much lower
branching factor than in the ground MDP M. This makes it
feasible to use approximate, search-based solution techniques
for solving POMDP(M, ¢). More precisely, a search-based
online planning algorithm running in M starting from state
S0 builds an expectimax tree T (sg) with actions as the ex-
pectation nodes and states as the maximization nodes. The
branching factor of 7 (sg) is bounded by | A| B, where B is the
maximal number of possible outcomes for any state—action
pair. A similar expectimax tree 7 (by) with the same actions
as the expectation nodes and belief states as the maximization
nodes can be built by running a search-based online planning
algorithm in POMDP(M,) starting from belief state by with
bo(s) = 1[s = sg]. The branching factor of T (by) is bounded
by | A|B’ where B’ is the maximal number of possible obser-
vations (i.e., abstract states) for any belief-action pair. Gen-
erally, we have |A|B’ < |A|B, if B’ < B which holds for
most abstractions due to the fact that B < |S], B’ < |X]|
and |X| < |S|. Therefore, a search-based online planning
algorithm running in POMDP(}, ¢) resulting from abstrac-
tion could be much more efficient than running directly in the
ground MDP M in terms of exploring the underlying expec-
timax search tree.

In this paper, we employ a POMCP algorithm running
within POMDP(M,) to find an online policy for the ground
MDP with state abstraction, and refer to the resulting al-
gorithm as POMCP(M, ¢). The online policy produced by
POMCP(M, ¢) can be translated naturally to M, given the
fact that when the agent is in ground state s, it can conclude
that the respective belief state satisfies b(s’) = 1[s' = s]
for any s’ € S. Since we are using a Monte Carlo algorithm
to build the search tree, it is not necessary to have explicit
representations of the underlying transition and reward func-

tions for the ground MDP M. Only a generative model as a
simulator of M is needed. Another important advantage with
POMCP(M, ¢) is that it can be extended naturally to prob-
lems with continuous state spaces without significant mod-
ifications, given suitable abstraction functions defined over
continuous states.

3.2 Action Abstraction

The proposed approach of state abstraction, we suggest, typ-
ically results in a search tree with a lower stochastic branch-
ing factor. The complementary approach of action abstraction
(a.k.a. temporal abstraction) can increase the effective search
depth by considering high-level actions composed from many
concrete actions [Parr and Russell, 1998; Sutton ef al., 1999;
Dietterich, 1999a; Barto and Mahadevan, 2003]. A given state
abstraction naturally induces an action abstraction, where ab-
stract actions connect abstract states in a one high-level step.

We extend Sutton’s options framework to a POMDP set-
ting to model abstract actions within POMDP(M, ¢). A tem-
poral transition from an abstract state x € X to one of its
neighbors y € X is considered a named option o,_,,, which
is defined as a tuple (Z,m,). Here, Z is the initiation set
Z ={h | h € H Aend(h) = x} indicating that 0,_,,
is executable only at a history ending with observation z,
m : H — Ais alocal policy for o,_,, defined over and
B is a termination condition with S(h) = 1 if end(h) = vy,
and 5(h) = 0 otherwise. In the rooms domain, for example,
04—, p 1S an option moving the agent from room A to room
B, which is executable only if the agent observes that it is in
room A, and terminates when the agent observes that it is in
room B.

Let O be the set of options consisting of all possible direct
transitions between abstract states. The set O can either be
constructed manually by utilizing the neighboring relation-
ship between abstract states, or learned incrementally from
an empty set by introducing a new option each time a new
abstract-state transition has been observed in a Monte Carlo
simulation process. In this paper, we assume the former case
for convenience, so the set of options is fixed in advance. The
main results can also be extended to the latter case. It is not
necessary to specify the local policy for each option before-
hand. In fact, the proposed algorithm learns the high-level
option-selection policy and the low-level, local option poli-
cies simultaneously via Monte Carlo simulation.

The overall option-selection policy y is defined as a map-
ping from histories to options p : H — O. Let 7, be the
local policy of option o. The hierarchical policy as a set of
policies IT = {u, 7, , To,, - - - } Tepresents a hierarchical so-
lution for POMDP(M,), where p corresponds to the root
task and the 7,5 correspond to its subtasks. Given II, in a hier-
archical control mode, the agent selects an option o = p(hy)
when initiated in a history h;, and follows the option o ac-
cording to 7, until it terminates in h¢4 (K > 1), at which
point a new option u(hi4x) is selected; in a polling con-
trol mode, the agent executes the action suggested by the
current option p(h;) selected by p at history h;, regard-
less of which option is selected at the last timestep. It has
been shown that the polling execution of a hierarchical pol-
icy II yields higher expected value than the hierarchical ex-

Agent (sq : initial state, p : abstraction function,
I, o110ut = ToOlloOut policy)
h<+— o
P(h) < {so}
repeat
T <+ an empty search tree
a < OnlinePlanning (h, T, ¢, L onout)
Execute a and observe abstract state x
h <+ hax
P(h) + ParticleFilter (P(h),a,x)
until termination conditions

Rollout (t: task, s : state, h : history, d : depth,
@ : abstraction function, I,op0ut : Tollout policy)
if d > H or t terminates at h then
| return (0,0, h, s)
else
a < GetPrimitive (Il,,j0ut, t, h)
(s',r") + Simulate (s,a)
x + p(s)
<7J/, n7 hll’ S//> —
Rollout (t,s, hazx,d + 1,0, I, 0u0ut)
r 1 +yr’
return (r,n + 1,h" s")

GetGreedyPrimitive (t: task, h : history)
if ¢ is primitive then
L returnt
else
a* + argmax, Q[t, h, a]
L return GetGreedyPrimitive (a*,h)

GetPrimitive (I : policy, t : task, h : history)
if ¢ is primitive then

L return?
else

| return GetPrimitive (I, (h), h)

OnlinePlanning (h : history, T : search tree,
@ : abstraction function, Il,p0ut : Tollout policy)
repeat

s~ P(h)

Search (root task, s, h,0, T, o, Uroiout)
until resource budgets reached
return GetGreedyPrimitive (root task, h)

Search (t: task, s : state, h : history, d : depth,
T : search tree, ¢ : abstraction function,
Io110ut = Tollout policy)
if ¢ is primitive then
(s',r) ~ Simulate (s,t)
z < ¢(s')
| return (r, 1, htz, s’)
else
if d > H or t terminates at h then
| return (0,0, h, s)
else
if node (t, h) is not in tree T then
Insert node (¢, h) to T
| return Rollout (¢,s,h,d, o, I, o0ut)

else

a™ < argmax, {Q[t7 h,a] +c
(r',n/ 1, ')

Search (a*, s, h,d, T, 0, I, ou0ut)

<7,/I nl/ h// S//> .

Search (ta 8/7 h/> d + TL/, T7 ®, Hrollout)
N[t,h] < N[t,h] +1

Nlt,h,a*] + N[t,h,a*] + 1

r <« + ,yn'r//

Qlt. h.a”] QIt, hya*] + Tluker]
return (r,n’ +n' b, s")

log N[t,h] }
Nlt,h,a]

Figure 2: POMCP(M, ¢, O) — Markovian state and action abstractions for MDPs via hierarchical MCTS.

ecution of the same hierarchical policy [Sutton et al., 1999;
Dietterich, 1999al. In this paper, we develop a hierarchical
MCTS algorithm with state and action abstractions accord-
ing to the value function decomposition as in the hierarchi-
cal control mode, but run the algorithm empirically as in the
polling control mode.

In the hierarchical control mode, let V#(h) be the value
of following p starting from history h, and let Q*(h,0) be
the value of executing option o at history £ and following p
thereafter. Let |h| be the number of action—observation pairs
of history h. It turns out that V*(h) = Q" (h, u(h)), and

Q"(h,0) = V™ (h) + Y A= Pr(n/|h, 0) VI (1),

h'eH
(6
where Pr(h'|h, 0) — the termination distribution of option o
— gives the probability that o terminates at history h’ after
|h'| — |h| timesteps. Here, V™ (h) gives the value of follow-
ing option o starting from history h, which can be further ex-

pressed as V7 (h) = Q™ (h,m,(h)), where Q™ (h, a) gives
the value of executing the primitive action a at history i and
following o thereafter, i.e.

Q™ (h,a) = R(h,a) +~ Y _ Pr(z|h,a)V™ (hax). (7)
zeX

Combining policy evaluation with policy improvement, an
optimal hierarchical policy 11" = {u*, 7} 7} ,---} can
be computed in principle by iteratively applying V*" (h) =
max, Q" (h,0) and V7o (h) = max, Q™ (h,a). The prob-
lem here is that the termination distributions are unknown for
the agent, because complete options with local policies are
not assumed to be provided in advance, and estimating the
termination distribution of an option implies that the local
policy of the option is known. Instead, the agent has to find
near-optimal policies for the root task and its subtasks simul-
taneously. We alleviate this problem by conducting a series
of nested MCTS (namely POMCP) processes over the hier-

archy. A high-level search tree for the root task is built by
running MCTS with options as the macro actions. Each op-
tion builds its own sub-search tree via a nested MCTS pro-
cess. In the search step, when simulating an option, its own
sub-search tree is used to evaluate its (-value. The leaf nodes
of a sub-search tree serve as the next nodes of the high-level
search tree. The simulation inside the sub-search tree is di-
rected by its own tree and rollout policies, which guide the
simulation in accomplishing the subtask corresponding to this
option. It is also possible to design option-specific informa-
tive (rather than purely random) rollout policies for particular
options, which is usually easier than designing an informative
rollout policy for the ground MDP. In the back-propagation
step, (Q-values are updated according to Equations 6 and 7.
This learning-by-simulation process ensures that the local
policies of options as well as their termination distributions
converge simultaneously. Given converged low-level policies
and their termination distributions, the high-level policy con-
verges in the limit as well. The resulting algorithm is de-
noted by POMCP(M, ¢, O) indicating that it is a hierarchical
MCTS algorithm running in POMDP(M,) resulting from
doing state and action abstractions on the ground MDP M
with ¢ as the state abstraction function and O as the set of
abstract actions.

3.3 The Main Algorithm

The main algorithm POMCP(M, ¢, O) is outlined in Figure
2. In the algorithm, the root task, its subtasks (modeled as op-
tions) and primitive actions are considered uniformly as fasks.
For example, a task as a parameter of the Search function
could be either the root task, or one of the options, or one
of the primitive actions. The algorithm builds a search tree
for each task, up to the maximal planning horizon H, in the
space of histories consistent with the hierarchy defined by the
input abstraction function . The belief state corresponding
to a history h is represented as a set of particles, denoted by
P(h), which are updated using a particle filter. In the im-
plementation, we do not need to explicitly maintain i as a
full sequence of actions and observations. Instead, we use a
hash value of h as an index, and update it incrementally, i.e.
hash(haz) = hash_combine(hash(h),a, z).

We now describe the subroutines in more detail. The
GetPrimitive function returns a primitive action at his-
tory node h for task ¢ suggested by a hierarchical policy II.
It recursively finds the right action suggested by the current
task ¢ according to m; € II until it reaches a primitive action.
In particular, the GetGreedyPrimitive function returns
the greedy action at history h for task ¢ suggested by the hier-
archical policy represented by the current search tree and ac-
tion values. The Rollout function uses a hierarchical roll-
out policy II,40u¢ to run a sequence of Monte Carlo simu-
lations in a polling control mode according to the generative
model of the ground MDP which is encoded in the function
Simulate It returns a tuple (r,n, h, s) where r is the sum
of sampled rewards, n is the total number of steps, h is the re-
sulting history and s is the final state which follows the belief
state corresponding to h.

The Search function builds a search tree for each task
in the space of histories constrained by the hierarchy. For a

primitive action, it simply runs a one-step simulation and re-
turns the result encoded in a tuple. For a non-primitive ac-
tion ¢ which could either be the root task or one of its sub-
tasks, it returns the result returned by a Rollout subrou-
tine if the node (¢, h) is not already in the tree, otherwise
it 1) selects a greedy (macro) action a* for task ¢ accord-
ing to the UCB action-selection heuristic, 2) invokes a nested
search process for the selected (macro) action a* with the
same state s, history h and depth d as the input parame-
ters, 3) recursively explores the current search tree starting
from the history A’ and state s’ returned by the search of
a*, and 4) updates estimated ()-values according to Equa-
tion 6 for the root task or Equation 7 for an option. More
precisely, Qroot task, h, a] = Q*(h,a), where p is the high-
level policy represented by the high-level search tree, and a is
an option executable at history h; and Q[t, h, a] = Q™ (h, a),
where ¢ is an option, 7 is the local policy represented by the
nested search tree of ¢, and a is a primitive action

The OnlinePlanning function runs in an anytime fash-
ion. At each iteration, it samples a state s from the belief state
represented as a set of particles corresponding to h, and in-
vokes a hierarchical search process for the root task from his-
tory h and sampled state s by calling Search. It finally re-
turns a greedy primitive action according to the current search
tree and action values. The Agent function is the overall pro-
cedure interacting with the environment in a polling control
mode. It calls OnlinePlanning to select a primitive ac-
tion, executes it, observes the resulting abstract state, and up-
dates particles repeatedly. It is worth noting that in practice
the algorithm can also take advantage of the fact that at the
root node of the search tree the agent actually has access to
the true ground state, in which case the set of particles at the
root node contains only one single state. This does not change
the fact that the algorithm is searching in the space of belief
states due to the way the tree is expanded and the value func-
tions are updated.

4 Theoretical Results
4.1 Optimality Results with State Abstraction

Inspired by the abstraction criteria introduced in [Hostetler et
al., 2014], we define aggregation error as follows

Definition 1. The aggregation error of state abstraction
(X,) for a ground MDP M = (S, A;T,R,~) is e, if
Jda € A, such that for all x € X, ¢(s) = x and d € [0, H],
|Va(s) — Qa(s,a)| < e, where Vg and Qg are the optimal
value and action-value functions at depth d in the search tree
of M, and H is the maximal planning horizon.

A bounded aggregation error requires that the action-value
of a is close to the optimal value for all ground states within
the same abstract state x. Particularly, e = 0 implies that all
ground states within the same abstract state share the same
optimal action. Computing exactly the aggregation error im-
plies solving the entire ground MDP completely which is usu-
ally infeasible, but this doesn’t change the fact that such ag-
gregation error exists and measures the approximation error
introduced by grouping states that have different optimal ac-
tions when doing state abstraction.

Theorem 1. For state abstraction (X,) for a ground
MDP M = (S,A,T,R,v) with aggregation error e, let
so be the current state in the ground MDP M and let
ho with P(hg) {so} be the corresponding history in
POMDP(M,). Let Q*(s,-) and Q*(h,-) be the optimal
action values of M and POMDP(M, p) respectively. Let
a* = argmax,c 4 Q*(ho,a) be the optimal primitive action
found in POMDP(M, @) at history hg, and define an action-
value error as E(a*) = |maxq,ea Q*(s0,a) — Q*(s0,a")|.
Suppose the maximal planning horizon is H, then E(a) is

bounded by E(a*) < 2He if vy =1, else E(a*) < 271 7 e.

Proof. Consider the search trees of M and POMDP(M, ¢).
We define a specific action-value error for history h and ac-
tion a at depth d in the search tree of POMDP()M,) to be:

> b(s|h)Qa(s, a)

ses

Eq(h,a) = |tha ®)

where Q4(s, -) and Q4(h, -) are optimal action values at depth
d in the search trees of M and POMDP(M,) respectively.
By applying Bellman equations, we have

Ea(h,a) =~ > Pr(h'|h,a)Va ()

h'eH

=3 b(sl) 3 T s, a) Vi ()

ses s'esS

=7 Z Pr(h/|h, a) Vg (R')

h'eH
= Vara () D b(s|h)T(s

s’es ses

(€))

|s,a)l.

Noticing that
(8'|h, a) ZT (s'|s,a)
ses h'eH

it follows that

Ea(h,a) =~ | > Pr(h'|h,a)Va1 (1)

h'eH

— > Pr(W|h,a Z b(s'|h)WVay1(s)

h'eH s’'e

< Z Pr(h/|h, a)

h'eH

= > (s W) Van(s)]

s'eS

Va1 (')

(10)

by applying the triangle inequality. On the other hand, since

Va(h) —max > b(s|h)Qal(s, a)

<
max Ed(h, CL)7 (1)
seS

= > b(s/|) Pr(l'|h, a),

and
|maxz s|h)Qa(s, a) Zb(5|h)Vd(s)
seS seS
< Zb slh)| Qa(s,a) — Vy(s)| <, (12)
SES
we have
- Z b(s|h)Vy(s)| < max Eg4(h,a) +e. (13)
ses acA
Therefore,

Eq(h,a) [Z Pr(W|h, a)maxEdH(h a)+e
h'eH

<~ [max FEg.(h,ad")+ 6} , (14)

h'eH,a’€A

forallh € Handa € A.Let E(d)
We get E(d) < ~[E(d+ 1) +

= maxpen,aca Ea(h, a).
e]. At terminal nodes, both

Qu(h,) and Qp(s,-) equal 0, so E(H) = 0. Therefore,
E(d) < (H — d)e if v = 1, otherwise E(d) < v'51""e.
At the root node, let a* = argmax, Qo(ho, a), and b =
argmax,c 4 Qo(so,a*). If a* = b*, E(a*) = 0; other-
wise, we must have Qg (ho,a*) > Qo(ho7 *). Noticing that

P(ho) = {50} since |Qo(80> *) — Qolho,b*)| < E(0)
and |Qo(507 *) — Qo(ho,)| < E(0), we get E(a*) =
|Qo(s0,b*) — Qo(s0,a")| < 2E(0). O

4.2 Convergence Results with Action Abstraction

Theorem 2. With probability 1, POMCP(M,p,O) con-
verges to a recursively optimal hierarchical policy for
POMDP(M,) over the hierarchy defined by the input state
and action abstractions.

Proof. (Sketch) For a particular option, POMCP(M, ¢, O)
finds the optimal policy with probability 1 following the
convergence results of POMCP in the limit. Given the fact
that, when an option converges, its termination distribution
also converges, the root task reduces to a stationary semi-
Markov Decision Process (SMDP) defined over the belief
space. POMCP(M, ¢, O) thus finds the optimal policy in the
limit for the root task within the converged SMDP by extend-
ing the convergence results of POMCP to SMDPs. Since the
high-level policy is optimal given optimal low-level policies,
POMCP(M, ¢, O) converges to a recursively optimal hierar-
chical policy. O

S Experiments

5.1 Rooms Domain

The ROOMS|[m, n, k] problem simulates a robot navigating
in a m x n grid map containing k rooms, as depicted in Figure
1b. The 8 primitive actions are E, SE, S, SW, W, NW, N and
NE. Each action has a probability 0.2 of mistake, in which
case a random action is executed instead. If any movement is

—15

—15

10 ~10
T ey — T g

—15 = ""7 = —20 T ~15 7 = —20 = 7

-2 z L -2 et -2 . A - -2 e ﬁ‘/

2 925 faw.s 2 30 / V 2 925 L7 2 30 / /

g i g b 4 g / g x

£ 30 1 £ 35 A £ 30 {1 & -3 /

% -35 / 4 % —40 f % -35 % —40 /

S a0 | / ucT 1 ¢ -wt ucT S a0 | ucT 1 ¢ -wt ucT

2 . ucT, 2 ol ucT, 2 . ucr, RN ucr,
—45 POMCP (M,) —e— | 50 pre-e-s POMCP (M,) —e— | —45 - POMCP (M,) —e— | 50 e POMCP (M,) —e— |
50 b s POMCP (M, 5,0) —e— | 55 L POMCP(M, ,0) —e—1 | 50 bee T POMCP(M, 9, 0) —e— | 5L POMCP(M, ,0) —e—1 |

smart-POMCP(M, 5, 0) — w0 | smart-POMCP(M, 5, 0) +— _ smart-POMCP(M, 5, 0) +— a0 _ smart-POMCP(M, 5, 0) +—

—55 . . ! -6 —55 —6

110 100 1000 10000 100000 let06 110 100 1000 10000 100000 let06 110 100 1000 10000 100000 let06 110 100 1000 10000 100000 let06
Simulations Simulations Simulations Simulations
(a) ROOMS[17,17,4] (b) ROOMS|25, 13, 8] (c) C-ROOMSI17,17,4] (d) C-ROOMS|[25, 13, 8]
—10 T T —15 -10 ; —15 ;
M et R - et
~15 & = —20 v ~15 S, < A ~20 - /i? J
L 20 L -2 L 20 L -2 »
2 g5 2 30 L/ 2 g5 / /{l 2 30
£ . / £ 7 £
T T . T / T i
g —35 g —40 g —35 i g —40
g a0 f g L g -0 g 6L _ ueT
2 st 2 50 + 2 POM B 50 |[erassale PO
50 L _55 T — POMCP! 55 POMCP(M, ¢, 0) ——
N _ smart-POMCP _ smart-POMCP(M, &, 0)

—60 . it
1-:050.00010.001 0.01 0.1 1 10 100 1000

Time Per Action (s)

(f) ROOMS[25, 13, 8]

100

Time Per Action (s)

(e) ROOMSJ[17, 17, 4]

—60
0.0001 0.001 001 01 1 10
Time Per Action (s)

(h) C-ROOMS|25, 13, 8]

—55
0.0001 0.001 001 0.1
Time Per Action (s)

(2) C-ROOMSJ[17, 17, 4]

100

Figure 3: Empirical results on the rooms and continuous rooms domains.

going to collide with the wall, the agent stays at its current po-
sition. Each primitive action has a reward of -1. Moving into
the goal has a reward of 10. In the ground MDP, the stochastic
branching factor for an action is up to 8. With state abstrac-
tion by assuming a room as an abstract state, the stochastic
branching factor for an action reduces to 2. An option is de-
fined as a transition from a room to one of its neighbors. The
discount factor is 7y = 0.98. The maximal planning horizon
is determined as H = 1og7 €, where ¢ is set to be 0.001. Fig-
ures 3a, 3e, 3b and 3f with z axis in log scale show the results
of running UCT, UCT,,, POMCP(M, ¢), POMCP(M, ¢, O)
and smart-POMCP(M, ¢, O) in ROOMS[17,17,4] and
ROOMS|[25, 13, 8] problems, where UCT runs directly in
the ground state space, UCT, is a UCT algorithm run-
ning entirely in the abstract state space, POMCP(M,)
is a POMCP algorithm running on POMDP(M, ¢) re-
sulting from doing state abstraction on the ground
MDP M, POMCP(M, ¢, O) is the proposed hierarchi-
cal MCTS algorithm running on POMDP(M,), and
smart-POMCP(M, p, O) is a POMCP(M, ¢, O) algorithm
equipped with hand-coded informative rollout policies for op-
tions. UCT, UCT,, POMCP(M, ¢) and POMCP(M, ¢, O)
are all developed with purely random rollout policies. The
performance is evaluated using averaged discounted return in
terms of the number of simulations and the averaged compu-
tation time per action. Each data point is averaged over 100
runs (or up to 2 hours of total computation time) in terms of
the number of simulations and the averaged computation time
per action. It can be seen from the results that POMCP(M,)
outperforms UCT or has at least the same performance, indi-
cating that modeling a ground MDP with state abstraction as a
POMDP and solving the POMDP via approximated, search-
base online planning algorithms is feasible. UCT,, uses the
empirical distributions of Pr(s|z) to approximate w(s, x) and
finds a memoryless policy as a mapping from abstract states

to actions following the weighting function approach. It has
easily the worst performance in all cases, confirming that
finding memoryless policies might not be the right way to do
state abstractions since too much information on the abstract
level is ignored. The main algorithm — POMCP(M, ¢, O) —
outperforms UCT by orders of magnitude. POMCP(M, ¢, O)
also outperforms POMCP(MM, ¢) substantially suggesting
that exploiting the hierarchical structure introduced by do-
ing state abstraction contributes the main improvement. With
the help of an option-specific rollout policy which is de-
signed to near-optimally move to the intersection area of
two connected rooms, smart-POMCP(M, ¢, O) improves on
POMCP(M, ¢, O) significantly. The possibility of introduc-
ing option-specific rollout policies can also be considered as
an advantage of POMCP(M, ¢, O).

5.2 Continuous Rooms Domain

We further extend ROOMS[m, n, k] into a continuous state
space and propose a C-ROOMS[m,n, k] problem, where
each cell has a size of 1 (m?). The position of the agent is
represented using continuous (z,y) coordinates. A primitive
action moves the agent by a distance of 1 (m) in expecta-
tion, augmented with a Gaussian error. The agent finishes
this task if the distance to the goal is within 0.5 (m). UCT in
such continuous domains reduces to a depth-1 search which
can be seen as a single step of policy improvement over the
rollout policy. To run POMCP(M, ¢) and POMCP(M, p, O)
algorithms in this domain, we need only provide the ap-
propriate observation function defined over the continuous
state space. Figures 3c, 3g, 3d and 3h show the results
of running UCT, UCT,,, POMCP(M, ¢), POMCP(M, ¢, O)
and smart-POMCP(M, ¢, O) in C-ROOMSJ[17,17, 4] and C-
ROOMS[25, 13, 8] problems, confirming that POMCP(M, ¢)
and POMCP(M, ¢, O) algorithms have the ability to run in
continuous domains without significant modifications. Simi-

lar trends can be seen in the results. It is also interesting to
see that although UCT has reduced to a depth-1 search in this
continuous domain, it still has rather good performance. This
might be because the value function of a random policy in
this domain provides a good heuristic, thus a greedy policy
over this heuristic can work well.

6 Related Work

Hostetler et al. (2014) analyzed state aggregation in MDPs
following the weighting function approach. They established
a performance loss bound in terms of a state abstraction er-
ror and a weighting function error. Our method has removed
the weighting function error since the POMDP formulation
guarantees that the optimal weighting function will always
be used in the algorithm. Vien and Toussaint (2014) devel-
oped a similar hierarchical MCTS framework for MDPs and
POMDPs according to the theory of MAXQ value function
decomposition. The original MAXQ decomposition is not
completely applicable to exploit the hierarchical structure de-
fined by abstract states. A MAXQ subtask is designed to be
specified with a termination predicate which partitions the
(belief) state space into a set of active (belief) states and a set
of terminal (belief) states [Dietterich, 1999a]. Using MAXQ
subtasks to model temporal transitions between abstract states
as abstract actions results inevitability in a set of overlapping
subtasks, in which case we have also to introduce a pseudo-
reward function for each subtask. Taking the rooms domain
as an example, let x — y be the subtask of moving from room
z to room y. If we treat histories ending with x as the set of
active belief states, then histories not ending with = have to
be the respective terminal belief states, in which case sup-
posedly different abstract actions A — B and A — C' actu-
ally have the same termination condition, which leads them to
have the same learned policy. One way to avoid this problem
is to introduce a pseudo-reward function within each subtask
to encourage the subtask to move to the abstract goal state
by additionally collecting a pseudo-reward, e.g. r(h) = 1
if end(h) = y, otherwise r(h) = 0. On the other hand, if
we treat histories ending with y as the set of terminal belief
states, then histories not ending with y have to be the respec-
tive active belief states, in which case abstract actions A — B
and D — B have the same active belief states such that they
are executable in the same set of belief states, which is not
desirable either. The options theory used in this paper does
not have this overlapping-subtask problem thanks to the con-
cepts of termination condition and initiation set, which can
be seen as an extension of the MAXQ termination predicate.
Bai er al. (2012; 2015) also developed a hierarchical online
planning algorithm for MDPs (namely MAXQ-OP) based on
MAXAQ value function decomposition. Their method needs to
estimate the termination distribution for each subtask in order
to evaluate the completion function recursively in a dynamic
programming way. In this paper, the high-level and low-level
policies are learned simultaneously via a hierarchical MCTS
approach, without the need to estimate the termination distri-
butions in advance.

7 Conclusion

In this paper, we propose state- and action-abstracted MDPs
can be viewed as POMDPs. We bound the performance
loss induced by the abstraction and we describe a hierarchi-
cal MCTS algorithm for approximately solving the abstract
POMDP. The algorithm converges to a recursively optimal hi-
erarchical policy for the ground MDP consistent with the in-
put state and action abstractions. Empirical results show that
the proposed approach improves ground MCTS by orders of
magnitude. In future work, we plan to extend this approach
to reinforcement learning algorithms with features (such as
those introduced by various state-space function approxima-
tors). The non-Markovianess introduced by features can be
overcome by using a POMDP formulation; the hierarchical
structure in the feature space can be exploited by using a sim-
ilar hierarchical MCTS approach as presented in this paper.

Acknowledgments

Funding for this research was provided by ONR under con-
tract NO0014-12-1-0609, by DARPA under contract N66001-
15-2-4048, and by the United Technologies Research Center.
Opinions, findings, and conclusion or recommendations ex-
pressed in this material are those of the authors and do not
necessarily reflect the view of the funding agencies. The au-
thors would also like to thank Richard Doan and the anony-
mous reviewers for their valuable comments and suggestions.

References

[Anand er al., 2015] Ankit Anand, Aditya Grover, Mausam
Mausam, and Parag Singla. ASAP-UCT: abstraction of
state-action pairs in UCT. In Proceedings of the 24th
International Conference on Artificial Intelligence, pages
1509-1515, 2015.

[Andre and Russell, 2002] David Andre and Stuart J. Rus-
sell. State abstraction for programmable reinforcement
learning agents. In Proceedings of the 8th National Con-
ference on Artificial Intelligence and 14th Conference on

Innovative Applications of Artificial Intelligence, pages
119-125, 2002.

[Bai er al., 2012] Aijun Bai, Feng Wu, and Xiaoping Chen.
Online planning for large MDPs with MAXQ decompo-
sition. In Proceedings of the 11th International Confer-

ence on Autonomous Agents and Multiagent Systems, June
2012.

[Bai et al., 2015] Aijun Bai, Feng Wu, and Xiaoping Chen.
Online planning for large Markov decision processes with
hierarchical decomposition. ACM Transactions on Intelli-
gent Systems and Technology, 6(4):45, 2015.

[Barto and Mahadevan, 2003] A.G. Barto and S. Mahade-
van. Recent advances in hierarchical reinforcement learn-
ing. Discrete Event Dynamic Systems, 13:341-379, 2003.

[Barto et al., 1995] A.G. Barto, S.J. Bradtke, and S.P. Singh.
Learning to act using real-time dynamic programming. Ar-
tificial Intelligence, 72(1-2):81-138, 1995.

[Bellman, 1957] Richard Bellman. Dynamic Programming.
Princeton University Press, Princeton, NJ, USA, 1957.

[Bertsekas, 1995] Dimitri P Bertsekas. Dynamic program-
ming and optimal control, volume 1. Athena Scientific
Belmont, MA, 1995.

[Browne et al., 2012] Cameron B Browne, Edward Pow-
ley, Daniel Whitehouse, Simon M Lucas, Peter I Cowl-
ing, Philipp Rohlfshagen, Stephen Tavener, Diego Perez,
Spyridon Samothrakis, and Simon Colton. A survey of
Monte Carlo tree search methods. IEEE Trans. on Com-
putational Intelligence and Al in Games, 4:1-43, 2012.

[Dearden and Boutilier, 1997] Richard Dearden and Craig
Boutilier. Abstraction and approximate decision-theoretic
planning. Artificial Intelligence, 89(1):219-283, 1997.

[Dietterich, 1999a] Thomas G Dietterich. Hierarchical re-
inforcement learning with the MAXQ value function de-
composition. Journal of Machine Learning Research,
13(1):63, May 1999.

[Dietterich, 1999b] Thomas G. Dietterich. State abstraction
in MAXQ hierarchical reinforcement learning. Advances

in Neural Information Processing Systems, pages 994—
1000, 1999.

[Givan et al., 2003] Robert Givan, Thomas Dean, and
Matthew Greig. Equivalence notions and model min-
imization in Markov decision processes. Artificial
Intelligence, 147(1):163-223, 2003.

[Hansen and Zilberstein, 2001] E.A. Hansen and S. Zilber-
stein. LAO*: A heuristic search algorithm that finds solu-
tions with loops. Artificial Intelligence, (1-2):35-62, 2001.

[Hostetler et al., 2014] Jesse Hostetler, Alan Fern, and Tom
Dietterich. State aggregation in Monte Carlo tree search.
In Proceedings of 28th AAAI Conference on Artificial In-
telligence, 2014.

[Jiang et al., 2014] Nan Jiang, Satinder Singh, and Richard
Lewis. Improving UCT planning via approximate homo-
morphisms. In Proceedings of the 2014 International Con-
ference on Autonomous Agents and Multi-Agent Systems,
pages 1289-1296, 2014.

[Kearns et al., 2002] Michael Kearns, Yishay Mansour, and
Andrew Y. Ng. A sparse sampling algorithm for near op-

timal planning in large Markov Decision Processes. Ma-
chine Learning, 49(2-3):193-208, 2002.

[Kocsis and Szepesviri, 2006] L. Kocsis and C. Szepesvari.
Bandit based Monte-Carlo planning. In European Confer-
ence on Machine Learning, pages 282-293, 2006.

[Li er al., 2006] Lihong Li, Thomas J Walsh, and Michael L
Littman. Towards a unified theory of state abstraction for
MDPs. In Proceedings of the International Symposium on
Artificial Intelligence and Mathematics, 2006.

[Parr and Russell, 1998] Ronald Parr and Stuart Russell. Re-
inforcement learning with hierarchies of machines. In
Advances in Neural Information Processing Systems, vol-
ume 10, 1998.

[Silver and Veness, 2010] D. Silver and J. Veness. Monte-
Carlo planning in large POMDPs. In Advances in Neural
Information Processing Systems, pages 2164-2172, 2010.

[Singh er al., 1994] Satinder P. Singh, Tommi Jaakkola, and
Michael 1. Jordan. Learning without state-estimation in
partially observable Markovian decision processes. In Pro-

ceedings of the 11th International Conference on Machine
Learning, pages 284-292, 1994.

[Singh er al., 1995] Satinder P Singh, Tommi Jaakkola, and
Michael I Jordan. Reinforcement learning with soft state
aggregation. Advances in Neural Information Processing
Systems, pages 361-368, 1995.

[Sutton et al., 1999] R.S. Sutton, D. Precup, and S. Singh.
Between MDPs and semi-MDPs: A framework for tem-
poral abstraction in reinforcement learning. Artificial In-
telligence, 112(1):181-211, 1999.

[Vien and Toussaint, 2014] Ngo Anh Vien and Marc Tous-
saint. Hierarchical Monte-Carlo planning. In Proceedings
of the 29th AAAI Conference on Artificial, 2014.

