Appearsin Proceedings of 18th Int’l Joint Conference on Atrtificial Intelligence (IJCAI *03).

Logical Filtering

Eyal Amir and Stuart Russell

Computer Science Division, University of California at Berkeley
Berkeley, CA 94720-1776, USA
{eyal,russell } @cs.berkeley.edu

Abstract

Filtering denotes any method whereby an agent up-
dates its belief state—its knowledge of the state of
the world—from a sequence of actions and obser-
vations. In logical filtering, the belief state is a log-
ical formula describing possible world states and
the agent has a (possibly nondeterministic) logi-
cal model of its environment and sensors. This
paper presents efficient logical filtering algorithms
that maintain a compact belief state representa-
tion indefinitely, for a broad range of environment
classes including nondeterministic, partially ob-
servable STRIPS environments and environments
in which actions permute the state space. Efficient
filtering is also possible when the belief state is rep-
resented using prime implicates, or when it is ap-
proximated by a logically weaker formula.

1 Introduction

Any agent operating in a partially observable environment
must perform computations that distinguish among the a pri-
ori possible current states of the world on the basis of past ob-
servations and actions. These computations may operate di-
rectly on a representation of the action—observation sequence
(e.g., [Winslett, 1990; Kautz et al., 1996]); they may reduce
queries about the current state to queries about the initial state
(e.g., [Reiter, 2001]); or, they may update the belief state (the
agent’s knowledge about the state of the world) after each ac-
tion and observation. This latter approach, called filtering or
recursive state estimation in the control theory literature, is
particularly useful with unbounded sequences of actions and
observations.

The main computational difficulties are 1) the time needed
to update the belief state, and 2) the space required to repre-
sent it. These depend on the nature of the transition model,
which describes how the environment evolves over time, the
observation model, which describes the way in which the en-
vironment generates observations, and the family of repre-
sentations used to denote belief states. Early work, begin-
ning with Gauss, assumed stochastic models. For example,
the Kalman filter [Kalman, 1960] is a ubiquitous device that
maintains a multivariate Gaussian belief state over n vari-
ables, assuming linear-Gaussian transition and observation

model. Crucially, the O(n?) update cost and the O(n?) space
requirement do not depend on the length of the observation
sequence; hence, a Kalman filter can run indefinitely. In this
paper, we are interested in developing analogous results in the
context of logical representations.

We adopt a simple logical language (Section 2) for describ-
ing the transition and observation models; the observations
and the belief state itself are also logical formulae. The ini-
tial state may be only partially known; the transition model,
which allows for actions by the agent itself, may be nondeter-
ministic; and the observation model may be nondeterministic
and partial, in the sense that the agent may not be able to
observe the actual state.

Even when we restrict ourselves to propositional logic, it
is clear that the general filtering problem is nontrivial (we
prove it is computationally hard), because there are exponen-
tially many possible states. We identify several classes of
models that allow efficient filtering with respect to the belief-
state representation size. Our primary method is based on
decomposition theorems showing that 1) filtering distributes
over disjunction in the belief state formula, and 2) filtering
distributes over conjunction and negation if the actions are
permutations of the state space. Such actions serve as one-to-
one mappings between states, for those states in which they
can be applied. We obtain efficient, exact algorithms for DNF
belief states and for NNF (Negation Normal Form - all nega-
tions are in front of atoms) and CNF belief states with per-
muting actions. In other cases, we obtain efficient algorithms
for approximate filtering.

In another class of dynamic systems, we can filter effi-
ciently if the belief state is represented in CNF that includes
all its prime implicates. Finally, we show that STRIPS mod-
els (possibly with nondeterministic effects of actions) also ad-
mit efficient filtering. The STRIPS assumption, that every
action has no conditional effects and that an effect’s precon-
ditions are the preconditions for the action’s execution, is key
to this efficiency.

With respect to maintaining a compact representation, we
show that properties similar to those mentioned above allow
us to filter k-CNF formulae (CNF with clauses of at most &
literals, when £ is fixed) such that the result is represented in
k-CNF (for the same fixed k). Thus, the belief state is main-
tained in O(n*) space indefinitely. In particular, we show
mild conditions under which a compact belief state can be

maintained in nondeterministic STRIPS domains and in per-
mutation domains. Finally, we show that DNF belief states
remain compact if the effects of actions are deterministic and
guaranteed to hold. These results are the first analogues, in
the logical arena, of the desirable properties possessed by
Kalman filters for continuous variables.

Ours is by no means the first work on filtering in a logical
context. Early on, it was pointed out that filtering is easy
for deterministic systems with a known initial state [Fikes et
al., 1972; Lin and Reiter, 1997]. Filtering in nondeterministic
domains is more difficult. In particular, the related problem of
temporal projection is coNP-hard when the initial state is not
fully known, or when actions have nondeterministic effects
[Liberatore, 1997] (see also Section 3.3).

Traditionally, computational approaches for filtering take
one of three approaches: 1) enumerate the world states possi-
ble in every belief state and update each of those states sep-
arately, together generating the updated belief state [Ferraris
and Giunchiglia, 2000; Cimatti and Roveri, 2000], 2) list the
sequence of actions and observations and prove queries on
the updated belief state [Reiter, 2001; Sandewall, 1994], or
3) approximate the belief state representation [Son and Baral,
2001; Williams and Nayak, 1996].

The first two approaches cannot be used when there are too
many possible worlds (e.g., when the domain includes more
than a few dozens of fluents and there are more than 24° pos-
sible states) or when the sequence of actions is long (e.g.,
more than 100 actions). Examples include robot localization,
tracking of objects and their relationships, and data mining.
The third approach gives rise to many mistakes that are some-
times dangerous, and requires an approximation that fits the
given problem (if one exists). Many domains of 100 fluents
or less are still computationally infeasible for it.

2 Logical Filtering

In this section we define logical filtering using a transition
model and action semantics that are compatible with the stan-
dard semantics belief update operator of [Winslett, 1990].
(To avoid confusion, this is different from another operator
presented in the same publication, PMA, that applies a non-
monotonic approach to formalize minimal change.) This op-
erator is simple and allows us to examine computational prop-
erties easily. It can represent any logical transition system,
and specifications in other action languages can be compiled
into it [Winslett, 1990; Doherty et al., 1998].

In what follows, for a set of propositional formulae, W,
L(W) is the signature of W, i.e., the set of propositional sym-
bols that appear in W. £() is the language of ¥, i.e., the set
of formulae built with L(¥). Similarly, £(L) is the language
of L, for a set of symbols L.

A transition system is a tuple (P, S, A, R), where

e P is afinite set of propositional fluents;

o S C Pow(P) is the set of world states;

e Aisafinite set of actions;

e R CS x A x S isthe transition relation.

The intuition for this transition system description is that P is
the set of features that are available for us in the world, every
element in S is a world state (i.e., a subset of P, containing

propositions that are true in this world state), A is the set of
actions in the system and R(s, a, s’) means that state s’ is a
possible result of action « in state s.

A belief state is a set of world states ¢ C S. Performing an
action a in a belief state o results in a belief state that includes
all the world states that may result from a in a world state in
o. We do not introduce observations in this transition model.
Instead, we assume that observations are given to us (if at all)
as logical sentences after performing an action.

A logical nondeterministic domain description D is a fi-
nite set of statements of the following kinds: value proposi-
tions of the form “initially £ describe the initial state and
effect rules of the form “a causes F' if G” describe the effects
of actions, for ' and G being state formulae (propositional
combinations of fluent names). We say that F is the head and
G is the tail of those rules.

For a domain description D we define Pp, A p to be the set
of propositional fluents and actions mentioned in D, respec-
tively. For a domain description D we define a transition
relation R (s, a, s") as follows.

e Afluent f € Pp is possibly affected by action « in state

s, if there is a rule “a causes F' if G” in D such that G
istrueinsand f € L(F).

e Let I(a, s) denote the set of fluents in P that are not
possibly affected by action a in state s.

e Let F'(a,s) be a set of all the heads of activated effect
rules in s (i.e., if “a causes F' if G” is activated in s,
then F' € F'(a, s)). We consider the case of F'(a,s) = 0
(no activated effect rules) as F'(a,s) = TRUE.

o Define (recalling that world states are sets of fluents)

RD={<s,a,s'> ’ (s' N 1(a,5)) = (s I(a,5)) }

and F'(a,s) istrue in s’

When there is no confusion, we write R for R p.

If action a has an effect of FALSE in s, then it cannot execute.

In partially observable domains, we update our knowledge
as a result of executing an action and collecting observations
in the resulting state. The following definition of filtering as-
sumes that o is a set of world states. We use our transition
operator R to define the resulting belief state from each ac-
tion. An observation o is a formula in our language.

Definition 2.1 (Logical Filtering Semantics). Let ¢ C S
be a belief state. The filtering of a sequence of actions and
observations (ay, 01, ..., a, o) is defined as follows:
1. Filterle|(o) = o;
2. Filter[a](o) = {s'| (s,a,8'Yy € R, s € 0};
3. Filter[o](c) = {s € o |oistruein s};
4. Filter[{a;,0;,...,a¢,0:)](0) =
Filter[{aj+1,0i4+1, - - -, at, 0¢)]
(Filter|o;](Filter[a;](o))).
We call Step 2 progression with « and Step 3 filtering with o.

For example, consider a robot that is in charge of cleaning
a room. It can execute an action a = fetch(broom, closet)
which has the single effect rule “a causes has(broom) A
—in(broom, closet) if in(broom, closet)”. Assume that the
robot’s belief state is ¢ = Pow(P) (i.e., it consid-
ers all states possible). Then, Filter[a|(c) = {s €

Pow(P) | —in(broom, closet) is true in s}, i.e., after per-
forming the action a we consider all worlds that satisfy
—in(broom, closet) possible. This is because if we are ini-
tially in a state in which in(broom, closet), then the resulting
state is one in which —in(broom, closet), and if we are ini-
tially in a state in which —in(broom, closet), then we stay
in the same state (thus, still satisfying —in(broom, closet)).
Call this resulting belief state ¢’. Now, if an observation
o = has(broom) is received, then F'ilter[o](c’) is exactly the
set of worlds that satisfy —in(broom, closet) and has(broom).

3 Filtering Logical Formulae

Approaches to filtering actions and observations that at any
stage enumerate the states in a belief state do not scale to
large domains. An alternative approach is to perform logical
progression in a form similar to the one described by [Lin and
Reiter, 1997; Mcllraith, 1998]. The difference is that now we
wish to do so (efficiently) in the context of nondeterministic
actions and observations.

In this section we present a straightforward algorithm that
filters belief state formulae directly, but does so in worst-case
exponential time. This algorithm serves as a starting point
for Section 4, where we propose efficient algorithms. We
also present distribution properties of filtering over the log-
ical connectives A, Vv, —, and examine the theoretical limita-
tions of formula filtering. These will guide us in Section 4,
and allow us to present classes of systems that are not subject
to those limitations and can be tracked in polynomial time
and a compact fashion indefinitely.

3.1 Zeroth-Order Filtering Algorithm

In the rest of the paper we assume that a fixed set of fluents
persists for action « in all states in which it has an effect.

Eff(a) is the set of fluents possibly affected by a, and Eff(a)
is P\ Eff(a). Some of the following notation assumes an
implicit action, when this causes no confusion.

We represent a belief state o as a logical formula ¢ such
that a state is in o iff it satisfies . The filtering of a belief
state formula with an action and an observation is a formula
representing the consequences of our effect rules and obser-
vation on states that satisfy our initial formula. We specify
this filtering process formally using the following notation.

For a set of effect rules r1,...,r; for action a, each of
the form “a causes F; if G;”, write] = Fjp,p,, for
P ={f1,..., f.} aset of new symbols for fluents, [P/P’]
a shorthand for [f1/f1,..., fn/f.], and [f/ f'] means that we
replace all instances of symbol f in the formula by instances
of symbol f’. Here, we view P as the set of fluents in some
time ¢, and P’ as the same fluents in time ¢ + 1. We add the
following set of rules for action a:

C = {"a causes p if p”, “a causes —p if =p” | p ¢ Eff(a)}
U{"a causes p if p A G” | p € Eff(a)}
U{"“a causes —p if -p A G” | p € Eff(a)}
where ~
G =-Gi A... NGy, (1)

the assertion that no precondition of a holds. This has a sim-
ilar effect to adding frame axioms to a set of effect axioms in

an action language. We let r4, ..., r,,, be the complete set of
rules for a and call the new rules, C = {ri41, ..., m }, COM-
pletion rules for a.

We filter a belief-state formula as follows. (We reuse
Filter- for filtering a belief-state formula.) Let Cn(¥)
be the set of logical consequences of W (i.e., formulae v such
that ¥ = <), and Cn* () be Cn(¥) N L, the set of logical
consequences of ¥ in the language £. We write CnZ (),
when L is a set of symbols, to mean Cn*(5) ().

1. Filter[a](p) =
(CnP (@ A N (9 = Gi) = F))))pr i
2. Filter[o](p) = ¢ Ao.

For example, consider action a = fetch(broom, closet)
which has the single effect rule “a causes has(broom) A
—in(broom, closet) if in(broom, closet)”, and consider a be-
lief state formula ¢ = TRUE (i.e., we consider all states
possible). Then, Filter[a](¢) = —in(broom,closet), i.e.,
after performing the action a we consider all worlds that
satisfy —in(broom, closet) possible (similar to our example
in Section 2). Call this resulting belief state formula ’.
Now, if an observation o = has(broom) is received, then
Filter[o](¢") = —in(broom, closet) A has(broom).

The following generalizes a theorem presented in [Doherty
et al., 1998] by allowing conditional and inconsistent effects.

Theorem 3.1. If ¢ is a belief state formula, and a an action,
then

Filter[a]({s € S| s satisfies p}) =
{s € §| s satisfies Filter[a](y)}

Our zeroth-order algorithm computes
Filter[{ay,01,...,at,0:)](¢) by iterating the appli-
cation of filtering of a belief-state formula with an
action and an observation. It sets o9 = ¢ and
w; = Filter|o;](Filter|a;](p;—1)) recursively for i > 0
using the two equalities defined above. This algorithm is
correct, as shown by Theorem 3.1. It can be implemented
using a consequence finder in a restricted language (e.g.,
[Simon and del Val, 2001]).

From here on, when we say filtering we refer to filtering of
a belief-state formula, unless otherwise mentioned.

3.2 Distribution Propertiesand Permutation

We can decompose the filtering of a formula ¢ along logical
connectives once we establish several distribution properties.

Theorem 3.2 (Distribution over Connectives). Let a be an
action, and let ¢, 1) be formulae. Then,
1. Filter[a](p V1) = Filter[a](y) V Filter[a] (1))
2. |= Filterlal(p A Y) = Filter[a](y) A Filter[a](v)
3. |= Filterlal(—y) < —Filter[a] (@) A Filter[a](TRUE)

We can say something stronger for actions that act as per-
mutations on the states in S in which they can be executed.

Definition 3.3 (Permuting Actions). Action a is permuting,
if for every state s’ there is at most one s such that R (s, a, s’).

Domains that include only permuting actions are called
permutation domain.

For example, consider a = fetch(broom, closet) from
above, and assume that we add a second effect rule “a
causes FALSE if —in(broom, closet)”. Thus, a is not exe-
cutable unless its first rule’s precondition holds. Then, the ac-
tion is a one-to-one mapping between states, when this map-
ping is defined (it is not defined when a state maps to no re-
sulting state). If this second rule is not added, then the action
is not one-to-one because it maps two different states (in the
first we already have the broom and in the second the broom
is in the closet) to the same state.

In the same spirit, an action pickUp(A, B) that picks up
block A from the top of block B is one-to-one when it is pos-
sible because we can find a single previous state for every
resulting state. The same holds for putDown(A, C'). Other
natural examples include turning a row in a Rubik’s cube,
flipping a light switch, and buying a gallon of gas. In con-
trast, turning on the light, setting a Rubik’s cube to a partic-
ular configuration, and filling up the gas tank are not permu-
tation actions. Notice that we allow different actions to map
different states to the same state (e.g., accelerating by 5MPH
when driving 40MPH results in the same state as when decel-
erating by 5MPH when driving 50MPH).

Theorem 3.4 (Distribution for Permutation Domains). Let
a be a permuting action, and let ¢, ¢ be formulae. Then,

1. Filterlal(p V v¢) = Filter[a](v) V Filter[a](v)

2. Filter[a](e N) = Filter[a)(p) A Filter[a](v)

3. Filter[a](—p) = ~Filter[a](¢) A Filter|a](TRUE)

Proof Sketch. Space permits inclusion only of the most inter-
esting part, i.e., that of “<” of 2.

Let s’ be a world state that satisfies Filter[a](v) A
Filter[a](v). Then, it satisfies both of Filter[a)(y),
Filter[a](y). For Filter[a](y) there is a state s such that
Rp(s,a,s’) and s satisfies ¢. Similarly, for Filter[a](y))
there is a state s; such that Rp(s1,a,s’) and sy satisfies
1. However, since a acts as a one-to-one mapping from S
to S, there is only one state in S that a maps to s’. Thus,
s = s1, and s satisfies ¢. Thus, s satisfies ¢ A 1) and s’ sat-
isfies Filter[a](¢ A). From Theorem 3.1 it follows that
= Filter[a](e A) < Filter[a](e) A Filter|al(1). O

3.3 Limitationsfor Compact Representation

It may be argued that filtering may require only polynomial
space, if we limit ourselves to initial belief states that are rep-
resented compactly and to actions whose effects and precon-
ditions are represented compactly. In Theorem 3.5 we show
the contrary. That is, for every general-purpose representa-
tion of belief states there is a dynamic system, an initial be-
lief state, and a sequence of actions after which our belief
state representation is exponential in the representation of the
initial belief state.

P/poly is a nonstandard computational complexity class
that includes problems that can be answered in polynomial
time, if we are given a polynomial-length hint that depends
only on the length of the input problem. It is considered
likely that NP N co-NP ¢ P/poly. Assume so, and let f(o)
(o C 2°) encode belief states using n propositional symbols.

Theorem 3.5. There is dynamic system D with n fluents, be-
lief state o, and action sequence ay, ..., a,, such that, for all

i <mn,o; = Filter[a;](o;-1), and | f(o,,)| > poly(|f(o0)| -
|D| - n). (|D] is the representation size of D.)

The proof of this theorem reduces the problem of repre-
senting the belief state after performing an action to that of
representing a Craig Interpolant. It uses the following.

Theorem 3.6 ([Boppana and Sipser, 1990]). Assume that
for every propositional implication A = B there is a Craig
interpolant C such that A = C and C | B and |C] <
poly(]A| + |B]). Then NP N co-NP C P/poly.

4 Effi cient and Indefi nitely Compact Filtering

In this section we present the main contribution of this paper,
namely, a polynomial-time algorithm that computes logical
filtering exactly for a significant class of transition systems.
For some special cases we present simpler algorithms that
are even more efficient. For systems that do not fall within
this class our algorithm gives an approximation to the filter-
ing. Also, we show that we can keep the representation of
the filtered belief state compact indefinitely for a class of dy-
namic systems. This class includes nondeterministic STRIPS
systems and some systems whose actions are permuting.

The theorems that we consider most important are the fol-
lowing three. Let || be the number of literals in ’s represen-
tation, let #rules(a) be the number of effect rules defining
a, and let G, = G be the precondition of a as defined in
(1). Assume that the effect rules that define a given action
have identical sets of affected propositional symbols (how-
ever, different actions may have different such sets).

Theorem 4.1 (Efficiency). Given NNF formula ¢, action
a, and observation o, the filtering algorithm in Figure 1
returns the filtering of ¢ with a and o, if a is permuting.
If a is not permuting, then the algorithm returns an logi-
cally weaker formula than the filtering. It does so in time
O(|§0| A 2#rules(a)+|L(Ga)\)'

Theorem 4.2 (Compact Filtering). Given k-CNF formula ¢
(fixed k), deterministic action a, and observation o in k-CNF,
the filtering of ¢ with a and o is in k-CNF, if a is permut-
ing, Filter[a](TRUE) is in k-CNF, and for every literal ¢
in o, Filter[a](¢) = Filter[a](TRUE) AT, where T is a
conjunction of literals.

If a is not permuting, then the algorithm in Figure 1 still
returns a formula in k-CNF.

The conditions on action « in the last theorem hold, e.g., for
actions whose every defining rule has a precondition that is a
single clause (e.g., a literal). It also holds for actions which
are defined by at most two rules, and actions that affect all the
literals that appear in their preconditions.

Finally, for nondeterministic STRIPS actions (actions that
have no conditional effects) we get efficiency and compact
representation. Let k-PI-CNF denote the class of k-CNF for-
mulae that include all their prime implicates (i.e., ¢ in k-Pl-
CNF iff in k-CNF and for every clause C, if ¢ = C, then
there is a clause C’ in ¢ such that C’ subsumes C). Every
formula can be represented in k-PI-CNF for some k.

Theorem 4.3 (STRIPS Actions). Given k-PI-CNF formula
o (fixed k), STRIPS action a with effect in k£-PI-CNF, and

observation o in 2-CNF, the filtering of ¢ with a and o is
computed in time O(|¢| - k + 2/(Ge)l). The result is in k-Pl-
CNF, if after observing o we know if a succeeded or failed.

4.1 Closed-Form Solution and Factored Filtering

Our zeroth-order filtering algorithm uses consequence finding
tools which do not scale to large domains. The following
always holds and suggests a different reasoning procedure.

N (B, Vv...VF,). (2

i1, 00 <m, =G V... VG

Filter[a](p) =

Tu

We can compute F'ilter|a](y) by testing queries of the
form o = G;, V...V G, (instead of applying consequence
finding). On the other hand, it requires an exponential num-
ber in m of such tests (recall, m is the number of rules, in-
cluding the completion rules). Since m > 2n (there are two
completion rules for each of the n domain features), this is
worse computationally than the method of enumerating all
the states.

In what follows we use the intuition that we need only few
rules if ¢ includes only a small subset of P, the fluent sym-
bols of our domain. In general, ¢ may include many fluent
symbols because we may know many things about many dif-
ferent parts of our domain. Nevertheless, if we can decom-
pose into small parts that can be filtered separately, then
each of the parts includes only a small subset of P, and filter-
ing each of the parts separately becomes easy.

Assume that we order the rules of a such that r, ..., r; (t <
1) satisfy L(F;) N L(G;) = 0 (r; = “a causes F; if G;”, i <
t), and ryyq, ..., satisfy L(F;) N L(G;) # 0. Furthermore,
let ,,,+1 be the additional rule “a causes G if G” (recall, m
is the number of rules of a, including completion rules). We
define 5 to be

B= \(GiVE) A N GV E) @

i<t i1, tu €L+, I, m~+1} f<u

where Gy, i, = CnEff(a)(/\f<u -G,,).

B is a term that is always implied by Filter|a](TRUE),
i.e., the progression of zero knowledge with the action a. The
first set of conjuncts of B is the result of applying a rule “a
causes F; if G;” whose preconditions are not affected by ex-
ecuting a. Even when we know nothing before performing
a, we will know that either the effect occurred or the precon-
dition did not hold and still does not hold. The second set of
conjuncts applies a similar intuition for the case of effect rules
that may affect the truth value of their original preconditions.

Define C(L) to be the set of completion rules of a for flu-
entsin L, i.e., C(L) = {i > [| the effect of r, € Cisiin L}.

We can now state the fundamental theorem of this Section.
It holds for all domains expressed using our action language.

Theorem 4.4 (Closed-Form Representation). If ¢ is a be-
lief state formula and {ry, ..., r;} is the set of effect rules for
action a, each of the form “a causes F; if G;”, then

Filter[a](¢) = /\ (Fi, V..V F,) /\ B (4

i1ty € {1,...0,m 4+ 1} UC(L(¢)),
pEGi, V...VG;

i

The intuition for equation (4) is that progressing ¢ with an
action a can be computed by looking at all the possible com-
bination of preconditions of effect rules and completion rules
for L(p). If we can prove that G; V G2 holds from ¢, then
we can conclude that F; Vv F5 holds in the result of executing
a. The conclusions that are not accounted for with this intu-
ition are the effects that we infer from the completion rules in
C(L(GYy,...,Gy)) together with the effect rules for a. Those
conclusions are summarized in B, which is independent of ¢.

PROCEDURE NNF-Filter({ai, 0i) ;<)
Vi, a; an action, o; an NNF observation, ¢ a belief-state formula.
1. Ift =0, return .
2. Set B asinequation (3) for a; but in NNF form.
3. Return o: A BA NNF-ProgressStep(a,
NNF-Filter((ai, 0i)o i< (1—1):#))-
PROCEDURE NNF-ProgressStep(a,)
a an action. p abelief-state formula, 1, ..., 71, rm+1 rulesfor a.
1. If pisaliteral, then return the NNF form of
/\{\/iel F; ‘ Ic {17 '“7lvm+1}UC(L(‘P))> ® ': \/iel Gi}'
2. If ¢ = 1 V @2, thenreturn
NNF-ProgressStep(a, ¢1) V NNF-ProgressStep(a, ¢2).

3. It must bethat ¢ = @1 A 2. Return
NNF-ProgressStep(a, 1) A NNF-ProgressStep(a, ¢2).

Figure 1: Filtering an NNF formula.

Our NNF filtering algorithm is presented in Figure 1. It
is much faster than our zeroth-order algorithm, and it relies
on Theorems 4.4, 3.2, and 3.4. In the following, if ¢ is a
logically weaker formula than our filtering, we say that it is a
safe approximation for filtering. We denote effects by F; and
preconditions by G;. For an action a, sett = ||J,., L(G;)|.

Corollary 4.5 (NNF Filtering). Let ¢ be a formula in NNF
with A literals, and let o be an action with [effect rules. Then,
NNF-Filter safely approximates Filter[a](¢) in time O(h -
2141, 1f a is permuting, then this computation is exact.

Extended Example
As an example, consider our room-cleaning robot from
above, and the action « = fetch(broom, closet), with the
slightly more elaborate effect rule “a causes has(broom) A
—in(broom, closet) if in(broom, closet) A —locked(closet)”.
Assume that our robot has its belief state represented by
—locked(closet) A (in(broom, closet) V in(broom, shed)).

NNF-Filter filters each of the literals separately with a and
combines the results. For a given literal, filtering is mostly
done is step 1 of NNF-ProgressStep. We describe how this is
done for each of the literals in our robot’s belief state.

NNF-ProgressStep(a,—locked(closet)) tests in step 1 all
possible entailments of the form —locked(closet) = \/,.; G4,
where I includes elements from the effect rule of a, the
frame rule for G (rule r,,41), and the completion rule for
—locked(closet). For brevity, denote the effect of a by F1,
and the precondition for that rule by G,. There is only one
effect rule defining a, so in this case G = -G

In that step, one of our tests finds that

—locked(closet) = G1 vV G

(because G1 V G = G; V =G1 = TRUE). This makes
us include Fy Vv G in the filtering. In the same step, another
test finds that —locked(closet) = —locked(closet) (trivially
true). This makes us include —locked(closet) in the filter-
ing. The conjunction of the two is logically equivalent to
—in(broom, closet) A —locked(closet). This is the result of
filtering —locked(closet) with a.

Similarly, for in(broom, closet), one of our tests in step 1
of NNF-ProgressStep finds that

in(broom, closet) = G V (G A in(broom, closet))

(because G; Vv (G A in(broom,closet)) = G; V
in(broom, closet), and the latter follows trivially from
in(broom, closet)). As before, we also find that
in(broom,closet) = G; vV G. We find that the filter-
ing of in(broom,closet) with a is (in(broom,closet) v
has(broom)) A (—in(broom, closet) V locked(closet)). Notice
that this belief state implies has(broom) V locked(closet).

For the filtering of the last literal, in(broom,shed), we
find its filtering to be equivalent to in(broom,shed) A
(—in(broom, closet) Vv locked(closet)). (Notice, that we do
not know that the broom is not in the closet because initially
we did not know that the broom cannot be in more than one
place; we made this choice to simplify this example.)

Now, we recurse back in the algorithm and com-
bine the filtered formulae. We find that the filter-
ing of in(broom,closet) Vv in(broom,shed) is equivalent
to (in(broom,shed) Vv in(broom,closet) v has(broom)) A
(—in(broom, closet) \ locked(closet)). Notice that this belief
state implies in(broom, shed) Vv has(broom) V locked(closet).

Finally, for the original belief state, —locked(closet) A
(in(broom, closet) V in(broom, shed)), we conjoin the last
result with the filtering of —locked(closet) and get

(in(broom, shed) Vv has(broom))A
—in(broom, closet) A —locked(closet)

4.2 DNF and CNF Belief States

If ¢ is in DNF (a disjunction of conjunctions), then we can
limit the size of the resulting formula. We write DAa |= ¢ to
say that action a has effect rules in D that logically imply ¢ in
a state in which «a is executed (e.g., =G may be a tautology).

Corollary 4.6 (Iterating DNF Filtering). Let ¢ be in DNF
with A literals and s disjuncts, and a an action with [effect
rules with { F; },<; in DNF with d disjuncts total, and {G, },<,
in CNF, each with ¢ conjuncts. Then, Filter[a](¢) in DNF is
computed exactly in time O(h-2!**) with at most max(2s, 1)-

(4%) - ¢ disjuncts. 1f D Aa |= ~G, then it has at most

max(s, 1) - (d(/iQ) - ¢! disjuncts.

Thus, when « is a deterministic action (every rule’s effect
is a conjunction of literals) with a single effect rule that is
always guaranteed to succeed, then the number of disjuncts
in the formula does not grow as the filtering progresses.

For CNF formulae we can find a more significant class of
actions that allow us to maintain compact representation. We
show that under some conditions every k-CNF formula is fil-
tered into a k-CNF formula (fixed k). This implies that the

belief state representation is no larger than (2n)*, which is
manageable for small fixed &’s.

The main observation that we use is that a clause of & liter-
als may give rise to a larger clause after filtering, only if one
of the following holds: (a) the filtering of TRU E includes a
clause of more than £ literals; or (b) the filtering of a literal
includes a clause of 2 or more literals that is not subsumed by
Filter[a](TRUE). The first case can occur when we do not
know whether the action succeeded or not, and which rules
applied if it did. In that case, we know that after the action
one of the effects holds or no precondition holds (this yields a
formula which may include many disjunctions). The second
case can occur when the precondition of a rule includes a con-
junction of literals. When we filter a single literal we may get
a disjunction in the result (of the form the effect holds, or the
rest of the precondition does not). When we filter a clause,
this may cause the filtering to include a larger clause.

The following theorem describes sufficient conditions for
filtering a k-CNF formula into k-CNF, thus keeping the rep-
resentation compact (k is fixed).

Theorem 4.7 (Filtering a k-CNF Clause). Let C be a k-
CNF clause, and action a have [effect rules, all deterministic.
Assume that B is in k-CNF, and that whenever f = \/,_; G;
forliteral fand I C {1,...,[,m+1}, |[I| > 2,then DAa =
Vier Gior f |= G; for some i € I. Then, Filter[a](C) isin
k-CNF and can be computed in time O(2!+%).

Note that B is in k-CNF for an action a when
U< L(G;) UESf(a)| < kor[U;<; L(G:) \ Eff(a)| +1 < k
orl=1and|L(Gy)| — min(1,|L(F1)\ L(G1)]) < k.

Consequently, filtering with actions that are permuting
maintains a k-CNF if = \/,_; G; whenever [=\, ; G;
for some |I| > 2. An example of such an action is flipping a
switch (if the light is on, it will get turned off, and vice versa).
One of the preconditions always holds. Another example is
moving a block (whichever it is) from the top of a stack. For
literal f, if f = top(A) Vv top(B), then the disjunction is
implied by D A a or a single precondition follows from f.

Corollary 4.8 (Iterating CNF Filtering). If ¢ is in k-CNF,
then the assumptions of Theorem 4.7 imply that Filter[a](y)
is approximated safely in time O(|¢| - 21+), with a result in
k-CNF. If a is permuting, then this computation is exact.

4.3 Primelmplicate Belief States

It turns out that a form of distribution over conjunction holds
for all actions if the belief state is represented as the conjunc-
tion of all of its prime implicates (formulae we call prime im-
plicate belief states (PI-CNF)). In this form we can distribute
the computation to the conjuncts and conjoin the result of fil-
tering small subgroups of them separately. More precisely,

N\ Filterla)(\C;,) (5)

J15e5J258 9z

Filter[a](p) =

for z a number that depends on the representation of the pre-
conditions of a and on the number of rules defining a.

Theorem 4.9 (Filtering Prime Implicates). Let ¢ be in k-
PI-CNF (PI-CNF and k£-CNF), and let action a have [effect
rules with effects in £-CNF and preconditions in d-CNF, with

PROCEDURE PI-Filter({a:, 0i) ;<)
Vi, a; an action, o; an observation, ¢ a belief-state formula.
1. Ift =0, return .
2. Return the PI-CNF form of
ot/ Pl-ProgressStep(a:, PI-Filter({a;, 0i>0<i<(t71),<p)).

PROCEDURE PI-ProgressStep(a,)
a an action, ¢ abelief-state formula. 71, ..., 1, rm+1 rulesfor a.
1. Letres < TRUE.
2. Foreveryiy,...,i; € {1,...,l,m+1},and f1, ..., f, literdls
in Pre(a) \ Eff(a), do
(@ Let A, C, bethe CNF representation of \/,_ . G,
(o) For every g < z, nondeterministically choose a clause
C, in o whose restriction to Pre(a) subsumes C,.
(c) If thereis aclause for every g < z, then set res «—

res \ F',where F'is\/, _.(Fi, V (Ci, NEff(a))).

3. Return res.

Figure 2: Filtering a Prime-Implicate CNF formula.

each G; of at most ¢ clauses. Then, equation (5) holds for z =
c - (d° + 1), and PI-Filter (Figure 2) computes Filter|[a](¢)
exactly in time O(2V1Pre(a)VEf (@] (52 4) If DAa | -G,
then z = ¢!, with O(2! - (s* + z)) time.

Corollary 4.10 (Maintaining k-PI-CNF). Let be a k-Pl-
CNF formula, and let action a have [effect rules, all deter-
ministic. Assume that G; is a disjunction of literals, for all
i < 1. Also, assume that D Aa = —=G. Then, Filter[a](yp) =
PI-ProgressStep(a,y), and the latter is in k-CNF. If & = 2,
then PI-Filter(a,y) is in k-PI-CNF,

The conclusion for & = 2 uses the fact that every prime
implicate of a formula in 2-CNF is a clause with at most two
literals. Simple counter examples (omitted) show that k-Pl-
CNF cannot be maintained without these conditions.

4.4 Nondeterministic STRIPS Domains

STRIPS domains present a special case of the results that we
discussed above. In such domains every action has a single
rule (no conditional effects) and actions can be executed only
when their preconditions hold®. Unlike the original STRIPS,
we allow nondeterministic effects, and allow belief states to
be any CNF formulae in the fluents of the domain.

More precisely, every action a has exactly two effect rules,
r1,72. Their preconditions are such that G; = —G,. Also,
Fy, = FALSE. Thus, a can be executed only when G,
holds. Consequently, when we filter with a we assert im-
plicitly that its preconditions held in the last world state.

The assumption that there is only one rule that determines
a’s effects and otherwise the action is not executed has a dra-
matic effect. For [y, ..., [;, literals we get that

Filter[a](ly V ... V1) =
T, Ji < kl; € L(Eff(@)) (6)
Ta/\\/igkli ll,...,lk- §§£(Ef‘f(a)

with the alternate assumption that actions have no effect un-
less their preconditions hold, but observations (or their absence) are
guaranteed to distinguish actions' success from failure, the samere-
sults hold, except that now the compactness of representation re-
mains only after fi Itering with observations.

Theorem 4.11 (Iterating STRIPS Filtering: CNF). Let ¢
be in k-CNF with s clauses and a a STRIPS action. If F} is
in k-CNF and |L(G1) \ L(Fy)| < t, for some ¢ < E, then
Filter[a](y) can be approximated safely in time O(s - k +
2t), yielding a k-CNF formula. If a is permuting, then this
computation is exact.

If our representation is PI-CNF, then we get an even
stronger result, leading to the algorithm in Figure 3.

Theorem 4.12 (Factoring STRIPS filtering: PI-CNF). Let
Ni<s Ci bein PI-CNF, and let a be a STRIPS action. Then,

Fz'lter[a](/\ C;) = /\ Filter[a)(C;).

i<s i<s

For example, for a« = fetch(broom, closet) that has ef-
fect Fy = has(broom) A —in(broom, closet), if we know
(in(broom, closet)V—locked(closet))A(in(broom, shed)V
locked(closet)) before applying a, then after it we know
Fy A (in(broom, shed) V locked(closet)).

Corollary 4.13 (Iterating STRIPS filtering: k-PI-CNF).
Let ¢ be in k-PI-CNF, and let a be a STRIPS action with
Fy in k-PI-CNF, t = |L(Gy) \ L(Fy1)|, and t < k. Then,
STRIPS-Filter(a,p) computes Filter|a](y) exactly in time
O(|¢| - k + 2'), yielding a k-P1-CNF formula.

This means that we can filter in practice any prime im-
plicate belief state in any nondeterministic STRIPS domain.
This filtering stays compact, with the size depending only on
the PI-CNF representation of F; and the number of proposi-
tional symbols in GGy but not F7.

Finally, every STRIPS action can be filtered efficiently,
even if we drop the assumption that either the action succeeds
or we observe an error. This can be done by assuming that the
action succeeds, finding the filtering of that action, and then
disjoining the result with the initial belief state. Nonetheless,
this scheme may cause representation space explosion as fil-
tering proceeds over multiple steps, unless some care is taken.

PROCEDURE STRIPS-Filter({(ai, 0i) . ; <, %)
Vi, a; an action, o; an observation, ¢ a belief-state formula.
1. Forifrom1tot do,
@ Sety’ — Age, Filter[a;](C), where Filter[a;](C)
iscomputed using (6), and eliminate subsumed clauses.
(b) Let o bethe primeimplicates of ¢’ A o;.
2. Return .

Figure 3: Filtering a PI-CNF formula with STRIPS actions.

We tested our STRIPS-filter algorithm in partially observ-
able blocks-world domains. The implementation in LISP in-
cludes a random action-sequence and observation-sequence
generator, and both the generator and filtering algorithm re-
ceive a description of the domain, actions and observations
specified in PDDL (a plan-problem specification language).

We ran the algorithm with blocks-world domains of in-
creasing sizes (3 to 20 blocks), yielding domains that range
from tens to over a thousand of propositional features. We
collected the time taken per filtering step for each of the exe-
cutions and the space taken overall at every iteration, starting
with zero knowledge. The results are shown in Figure 4.

Step-time as filtering proceeds Representation size as filtering proceeds

209 fluents 209 fluents

181 fluents.

181 fluents

155 fluents

131 fluents
109 fluents

155 fluents

131 fluents

Space for belief state

E =) 3 E3

T me mm mn o T Em mw mm
Number of fltering steps Number of filtering steps

Figure 4: STRIPS-Filter in the blocks world.

45 Observation Mod€

An observation model is a theory O that includes observation
constraints, axioms that describe the relationship between ob-
served facts and other fluents. We allow O to include any ax-
ioms. Our model assumes that observations o are collected
after an action is executed. o is a sentence made up with flu-
ents, similar to the observation constraints. The conjunction,
O Ao s then used to filter the resulting belief state. Formally,

Filter[o](¢) = p Ao NO. (7)

This allows all the results that we enumerated above to ap-
ply with this model as well. The following connects the
results of Sections 3,4 to filtering with observations.

Corollary 4.14. If o A O'isin k-CNF and F'ilter[a](y) isin
k-CNF, then Filter[a, o](¢) is in k-CNF.

In particular, this means that our results for STRIPS do-
mains and for NNF, CNF and DNF formulae still hold here.
Thus, the representation remains compact in the cases that we
indicated already, and computation remains easy in the same
cases as well. Finally, for k-P1-CNF, we get the following.

Corollary 4.15 (Obs. and k-PI-CNF). If o A Oisin 2-CNF,
and ¢ is in k-PI1-CNF, then Filter|[o](y) is in k-PI-CNF.

5 Conclusions

In this paper we presented the task of logical filtering and
gave it a computational treatment. The results we obtained
here have implications for monitoring and controlling dy-
namic systems. In many cases we present a closed-form com-
putation of the filtering and in others show how to approxi-
mate this computation. In some cases we can guarantee that
the size of the representation of the filtered formula can be
bounded and kept small. In those cases, logical filtering can
be used to control processes that run over very long periods
of time. Examples of such systems are abundant and include
robot motion control, natural language processing, and agents
that explore partially observed worlds.

We made use of several assumptions in this paper in differ-
ent contexts and with different consequences. We presented
permutation domains and the certainty of existence of an ef-
fect (D Aa |= —G) as characteristics of the domain that make
filtering easier. We showed that the commonly used assump-
tion that every action has a relatively small number of rules
(at most polynomial in n), and that effects, preconditions and
terms in the belief state typically use a small vocabulary, all

have a drastic effect on the computational effort needed for
filtering and on the size of the resulting belief state.

The need to track the state of the world is a basic one, and
many works have appealed to it implicitly in the past. How-
ever, the computational treatment of such tracking has been
avoided so far, partially due to the absence of a developed
theory of nondeterministic domains, and partially due to neg-
ative results about the general cases of this task. Nonethe-
less, this problem and methods for its solution have received
much attention in control theory. The results we obtained here
promise to find their application in this domain and may be
combined with stochastic filtering techniques.

Acknowledgments

This research was supported by ONR MURI Fund N00014-
01-1-0890, ONR MURI Fund N00014-00-1-0637, and NSF
grant ECS-9873474. The first author thanks Xuanlong
Nguyen for a stimulating discussion on Theorem 3.4.

References

[Boppana and Sipser, 1990] R. Boppana and M. Sipser. The com-
plexity of fi nitefunctions. In Jan van Leeuwen, editor, Handbook
of Theoretical Computer Science, pages 757—804. Elsevier, 1990.

[Cimatti and Roveri, 2000] A. Cimatti and M. Roveri. Conformant
planning viasymbolic model checking. JAIR, 13:305-338, 2000.

[Doherty et al., 1998] P. Doherty, W. Lukaszewicz, and
E. Madalinska-Buga. The PMA and relativizing change
for action update. In Proc. KR 98, pages 258-269, 1998.

[Ferraris and Giunchiglia, 2000] P. Ferraris and E. Giunchiglia
Planning as satisfi ability in nondeterministic domains. In Proc.
AAAI *00, pages 748-753, 2000.

[Fikeset al., 1972] R. Fikes, P. Hart, and N. Nilsson. Learning and
executing generalized robot plans. AlJ, 3:251-288, 1972.

[Kalman, 1960] R. E. Kalman. A new approach to linear fi ltering
and prediction problems. Trans. of ASME — J. of Basic Engineer-
ing, 82(Ser. D):35-45, 1960.

[Kautzet al., 1996] H. Kautz, D. McAllester, and B. Selman. En-
coding plansin propositional logic. In Proc. KR 96, 1996.

[Liberatore, 1997] P. Liberatore. The complexity of the language
A. ETAI, 1:13-38, 1997.

[Lin and Reiter, 1997] F. Lin and R. Reiter. How to progress a
database. AlJ, 92:131-167, 1997.

[Mcllraith, 1998] S. Mcllraith. Explanatory diagnosis: Conjectur-
ing actions to explain observations. In Proc. KR ’98, pages 167—
177, 1998.

[Reiter, 2001] R. Reiter. Knowledge In Action. MIT Press, 2001.

[Sandewall, 1994] E. Sandewall. Features and Fluents. Oxford,
1994,

[Simon and del Val, 2001] L. Simon and A. del Val. Efficient
consequence-fi nding. In IJCAI ’01, pages 359-365, 2001.

[Son and Baral, 2001] T. C. Son and C. Baral. Formalizing sensing
actions: A transition function based approach. AlJ, 125, 2001.

[Williams and Nayak, 1996] B. Williams and P. Nayak. A model-
based approach to reactive self-confi guring systems. In Proc.
AAAI *96, pages 971-978, 1996.

[Winslett, 1990] M. Winglett. Updating Logical Databases. Cam-
bridge U. Press, 1990.

