Stuart Russell
ANALOGY BY SIMILARITY

In this paper I discuss the relative merits of the logical and similarity-based approaches to reasoning by analogy.
Although recent work by Davies and the author has shown that, given appropriate background knowledge, analogy
can be viewed as a logical inference process, I reach the conclusion that pure similarity can provide a probabilistic
basis for inference, and that, under certain assumptions concerning the nature of representation, a quantitative theory
can be developed for the probability that an analogy is correct as a function of the degree of similarity observed.
This theory also accords with psychological data (Shepard), and together with the logical approach promises to form

the basis for a general implementation of analogical reasoning.

1. THE LOGICAL APPROACH

Analogical reasoning is usually defined as the argument from known similarities between two things to the existence

of further similarities. Formally, I define it as any inference following the schema
P(S,4), P(T.A), Q(S,B) ™% Q(T,B)

where T is the target, about which we wish to know some fact Q (the query); S is the source, the analogue from
which we will obtain the information to satisfy @) by analogy; P represents the known similarities given by the shared
attribute values A. P and @ can be arbitrary predicate calculus formulae, and A and B stand for arbitrary tuples
of objects.

An innumerable number of inferences have this form but are plainly silly; in other words, the form does not
distinguish between good and bad analogical inferences. For example, both today and yesterday occurred in this
week (the known similarity), yet we do not infer the further similarity that today, like yesterday, is a Friday. The
traditional approach to deciding if an analogy is reasonable, apparently starting with Mill (1843), has been to say that
each similarity observed contributes some extra evidence to the conclusion; this leads naturally to the assumption
that the most suitable source analogue is the one which has the greatest similarity to the target; presumably, one
can take into account differences in the same way. Thus similarity becomes a measure on the descriptions of the
source and target. However one defines the similarity measure, it is trivially easy to produce counterexamples to this
assumption. Moreover, Tversky’s studies (1977) show that similarity does not seem to be the simple, two-argument
function this naive theory assumes. One can convince oneself of this by trying to decide which day is most similar

to today.



In the philosophical literature on analogy, several authors have noted the inadequacy of ‘similarity-counting’
arguments as the basis for analogy, particularly since many analogies are extremely convincing. One approach to
logical justification proposes that knowledge of the rule Vz[P(z, A) = Q(z, B)] is needed for an analogy to be sound,
but such knowledge would render the analogue S logically superfluous. Keynes (1957), Uemov (1964), Anderson
(1969) and Nagel (1961) all pointed out this possibility for justified analogy, and all stated that no other possibility
existed. The ‘trivial’ nature of such analogies may have led Greiner (1985) to define analogy as necessarily non-
logical. Hesse (1966) noted the importance of relevance of the known similarities to the inferred similarities. The
theory of determinations (Davies, 1985; Russell, 1986¢; Davies & Russell, 1987; Davies, this volume) gives a first-
order definition to the notion of relevance.® Given that the known similarities are (partially) relevant to the inferred
similarities, the analogical inference is guaranteed to be (partially) justified. The fact that P is relevant to Q is

encoded as a determination, written as P(z,y) = Q(z, z) and defined as

VwayzP(w,y) A P(z,y) A Qw, 2) = Q(z, 2).

When the reasoner has this kind of background information available, attention can be directed to those similarities
that are relevant to the problem at hand, and the justification of the conclusion is logical in nature; the overall degree
of similarity no longer plays a part in the process.

T am thus proposing that at least one aspect of a successful analogical reasoning system consists of a knowledge-
based, deductive process (or, in the case of partial determinations, a probabilistic process). Determinations seem to
be a common and useful form of knowledge, and we can ascribe to determinations the same epistemological status
and heuristic utility as we do to the typical universally-quantified rules in a rule-based expert system. It would be
interesting to perform psychological experiments to ascertain subjects’ knowledge of determinations, and to design
knowledge engineering methods for eliciting them from experts. In (Russell, 1986¢) I give methods for inductive
acquisition of determinations and for their use in a logical inference system. The crucial argument for the value of
determination-based analogy is that determinations represent that class of regularities whose extrapolation takes the
form of analogical reasoning; without the ability to detect and use determinations, a system is simply impoverished
in its inferential power. The question remains as to whether other forms of analogy have a rational justification,
particularly in the light of the common conception of analogy as only a plausible inference process, or as a learning
method. The phrase ‘learning by analogy’ appears repeatedly — in fact, the study of analogy is almost universally

classified as a subfield of machine learning in conferences and textbooks. In the next section we examine how this

* Goodman (1955) also identified this class of formulae in his work on induction, calling them ‘overhypotheses’.
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widespread belief can be reconciled with our theory.

2. LEARNING AND ANALOGY

Analogical inference using determinations does not constitute learning in the strict sense of acquisition of new
knowledge, whether the determinations are deductive or probabilistic. There is no ‘learning at the knowledge level’
(Dietterich, 1986) occurring when an analogical conclusion is reached in this way; the perception of analogy as
learning may simply have arisen because the determination premise is not immediately obvious to introspection.
The idea behind the phrase ‘learning by analogy’ is that similarity, in and of itself, should be enough to suggest
new information that may be usefully conjectured. The ‘creative’ nature of analogy is often stressed. Yet no one
would deny that however creative or interesting a conjecture may be, the only way we can decide whether or not
to make that conjecture is to have some idea of how likely it is to be true. For otherwise, we might just as well
select hypotheses at random from the space of all expressible conjectures. Words such as ‘plausible’ and ‘conjectural’
often seem to be ways of putting off the realization that ultimately we are just talking about probabilistic inference,
whether the probabilities be high or low. Under this ‘hard-nosed’ view, we have separated learning and inference.
We can instead take the ‘soft-nosed’ position, which is perhaps preferable, and say that all inference to unobserved
conclusions in empirical domains is necessarily probabilistic, just as inductive generalization is probabilistic. Then
the distinction might be made between inferences that extrapolate regularities to new cases and those, which we
might call ‘learning’, that postulate new regularities or generate new beliefs by some means other than extrapolation.
Analogy by similarity has been the candidate for this last possibility. In the same sense that Goodman says that
our best inductive practice is a good enough justification for an inductive inference, it is possible that a refined
procedure for analogy by similarity may form a primitive constituent of our inferential apparatus, in need of no
further justification. However, until this step is shown to be necessary, as in the case of induction, it seems preferable
not to take it.

Thus, in strict terms, the phrase ‘learning by analogy’ may be somewhat misleading, if analogical inference is
just the extrapolation of a previously detected regularity (the determination). Again, it is possible that the analogy
process may use unfounded, syntactic heuristics to produce its conclusions. The only syntactic inference rules we
are allowed to use willy-nilly are those based ultimately on the semantics of the representation language, i.e., the
rules relating syntax to truth. For example, Modus Ponens is based on the Tarskian semantics for predicate calculus.
Syntactic rules of the type exemplified by the ‘analogy by similarity’ heuristic appear to be justifiable only empirically,

by showing that they tend to work. Even then, one is left with the (in some cases insurmountable) problem of showing
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that the results are not influenced by some special features in the form or content of the knowledge base. We will

now see how this might work, in a couple of different ways.

3. REPRESENTATIONAL JUSTIFICATION OF SIMILARITY HEURISTICS

In this section we give the first intimations, in a very simplistic fashion, of one possible direction that might be
explored as a way of justifying a form of analogy by similarity.

Recall that the commonality between two ‘objects’ may be expressed by giving a common formula P holding
for both. According to the traditional view, the ‘size’, measured in some way, of this common formula is the basis
for analogical transfer. Suppose we define a meta-linguistic predicate Large, indicating that its argument is, in this

sense, a large formula. Then, very loosely, analogy by similarity corresponds to the axiom

VP, Q[Large(P) = [P(z,y) = Q(z, 2)]].

Such heuristics could exist at the top of a hierarchy of determinations, to be used when no more specific knowledge is
available. The justification for the use of such heuristics can rest on their empirical success. However, it is not hard
to imagine knowledge bases and representations for which the heuristic fails miserably. Because the heuristic works
only at the syntactic level, we can always construct consistent knowledge bases such that the use of the heuristic is
actually deleterious. In other words, the use of the heuristic contains an implicit restriction on the possible conditions
obtaining in the universe of discourse.

To remain coherent, such syntactic theories should include the representational and epistemological assump-
tions that allow them to work correctly, and motivate those assumptions. Such assumptions might be, for example,
that only facts about certain types of object will be included, or that only certain relations are explicitly stated,
or that inferential goals will tend to be of a certain type. These assumptions can be justified using a theory de-
scribing that part of the system responsible for acquiring the vocabulary and content of the knowledge base, and its
relationship to the world.

Humans (and computers) could in fact possess a general-purpose similarity heuristic (possibly dependent on
the things compared) which works well for the ‘average’ query. Let us consider an example of such a representational
assumption. Psychological attunement theories regarding the way in which representations, as well as their contents,
evolve to reflect underlying regularities in the environment may be one source of such heuristics. Thus, humans do in
fact seem to record only the ‘important’ features of their experiences; what has come to be important must depend

on the use to which experiences are normally put, and evolutionarily speaking those uses have been in deciding
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such things as edibility, dangerousness, running speed and other gross physical properties of the objects in our world.
Thus, biasing similarity metrics towards simple, observable, constant, physical features is a justifiable policy for early
man. Unfortunately, similar justifications have not been made for any of the similarity metrics used in Al theories
of analogy. There is a large amount of work to be done before we can begin to understand fully the ways in which a

system can take advantage of representational regularities in order to achieve inferential shortcuts.

4. A QUANTITATIVE ANALYSIS OF ANALOGY BY SIMILARITY

I now propose a second approach to the analysis of analogy by similarity, one that yields more quantitative results.
We start from the case in which we are trying to solve some problem by analogy, but we know no applicable
determination for the query at hand, i.e., we have no idea which of the known facts might be relevant. In this case,
the theory of determinations does not apply. However, it still seems plausible that the most similar source is the
best analogue; certainly, in the absence of any other information, it seems perverse to choose an analogue that is
demonstrably less similar. What has been lacking in previous theories of analogy by similarity is any attempt to
justify this assumption; the analysis in this section hopes to rectify this situation. Since an inference by analogy is
still an inference, the justification must take the form of an argument as to why a conclusion from similarity is any
better than a random guess; better still, the theory should be able to assign a probability to the conclusion given
the truth of the premises. The object of this section is thus to compute (or at least sketch) the relationship between

the measure of similarity between two objects, and the probability that they share a further, specified similarity.

The principal problems which need to be solved before such a theory can be constructed are:
1) A reasonable way must be found to circumscribe the source and target descriptions. Without this, the
sets of facts to be compared are essentially without limit.
2) A similarity measure must be defined in such a way as to be (as far as possible) independent of the way
in which the source and target are represented.

3) We must identify the assumptions needed to relate the similarity measure to the desired probability.
The precise similarity measure itself is not important; in fact, it is essentially meaningless. If we have a different
similarity measure, we simply need to relate it in a different way to the probability of correctness of the analogy.
Thus I will not be attempting to define a similarity measure that is more plausible than those proposed previously.
The essence of our approach is to show that analogy to a maximally similar source can be justified in the
absence of any usable determination by showing that such a source is the most likely to match the target on the

properties which are relevant to the query even though the identity of these properties is unknown. The intuition
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on which the analysis is based is the following: in situations where the system is extremely ignorant, there will be
many determinations (causal factors) of which it is unaware. Thus some facts could be relevant to the query even
if we have no direct reason to believe them so. In this case, a larger similarity serves to increase the likelihood that
such factors will be taken into account, by increasing the likelihood that the relevant features will be included in the
commonality.

If a source matches the target on all relevant features, an analogy from that source is assumed to be correct.
For the query to be soluble at all, we require that all the features relevant to the query appear somewhere in the
description of the target to be matched against the source. This is equivalent to saying that the formula describing
the target is a sufficient determinant for the query; conversely, when a determination is known for a query its left-
hand side can be used to circumscribe the facts needed in the description of the target and source for the purposes
of matching. When these match completely, we have complete similarity on the relevant features and the limiting
case is thus the same as the logical approach. When the match is not complete, the theory we are about to describe
allows a probabilistic conclusion. Thus even a highly overconstrained determination, whose left-hand side is far too
specific (i.e., contains too many features) to offer a reasonable chance of achieving the match needed for a sound
analogy, is still useful for constraining the object descriptions used in similarity matching.

I first calculate the probability of a match on the relevant attributes for the simple case of an attribute-value
representation where a match on any attribute is equally likely a priori, and I assume a fixed number of relevant
features. Subsequent sections relax these assumptions to allow the theory to apply to the general case, in the process

revealing the representational assumptions that underlie my analysis.

4.1 The simple model

A simplified model for analogy in a database is this: we have a target T described by m attribute-value pairs, for
which we wish to find the value of another attribute ). We have a number of sources S; ... S, (analogues) which
have values for the desired attribute @) as well as for the m attributes known for the target.

Define the similarity s as the number of matching attribute values for a given target and source. The difference
d =m — s. Assume that there are r attributes relevant to ascertaining the value of Q.

Define p(d,r) to be the probability that a source S, differing from the target on d attributes, matches it on
the r relevant attributes. The assumption of no relevance information means that all attributes are equally likely to
be relevant. We can thus calculate p(d, ) using a simple combinatoric argument:

Let N, be the number of choices of which attributes are relevant such that S matches T on those attributes.
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Let N be the total number of choices of which attributes are relevant.

p(d,r) = Np /N

(/6) v

For any r, this function drops off with d (= m-s), monotonically and concavely, from 1 (where d=0) to 0 (where d >
m-r). Thus the most similar analogue is guaranteed to be the most suitable for analogy. Figure 1 shows p(d,r) for
values of r of 1, 3, 5, 10, 20 with the total number of attributes m = 30. As we would expect, the curve narrows as
r increases, meaning that a higher number of relevant attributes necessitates a closer overall match to ensure that

the relevant similarities are indeed present.

Fig. 1 p(d,r) for r = 1,3,5,10,20.

4.2 Allowing r to vary

The assumption of a fixed value for the number of relevant features seems rather unrealistic. The most general

assumption we can make is that r follows a probability distribution gq(r) which depends on the type of the query
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Q. Thus, for example we could assume that there are equally likely to be any number of relevant features, or that
three or four seems reasonable whilst 25 is unlikely. Although this introduces an extra degree of freedom into the
theory, we find that the results are almost independent of what we assume about g. We calculate the probability of

successful analogy now as a function of the source-target difference d only:

using the above formula for p(d,r). For any reasonable assumption about the shape of ¢(r), the variation of p(d)

with d remains approximately the same shape.
For ¢(r) = constant, p(d) ~ 1/(d+ 1)
For q(r) o< e™", p(d) ~ e~ for low d, larger for high d
For ¢(r) o< re™", p(d) ~ e~ except at large d

For q(r) = Normal(p = 4,0 = 2), p(d) ~ e~ ¢

T

q(r) = constant q(r) <e” q(r) < re™" q(r) = N(4,2)

Fig. 2 p(d) given various assumptions about ¢(r).

In figure 2 we show values of p(d) (plotted as dots) computed using these four assumptions of ¢(r), with a simple

exponential decay (p(d) oc e~¢, solid line) superimposed.

4.3 Generalizing the model

We can make the simple model analyzed above applicable to any analogical task simply by allowing the ‘attributes’
and ‘values’ to be arbitrary predicate calculus formulae and terms. The assumption that a match on any of these

new ‘attributes’ is equally likely, a priori, is no longer tenable, however. In this section we will discuss some ways in
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which the similarity measure might be modified in order to allow this assumption to be relaxed. The idea is to reduce
each attribute to a collection of uniform mini-attributes; if the original assumptions hold for the mini-attributes, our
problem will be solved. Unfortunately, the task is non-trivial.

The first difficulty is that we can only assume equal relevance likelihood if the a priori probabilities of a match
on each attribute value are equal; in general, this will not be the case. In the terms of Carnap (1971), the widths of
the regions of possibility space represented by each attribute are no longer equal. Accordingly, the simple notion of
similarity as the number of matching attributes needs to be revised. If the cardinality of the range of possible values
for the ¥ attribute is k;, then the probability p; of a match (assuming uniform distribution) is 1/k;. Although k will
vary, we can overcome this by reducing each attribute to log, k mini-attributes, for which the probability of a match
will be uniformly 0.5. If the original distribution is not uniform (for example, a match on the NoOfLegs attribute
with value 2 is much more likely than a match with value 1), a similar argument gives the appropriate contribution
as — logy p; mini-attributes. This refinement may underlie the intuition that ‘unusual’ features are important in
metaphorical transfer and analogical matching (Winston, 1978; Ortony, 1979). A generalization of this idea would
deal with arbitrary probability distributions for the values of p, incorporating the inexact match idea of the following
paragraph.

In the logical approach, the notion of one attribute value ‘almost matching’ another is expressed as a common-
ality by defining a more coarse-grained attribute, such that the two ‘close’ values are mapped onto the same value
for the new attribute. A representation should be chosen such that determinations are expressed using the ‘broadest’
attributes possible, thus precise attributes are grouped into equivalence classes appropriate to the task for which
we are using the similarity. In the current situation, however, we will not know what the appropriate equivalence
classes are, yet we still want to take into account inexact matches on attribute values; for example, in heart disease
prognosis a previous case of a 310-1b man would be a highly pertinent analogue for a new case of a 312-1b man. If
the weight attribute was given accurate to 4 Ibs instead of 1lb, these men would weigh the same; thus in general an
inexact match on a scalar attribute corresponds to an exact match on less fine-grained scale, and the significance of
the ‘match’ is reduced according to the log of the accuracy reduction (2 bits in this case).

A consequence of this view of the significance of an attribute leads to a constraint on the possible forms of
q(r): if we assume that the relevant attributes must contain at least as much information as the attribute @ whose
value they combine to predict, then we must have g(r) = 0 if 7 is less than the significance value of Q). Here r, as
well as the total ‘attribute count’ m and the similarity s, are all measured on a scale where a one-bit attribute has a

significance of 1. At first sight, it seems that we have succeeded in breaking down our complex features into uniform



elements, all of which are equally likely to be relevant, so all the earlier results should still apply.

However plausible this may seem, it is simply false. The base of the logarithms chosen is of course totally
arbitrary — we would still have uniform mini-attributes if we had used log,. This would mean halving our values
for m, r and s; but the formula for p(d,r) contains combinatoric functions, so it will not scale linearly. Hence our
predicted probability will depend on the base we choose for the logarithms! This is clearly unsatisfactory. What
we have done is to neglect an important assumption made in using the combinatorial argument, namely that the
relevant information consisted of a set of whole features. If we allow it to consist of a collection of sub-elements of
various features, then clearly there are many more ways in which we can choose this set. The plausibility of the
simple model rests in our unstated assumption that the attributes we use carve up the world in such a way as to
correctly segment the various causal aspects of a situation. For example, we could represent the fact that I own a

clapped-out van by saying

OwnsCar(SJR,73DodgeSportsmanV anB318)

using one feature with a richly-structured set of values; but for most purposes a reasonable breakdown would be
that I own a van (for other people’s moving situations), that it’s very old (for long-distance trip situations), that it
can seat lots of people (for party situations), that it’s a Dodge (for frequent repair situations) and that it’s virtually
worthless (for selling situations). Few situations would require further breakdown into still less specific features. In
some sense, therefore, we will require a theory of natural kinds for features as well as for objects.

If it is the case that humans have succeeded in developing such well-tuned representations, then it is indeed
reasonable for us to assume that the relevant information, which corresponds to the part of the real-world situation
which is responsible for determining the queried aspect, will consist of a set of discrete features corresponding to the
various possible causal factors present. This of course raises a vast throng of questions, not least of which is that of
how an Al system is to ensure that its representation has the appropriate properties, or even how it can know that
it does or doesn’t. The subject of the semantic implications of using a particular representation is also touched upon

in the concluding section of this paper.

5. EMPIRICAL DATA ON STIMULUS GENERALIZATION

A crucial test of whether the representational assumptions used in the above quantitative analysis are reasonable
is to compare its predictions to actual human and animal performance. Psychological experiments on stimulus

generalization are essentially measuring the subject’s ability to do analogy by similarity. In these experiments, a
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(human or animal) subject is given an initial stimulus, to which it makes a response. If necessary, the correct
response is confirmed by reinforcement. This original stimulus-response pair is the source in our terms. Then a
second stimulus is given, which differs from the original. This represents the target situation, for which the subject
must decide if the original response is still appropriate. The empirical probability that the subject makes the same
response (generalizes from the original stimulus) is measured as a function of the difference between the stimuli. This
probability is essentially what we are predicting from rational grounds in the above analysis.

Early results in the field failed to reveal any regularity in the results obtained. One of Shepard’s crucial
contributions (1958) was to realize that the similarity (or difference) between the stimuli should be measured not in
a physical space (such as wavelength of light or pitch of sound) but in the subject’s own psychological space, which
can be elicited using the techniques of multi-dimensional scaling (Shepard, 1962). Using these techniques, Shepard
obtained an approximately exponential stimulus generalization gradient for a wide variety of stimuli using both
human and animal subjects. Typical results, reproduced, with kind permission, from Shepard’s APA presidential
address (1981), are shown in figure 3.

His own recent theory to explain these results appears in (Shepard, 1984), and has a somewhat similar flavour
to that given here, although it is designed for continuous-valued stimuli. The empirical verification of the theory by
Shepard’s results is extremely good, in the sense that it shows that humans and animals possess a rational ability to
judge similarity which has evolved or been learned, presumably, because of the optimal performance of its predictions
given the available information. Shepard’s explanation of the results and our own are somewhat complementary in
that he deals with unanalyzed stimuli whereas our model assumes a breakdown into features. This is well-suited for
our purpose of constructing a computational theory of analogy and a generally useful analogy system for AI; this is

the subject of the next section.

6. COMBINING THE LOGICAL AND SIMILARITY-BASED APPROACHES

There seems little doubt that, given a suitable determination, determination-based analogical reasoning (DBAR) is
the preferred mode of analogical reasoning, especially given the sharp fall-off in probability of correctness for the
similarity-based method as the similarity decreases. We intend to further verify the similarity theory by performing
analogies in an Al database of general knowledge (Lenat’s CYC system; see (Lenat et al., 1986)), which will also
give us an empirical form for ¢(r). A further goal is to integrate analogy by similarity with the determination-based
analogical reasoning theory to provide an analogy capablity for a general reasoning program. The integration rests

on the following principles:
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Fig. 3 Plots of analogical response probability (S) against source-target difference (D), for various data, from

(Shepard, 1981).

1) For either type of reasoning, we must find a determination for the given query; this may be already
known, or found inductively or deductively from background knowledge.

2) If the determination is too specific to allow an exact matching source to be found, it can be used to point
out broad classes of potentially relevant features; we then reason by similarity within these constraints;

3) Probabilistic determinations can add specific weights to the contributions of individual attributes to the
overall similarity total;

4) Blind statistical search for new determinations is combinatorially explosive; observation of an unexpect-

edly high similarity can initiate a more focused search for a hitherto unknown regularity to be encoded
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as a new determination.

7. SUMMARY

Although correct analogical reasoning requires knowledge of determinations, two other approaches show promise
for the justification of analogy by similarity. The first is based on assumptions about the form and content of the
system’s representation of the world. Attunement in humans and animals seems to suggest that in constrained
environments this approach to analogy may have promise, but it must await a better theory of representation before
it can be useful. A second approach, using the idea of unidentified relevant features, seems to correspond well to
the traditional idea of analogy. A quantitative relationship is developed between the degree of similarity and the
probability of correctness of an analogy; the similarity measure used goes some way towards being representation-
independent. When intelligent systems embodying full theories of limited rationality are built, an ability to perform
analogical reasoning using both determinations and similarity will be essential in order to allow the system to use its
experience profitably. Analogy by similarity also seems extremely well suited to the task of producing reliably fast,
plausible answers to problems, particularly in a parallel environment.

The analysis in this paper revealed a reliance on a strong assumption about the nature of representation,
namely that each attribute corresponds to an atomic ‘causal factor’ in the actual world. There is an echo here of the
concept of entrenchment that Goodman uses in describing our inductive practice — only well-entrenched terms, that
have frequently been involved in successful inductive hypotheses before, can be used in new inductive hypotheses.
Entrenchment can be codified logically (Russell, 1986a), but a similar analysis does not yet seem possible for the
representation conditions for analogy by similarity.

Entrenchment and the ‘atomic causal factor’ assumption are two examples of conditions on the representation of
knowledge that can be ensured by the use of an appropriate language evolution mechanism. Given such a mechanism,
inference methods that are unsound on the surface can be used reliably and efficiently, since they do not have to
work with an arbitrary knowledge base. Their operation is justified by the semantics of the presence of the terms in
the language. This is an example of what Kuhn has called lezically-embodied knowledge. The use of linguistic biases
such as the least disjunction principle (Utgoff, 1986) in concept learning systems is another example of a syntactic
inference method, but one whose logical basis has not yet been examined. A fourth, simple example is the use of the
Unique Names assumption in database theory.

A first step in the process of unravelling this relationship between language and inference might be to perform a

logical analysis of a given language evolution mechanism and to generate its associated syntactic inference procedure.
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At present, we have very little idea how much the use of human-derived concepts in Al systems (other than pure
deductive systems) contributes to their success. Consequently, we have no idea how to assure the same degree of
success for an autonomous, self-evolving system. Imagining a language none of whose terms embody any knowledge

is perhaps the hardest part of knowing what it is like to be a computer.
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