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Open-universe probability models show merit 
in unifying efforts.

BY STUART RUSSELL

P E R H A P S  T H E  M O S T  enduring idea from the early 
days of AI is that of a declarative system reasoning 
over explicitly represented knowledge with a general 
inference engine. Such systems require a formal 
language to describe the real world; and the real world 
has things in it. For this reason, classical AI adopted 
first-order logic—the mathematics of objects and 
relations—as its foundation.

The key benefit of first-order logic is its expressive 
power, which leads to concise—and hence 
learnable—models. For example, the rules of chess 
occupy 100 pages in first-order logic, 105 pages in 
propositional logic, and 1038 pages in the language of 
finite automata. The power comes from separating 
predicates from their arguments and quantifying over 

those arguments: so one can write rules 
about On(p, c, x, y, t) (piece p of color c is 
on square x, y at move t) without filling 
in each specific value for c, p, x, y, and t.

Modern AI research has addressed 
another important property of the real 
world—pervasive uncertainty about 
both its state and its dynamics—using 
probability theory. A key step was Pearl’s 
development of Bayesian networks, 
which provided the beginnings of a 
formal language for probability mod-
els and enabled rapid progress in rea-
soning, learning, vision, and language 
understanding. The expressive power 
of Bayes nets is, however, limited. 
They assume a fixed set of variables, 
each taking a value from a fixed range; 
thus, they are a propositional formal-
ism, like Boolean circuits. The rules of 
chess and of many other domains are 
beyond them.

What happened next, of course, is that 
classical AI researchers noticed the perva-
sive uncertainty, while modern AI research-
ers noticed, or remembered, that the world 
has things in it. Both traditions arrived at 
the same place: the world is uncertain and 
it has things in it. To deal with this, we have 
to unify logic and probability.

But how? Even the meaning of such 
a goal is unclear. Early attempts by 
Leibniz, Bernoulli, De Morgan, Boole, 
Peirce, Keynes, and Carnap (surveyed 
by Hailperin12 and Howson14) involved 
attaching probabilities to logical sen-
tences. This line of work influenced AI 

Unifying 
Logic and 
Probability

 key insights
˽˽ First-order logic and probability 

theory have addressed complementary 
aspects of knowledge representation 
and reasoning: the ability to describe 
complex domains concisely in terms  
of objects and relations and the ability 
to handle uncertain information.  
Their unification holds enormous 
promise for AI.

˽˽ New languages for defining open-universe 
probability models appear to provide 
the desired unification in a natural way. 
As a bonus, they support probabilistic 
reasoning about the existence and identity 
of objects, which is important for any 
system trying to understand the world 
through perceptual or textual inputs.
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research but has serious shortcomings  
as  a vehicle  for  representing  knowledge.

An alternative approach, arising from 
both branches of AI and from statistics, 
combines the syntactic and semantic 
devices of logic (composable function 
symbols, logical variables, quantifiers) 
with the compositional semantics of 
Bayes nets. The resulting languages 
enable the construction of very large prob-
ability models and have changed the way 
in which real-world data are analyzed.

Despite their successes, these appro
aches miss an important consequence 
of uncertainty in a world of things: uncer-
tainty about what things are in the world. 
Real objects seldom wear unique identi-
fiers or preannounce their existence like 
the cast of a play. In areas such as vision, 
language understanding, Web mining, 
and computer security, the existence of 
objects must be inferred from raw data 
(pixels, strings, and so on) that contain 
no explicit object references.

The difference between knowing all 
the objects in advance and inferring 
their existence from observation cor-
responds to the distinction between 
closed-universe languages such as SQL 
and logic programs and open-universe 
languages such as full first-order logic. 
This article focuses in particular on 
open-universe probability models. 
The section on Open-Universe Models 
describes a formal language, Bayesian 
logic or BLOG, for writing such models.21 
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These two assumptions force every world 
to contain the same objects, which are 
in one-to-one correspondence with the  
ground terms of the language (see 
Figure 1b).b Obviously, the set of worlds 
under open-universe semantics is larger 
and more heterogeneous, which makes 
the task of defining open-universe prob-
ability models more challenging.

The formal semantics of a logical 
language define the truth value of a sen-
tence in a possible world. For example, 
the first-order sentence A = B is true in 
world ω iff A and B refer to the same 
object in ω; thus, it is true in the first 
three worlds of Figure 1a and false in the 
fourth. (It is always false under closed-
universe semantics.) Let T(a) be the set 
of worlds where the sentence a is true; 
then one sentence a entails another 
sentence b, written a  b, if T(a) ⊆ T(b). 
Logical inference algorithms generally 
determine whether a query sentence is 
entailed by the known sentences.

In probability theory, a probability 
model P for a countable space Ω of pos-
sible worlds assigns a probability P(ω) to 
each world, such that 0 ≤ P(ω) ≤ 1 and 
Σω ∈ Ω P(ω) = 1. Given a probability model, 
the probability of a logical sentence α 
is the total probability of all worlds in 
which a is true:

P(α) = Σω∈T(a) P(ω).	 (1)

The conditional probability of one sen-
tence given another is P(a|b ) = P(a ∧ b )/ 
P(b ), provided P(b ) > 0. A random vari-
able is a function from possible worlds 
to a fixed range of values; for example, 
one might define the Boolean random 
variable VA = B to have the value true in 
the first three worlds of Figure 1a and 
false in the fourth. The distribution of 
a random variable is the set of prob-
abilities associated with each of its 
possible values. For example, suppose 
the variable Coin has values 0 (heads) 
and 1 (tails). Then the assertion Coin 
∼ Bernoulli(0.6) says that Coin has a 
Bernoulli distribution with parameter 
0.6, that is, a probability 0.6 for the 
value 1 and 0.4 for the value 0.

b	 The open/closed distinction can also be illus-
trated with a common-sense example. Suppose 
a system knows that Father(William) = Bill and 
Father(Junior) = Bill. How many children does Bill 
have? Under closed-universe semantics—for ex-
ample, in a database—he has exactly two; under 
open-universe semantics, between 1 and ∞.

It gives several examples, including (in 
simplified form) a global seismic moni-
toring system for the Comprehensive 
Nuclear Test-Ban Treaty.

Logic and Probability
This section explains the core concepts 
of logic and probability, beginning with 
possible worlds.a A possible world is a 
formal object (think “data structure”) 
with respect to which the truth of any 
assertion can be evaluated.

For the language of propositional 
logic, in which sentences are composed 
from proposition symbols X1, . . . , Xn 
joined by logical connectives (∧, ∨, ¬, 
⇒, ⇔), the possible worlds ω ∈ Ω are all 
possible assignments of true and false 
to the symbols. First-order logic adds 
the notion of terms, that is, expres-
sions referring to objects; a term is a 
constant symbol, a logical variable, or a 
k-ary function applied to k terms as 
arguments. Proposition symbols are 
replaced by atomic sentences, con-
sisting of either predicate symbols 
applied to terms or equality between 

a	 In logic, a possible world may be called a model 
or structure; in probability theory, a sample 
point. To avoid confusion, this paper uses 
“model” to refer only to probability models.

terms. Thus, Parent(Bill, William) 
and Father(William) = Bill are atomic 
sentences. The quantifiers ∀ and ∃ 
make assertions across all objects, for 
example,

∀ p, c  (Parent( p, c) ∧ Male (p))  ⇔  
  Father (c) = p.

For first-order logic, a possible world 
specifies (1) a set of domain elements (or 
objects) o1, o2, . . . and (2) mappings from 
the constant symbols to the domain 
elements and from the function and 
predicate symbols to functions and rela-
tions on the domain elements. Figure 1a 
shows a simple example with two con-
stants and one binary predicate. Notice 
that first-order logic is an open-universe 
language: even though there are two con-
stant symbols, the possible worlds allow 
for 1, 2, or indeed arbitrarily many objects. 
A closed-universe language enforces 
additional assumptions:

– � The unique names assumption 
requires that distinct terms must 
refer to distinct objects.

– � The domain closure assump-
tion requires that there are no 
objects other than those named 
by terms.

Figure 1. (a) Some of the infinitely many possible worlds for a first-order, open-universe 
language with two constant symbols, A and B, and one binary predicate R(x, y). Gray arrows 
indicate the interpretations of A and B and black arrows connect pairs of objects satisfying 
R. (b) The analogous figure under closed-universe semantics; here, there are exactly four 
possible x, y-pairs and hence 24 = 16 worlds.
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Figure 2. Left: a Bayes net with three Boolean variables, showing the conditional probability  
of true for each variable given its parents. Right: the joint distribution defined by Equation (2).
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Unlike logic, probability theory lacks 
broad agreement on syntactic forms for 
expressing nontrivial assertions. For 
communication among statisticians, 
a combination of English and LATEX 
usually suffices; but precise language 
definitions are needed as the “input for-
mat” for general probabilistic reason-
ing systems and as the “output format” 
for general learning systems. As noted, 
Bayesian networks27 provided a (partial) 
syntax and semantics for the propo-
sitional case. The syntax of a  Bayes 
net for random variables X1,  . . . , Xn  
consists of a directed, acyclic graph 
whose nodes correspond to the ran-
dom variables, together with associated 
local conditional distributions.c The 
semantics specifies a joint distribution 
over the variables as follows:

P(ω) = P(x1, . . . , xn) = ∏i P(xiparents ( Xi )) . � (2)

These definitions have the desirable 
property that every well-formed Bayes net 
corresponds to a proper probability model 
on the associated Cartesian product space. 
Moreover, a sparse graph—reflecting a 
sparse causal structure in the underlying 
domain—leads to a representation that 
is exponentially smaller than the corre-
sponding complete enumeration.

The Bayes net example in Figure 2  
(due to Pearl) shows two independent 
causes, Earthquake and Burglary, that 
influence whether or not an Alarm sounds 
in Professor Pearl’s house. According 
to Equation (2), the joint probability 
P(Burglary, Earthquake, Alarm) is given by

P(Burglary) P(Earthquake)  
  P(Alarm  Burglary, Earthquake) .

The results of this calculation are shown 
in the figure. Notice the eight possible 
worlds are the same ones that would 
exist for a propositional logic theory 
with the same symbols.

A Bayes net is more than just a speci-
fication for a distribution over worlds; it 
is also a stochastic “machine” for gener-
ating worlds. By sampling the variables 
in topological order (that is, parents 
before children), one generates a world 
exactly according to the distribution 

c	 Texts on Bayes nets typically do not define a 
syntax for local conditional distributions oth-
er than tables, although Bayes net software 
packages do.

performed by solving linear programs, 
as suggested by Hailperin. Within the 
subfield of probabilistic databases one 
also finds logical sentences labeled with 
probabilities6—but in this case probabil-
ities are attached directly to the tuples of 
the database. (In AI and statistics, prob-
ability is attached to general relation-
ships whereas observations are viewed 
as incontrovertible evidence.) Although 
probabilistic databases can model com-
plex dependencies, in practice one often 
finds such systems using global indepen-
dence assumptions across tuples.

Halpern13 and Bacchus3 adopted and 
extended Gaifman’s technical approach, 
adding probability expressions to the 
logic. Thus, one can write

∀ h1, h2 Burglary (h1) ∧ ¬ Burglary (h2)  
  Þ  P(Alarm (h1))  >  P(Alarm (h2)),

where now Burglary and Alarm are predi-
cates applying to individual houses. The 
new language is more expressive but does 
not resolve the difficulty that Gaifman 
faced—how to define complete and con-
sistent probability models. Each inequal-
ity constrains the underlying probability 
model to lie in a half-space in the high-
dimensional space of probability mod-
els. Conjoining assertions corresponds 
to intersecting the constraints. Ensuring 
that the intersection yields a single point 
is not easy. In fact, Gaifman’s princi-
pal result8 is a single probability model 
requiring (1) a probability for every pos-
sible ground sentence and (2) probability 
constraints for infinitely many existen-
tially quantified sentences.

Researchers have explored two solu-
tions to this problem. The first involves 
writing a partial theory and then “com-
pleting” it by picking out one canonical 
model in the allowed set. Nilsson23 pro-
posed choosing the maximum entropy 
model consistent with the specified 
constraints. Paskin24 developed a 
“maximum-entropy probabilistic 
logic” with constraints expressed 
as weights (relative probabilities) 
attached to first-order clauses. Such 
models are often called Markov logic 
networks or MLNs30 and have become 
a popular technique for applications 
involving relational data. There is, 
however, a semantic difficulty with 
such models: weights trained in one sce-
nario do not generalize to scenarios 
with different numbers of objects. 

defined in Equation (2). This generative 
view will be helpful in extending Bayes 
nets to the first-order case.

Adding Probabilities to Logic
Early attempts to unify logic and prob-
ability attached probabilities directly 
to logical sentences. The first rigor-
ous treatment, Gaifman’s propositional 
probability logic,9 was augmented with 
algorithmic analysis by Hailperin12 and 
Nilsson.23 In such a logic, one can assert, 
for example,

P(Burglary ⇒ Earthquake) = 0.997006,�(3)

a claim that is implicit in the model 
of Figure 2. The sentence Burglary ⇒ 
Earthquake is true in six of the eight pos-
sible worlds; so, by Equation (1), asser-
tion (3) is equivalent to

P(t t t) + P(t t f ) + P( f t t) + P(  f t f )  
  + P( f f t) + P(  f f f ) = 0.997006 .

Because any particular probability model 
m assigns a probability to every possible 
world, such a constraint will be either true 
or false in m; thus, m, a distribution over 
possible propositional worlds, acts as 
a single possible world, with respect to 
which the truth of any probability assertion 
can be evaluated. Entailment between 
probability assertions is then defined in 
exactly the same way as in ordinary logic; 
thus, assertion (3) entails the assertion

P(Burglary ∧ Earthquake) £ 0.997006,

because the latter is true in every prob-
ability model in which assertion (3) holds. 
Satisfiability of sets of such assertions can 
be determined by linear programming.12 
Hence, we have a “probability logic” in the 
same sense as “temporal logic”—that is, a 
deductive logical system specialized for 
reasoning with probabilistic assertions.

To apply probability logic to tasks 
such as proving the theorems of probabil-
ity theory, a more expressive language 
was needed. Gaifman8 proposed a first-
order probability logic, with possible 
worlds being first-order model structures 
and with probabilities attached to sen-
tences of (function-free) first-order logic.

Within AI, the most direct descendant 
of these ideas appears in Lukasiewicz’s 
probabilistic logic programs, in which 
a probability range is attached to each 
first-order Horn clause and inference is 
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Moreover, by adding irrelevant objects 
to a scenario, one can change the mod-
el’s predictions for a given query to an 
arbitrary extent.16,20

A second approach, which hap-
pens to avoid the problems just noted,d 
builds on the fact that every well-formed  
Bayes net necessarily defines a unique 
probability distribution—a complete 
theory in the terminology of probability 
logics—over the variables it contains. The 
next section describes how this property 
can be combined with the expressive 
power of first-order logical notation.

Bayes Nets with Quantifiers
Soon after their introduction, research-
ers developing Bayes nets for applica-
tions came up against the limitations 
of a propositional language. For exam-
ple, suppose that in Figure 2 there are 
many houses in the same general area 
as Professor Pearl’s: each one needs an 
Alarm variable and a Burglary variable 
with the same CPTs and connected to 
the Earthquake variable in the same 
way. In a propositional language, this  
repeated structure has to be built manu-
ally, one variable at a time. The same 
problem arises with models for sequen-
tial data such as text and time series, 
which contain sequences of identical 
submodels, and in models for Baye
sian parameter learning, where every 
instance variable is influenced by the 
parameter variables in the same way.

At first, researchers simply wrote 
programs to build the networks, using 
ordinary loops to handle repeated struc-
ture. Figure 3 shows pseudocode to build 
an alarm network for R geological fault 
regions, each with H(r) houses.

The pictorial notation of plates was 
developed to denote repeated structure 
and software tools such as BUGS10 and 
Microsoft’s infer.net have facilitated 
a rapid expansion in applications of 
probabilistic methods. In all these tools, 
the model structure is built by a fixed 
program, so every possible world has 
the same random variables connected 
in the same way. Moreover, the code for 
constructing the models is not viewed 
as something that could be the output 
of a learning algorithm.

d	 Briefly, the problems are avoided by separating 
the generative models for object existence and 
object properties and relations and by allowing 
for unobserved objects.

Breese4 proposed a more declarative 
approach reminiscent of Horn clauses. 
Other declarative languages included 
Poole’s Independent Choice Logic, Sato’s 
PRISM, Koller and Pfeffer’s probabilis-
tic relational models, and de Raedt’s 
Bayesian Logic Programs. In all these 
cases, the head of each clause or depen-
dency statement corresponds to a para
meterized set of child random variables,  
with the parent variables being the cor-
responding ground instances of the  
literals in the body of the clause. For exam-
ple, Equation (4) shows the dependency 
statements equivalent to the code frag-
ment in Figure 3:

Burglary(h) ∼ Bernoulli(0.003) 
Earthquake(r) ∼ Bernoulli(0.002) 
Alarm(h) ∼ 

�CPT [. . .] (Earthquake 
(Faultregion(h)), Burglary(h))�

(4)

where CPT denotes a suitable conditional 
probability table indexed by the corre-
sponding arguments. Here, h and r are 
logical variables ranging over houses and 
regions; they are implicitly universally 
quantified. FaultRegion is a function sym-
bol connecting a house to its geological 
region. Together with a relational skeleton 
that enumerates the objects of each type 
and specifies the values of each function 
and relation, a set of dependency state-
ments such as Equation (4) corresponds 
to an ordinary, albeit potentially very 
large, Bayes net. For example, if there are 
two houses in region A and three in region 
B, the corresponding Bayes net is the one 
in Figure 4.

Open-Universe Models
As noted earlier, closed-universe lan
guages disallow uncertainty about what 
things are in the world; the existence 
and identity of all objects must be known 
in advance.

In contrast, an open-universe prob-
ability model (OUPM) defines a proba-
bility distribution over possible worlds 
that vary in the objects they contain 
and in the mapping from symbols to 
objects. Thus, OUPMs can handle data 
from sources (text, video, radar, intelli-
gence reports, among others) that vio-
late the closed-universe assumption. 
Given evidence, OUPMs learn about the 
objects the world contains.

Looking at Figure 1a, the first problem 
is how to ensure that the model specifies a 

An open-universe 
probability model 
(OUPM) defines 
a probability 
distribution over 
possible worlds 
that vary in the 
objects they contain 
and in the mapping 
from symbols 
to objects. Thus, 
OUPMs can handle 
data from sources 
that violate the 
closed-universe 
assumption. 
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proper distribution over a heterogeneous, 
unbounded set of possible worlds. The 
key is to extend the generative view of 
Bayes nets from the propositional to the 
first-order, open-universe case:

– � Bayes nets generate propositional 
worlds one event at a time; each 
event fixes the value of a variable.

– � First-order, closed-universe mod-
els such as Equation (4) define 
generation steps for entire classes 
of events.

– � First-order, open-universe models 
include generative steps that add 
objects to the world rather than just 
fixing their properties and relations.

Consider, for example, an open-universe 
version of the alarm model in Equation 
(4). If one suspects the existence of up 
to three geological fault regions, with 
equal probability, this can be expressed 
as a number statement:

# Region ∼ UniformInt (1, 3) .� (5)

For the sake of illustration, let us assume 
that the number of houses in a region r is 
drawn uniformly between 0 and 4:

# House(FaultRegion = r)  
  ∼ UniformInt(0, 4) .� (6)

Here, FaultRegion is called an origin 
function, since it connects a house to the 
region from which it originates.

Together, the dependency state-
ments (4) and the two number state-
ments (5 and 6), along with the 
necessary type signatures, specify a 
complete distribution over all the 
possible worlds definable with this 
vocabulary. There are infinitely many 
such worlds, but, because the number 
statements are bounded, only finitely 
many—317,680,374 to be precise—
have non-zero probability. Figure 5 
shows an example of a particular world 
constructed from this model.

The BLOG language21 provides a pre-
cise syntax, semantics, and inference 
capability for open-universe probabil-
ity models composed of dependency 
and number statements. BLOG mod-
els can be arbitrarily complex, but they 
inherit the key declarative property 
of Bayes nets: every well-formed BLOG 
model specifies a well-defined probabil-
ity distribution over possible worlds.

To make such a claim precise, one 
must define exactly what these worlds 
are and how the model assigns a prob-
ability to each. The definitions (given 
in full in Brian Milch’s PhD thesis20) 
begin with the objects each world 
contains. In the standard semantics 
of typed first-order logic, objects are 
just numbered tokens with types. In 
BLOG, each object also has an origin, 
indicating how it was generated. (The 
reason for this slightly baroque con-
struction will become clear shortly.) 
For number statements with no ori-
gin functions—for example, Equation 
(5)—the objects have an empty origin; 
for example, 〈Region, , 2〉 refers to the 
second region generated from that 
statement. For number statements 
with origin functions—for example, 

Equation (6)—each object records 
its origin; for example, 〈House, 〈Fault 
Region, 〈Region, , 2〉〉, 3〉 is the third 
house in the second region.

The number variables of a BLOG 
model specify how many objects there 
are of each type with each possible ori-
gin; thus #House〈FaultRegion,〈Region, ,2〉〉 (ω) = 4 
means that in world ω there are 4 houses  
in region 2. The basic variables deter-
mine the values of predicates and func-
tions for all tuples of objects; thus, 
Earthquake〈Region, ,2〉 (ω) = true means that 
in world ω there is an earthquake in 
region 2. A possible world is defined by 
the values of all the number variables 
and basic variables. A world may be 
generated from the model by sampling 
in topological order, for example, see 
Figure 5.

Figure 4. The Bayes net corresponding to Equation (4), given two houses in region A and 
three in B.

AlarmA,1 AlarmA,2

AlarmB,1 AlarmB,2 AlarmB,3

EarthquakeABurglaryA,1 BurglaryA,2

EarthquakeBBurglaryB,1 BurglaryB,2 BurglaryB,3

Figure 5. Construction of one possible world by sampling from the burglary/earthquake 
model. Each row shows the variable being sampled, the value it receives, and the 
probability of that value conditioned on the preceding assignments.

Prob.ValueVariable
#Region
Earthquake〈Region, ,1〉 false 0.998
Earthquake〈Region, ,2〉 false 0.998
#House〈FaultRegion,〈Region, ,1〉〉
#House〈FaultRegion,〈Region, ,2〉〉

2 0.3333

1 0.2
1 0.2

Burglary〈House,〈FaultRegion,〈Region, ,1〉〉,1〉 false 0.997
Burglary〈House,〈FaultRegion,〈Region, ,2〉〉,1〉 true 0.003

Figure 3. Illustrative pseudocode for building a version of the Bayes net in Figure 2 that 
handles R different regions with H(r) houses in each.

loop for r from 1 to R do
add node Earthquaker with no parents, prior 0.002
loop for h from 1 to H(r) do

add node Burglaryr,h with no parents, prior 0.003
add node Alarmr,h with parents Earthquaker, Burglaryr,h
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Examples
The standard “use case” for BLOG has 
three elements: the model, the evi-
dence (the known facts in a given sce-
nario), and the query, which may be 
any expression, possibly with free logi-
cal variables. The answer is a posterior 
joint probability for each possible set 
of substitutions for the free variables, 
given the evidence, according to the 
model.e Every model includes type 
declarations, type signatures for the 
predicates and functions, one or more 
number statements for each type, and 
one dependency statement for each 
predicate and function. (In the exam-
ples here, declarations and signatures 
are omitted where the meaning is 
clear.) Dependency statements use an 
if-then-else syntax to handle so-called 
context-specific dependencies, whereby 
one variable may or may not be a parent 

e	 As with Prolog, there may be infinitely many 
sets of substitutions of unbounded size; de-
signing exploratory interfaces for such answers 
is an interesting HCI challenge.

of another, depending on the value of a 
third variable.

Citation matching. Systems such as 
CiteSeer and Google Scholar extract a 
database-like representation, relating 
papers and researchers by authorship  
and citation links, from raw ASCII citation 
strings. These strings contain no object 
identifiers and include errors of syntax, 
spelling, punctuation, and content, which 
lead in turn to errors in the extracted 
databases. For example, in 2002, Cite
Seer reported over 120 distinct books 
written by Russell and Norvig.

A generative model for this domain 
(Figure 6) connects an underlying, 
unobserved world to the observed 
strings: there are researchers, who 
have names; researchers write papers, 
which have titles; people cite the 
papers, combining the authors’ names 
and the paper’s title (with errors) into 
the text of the citation according to 
some grammar. Given citation strings 
as evidence, a multi-author version 
of this model, trained in an unsuper-
vised fashion, had an error rate two 
to three times lower than CiteSeer’s 
on four standard test sets.25 The infer-
ence process in such a vertically inte-
grated model also exhibits a form of 
collective, knowledge-driven disam-
biguation: the more citations there 
are for a given paper, the more accu-
rately each of them is parsed, because 
the parses have to agree on the facts 
about the paper.

Multitarget tracking. Given a set of 
unlabeled data points generated by 
some unknown, time-varying set of 
objects, the goal is to detect and track 
the underlying objects. In radar sys-
tems, for example, each rotation of the 
radar dish produces a set of blips. New 
objects may appear, existing objects 
may disappear, and false alarms and 
detection failures are possible. The 
standard model (Figure 7) assumes 
independent, linear–Gaussian 
dynamics and measurements. Exact 
inference is provably intractable, but 
MCMC typically works well in practice. 
Perhaps more importantly, elabora-
tions of the scenario (formation fly-
ing, objects heading for unknown 
destinations, objects taking off or 
landing) can be handled by small 
changes to the model without resort-
ing to new mathematical derivations 
and complex programming.

Figure 6. BLOG model for citation information extraction. For simplicity the model assumes 
one author per paper and omits details of the grammar and error models. OM(a, b) is a 
discrete log-normal, base 10, that is, the order of magnitude is 10a±b.

type Researcher, Paper, Citation;
random String Name(Researcher);
random String Title(Paper);
random Paper PubCited(Citation);
random String Text(Citation);
random Boolean Prof(Researcher);
origin Researcher Author(Paper);
#Researcher  ∼  OM(3,1);
Name(r)  ∼  CensusDB_NamePrior();
Prof(r)  ∼  Boolean(0.2);
#Paper(Author=r)

if Prof(r) then  ∼  OM(1.5,0.5) else  ∼  OM(1,0.5);
Title(p)  ∼  CSPaperDB_TitlePrior();
CitedPaper(c)  ∼  UniformChoice(Paper p);
Text(c)  ∼  HMMGrammar(Name(Author(CitedPaper(c))),

Title(CitedPaper(c)));

Figure 7. BLOG model for radar tracking of multiple targets. X(a, t) is the state of aircraft a 
at time t, while Z(b) is the observed position of blip b.

#Aircraft(EntryTime = t)  ∼  Poisson(λa);
Exits(a,t) if InFlight(a,t) then  ∼  Boolean(ae);
InFlight(a,t) =

(t == EntryTime(a)) | (InFlight(a,t-1) & !Exits(a,t-1));
X(a,t) if t = EntryTime(a) then  ∼  InitState()

else if InFlight(a,t) then  ∼  Normal( F*X(a,t-1),Σx);
#Blip(Source=a, Time=t)

if InFlight(a,t) then  ∼  Bernoulli(DetectionProb(X(a,t)));
#Blip(Time=t)  ∼  Poisson(λf);
Z(b) if Source(b)=null then  ∼  UniformInRegion(R);

else  ∼  Normal(H*X(Source(b),Time(b)),Σb);

The probability of a world so con-
structed is the product of the prob-
abilities for all the sampled values; in 
this case, 0.00003972063952. Now it 
becomes clear why each object contains 
its origin: this property ensures that 
every world can be constructed by exactly 
one sampling sequence. If this were not 
the case, the probability of a world would 
be the sum over all possible sampling 
sequences that create it.

Open-universe models may have 
infinitely many random variables, 
so the full theory involves nontrivial 
measure-theoretic considerations. 
For example, the number statement 
#Region ∼ Poisson( m) assigns prob-
ability e−m mk/k! to each nonnegative 
integer k. Moreover, the language 
allows recursion and infinite types 
(integers, strings, and so on). Finally, 
well-formedness disallows cyclic 
dependencies and infinitely receding 
ancestor chains; these conditions are 
undecidable in general, but certain 
syntactic sufficient conditions can be 
checked easily.



JULY 2015  |   VOL.  58  |   NO.  7   |   COMMUNICATIONS OF THE ACM     95

review articles

Nuclear treaty monitoring. Verifying 
the Comprehensive Nuclear-Test-Ban 
Treaty requires finding all seismic events 
on Earth above a minimum magnitude. 
The UN CTBTO maintains a network of 
sensors, the International Monitoring 
System (IMS); its automated processing 
software, based on 100 years of seismol-
ogy research, has a detection failure rate 
of about 30%. The NET-VISA system,2 
based on an OUPM, significantly reduces 
detection failures.

The NET-VISA model (Figure 8) 
expresses the relevant geophysics 
directly. It describes distributions 
over the number of events in a given 
time interval (most of which are natu-
rally occurring) as well as over their 
time, magnitude, depth, and location. 
The locations of natural events are dis-
tributed according to a spatial prior 
trained (like other parts of the model) 
from historical data; man-made 
events are, by the treaty rules, assumed 
to occur uniformly. At every station s, 
each phase (seismic wave type) p from 
an event e produces either 0 or 1 detec-
tions (above-threshold signals); the 
detection probability depends on the 
event magnitude and depth and its dis-
tance from the station. (“False alarm”  
detections also occur according to a 
station-specific rate parameter.) The 
measured arrival time, amplitude, and 
other properties of a detection d depend 
on the properties of the originating 
event and its distance from the station.

Once trained, the model runs con-
tinuously. The evidence consists of 
detections (90% of which are false 
alarms) extracted from raw IMS wave-
form data and the query typically asks 
for the most likely event history, or 
bulletin, given the data. For reasons 
previously explained, NET-VISA uses 
a special-purpose inference algo-
rithm. Results so far are encouraging: 
for example, in 2009 the UN’s SEL3 
automated bulletin missed 27.4% of 
the 27,294 events in the magnitude 
range 3–4 while NET-VISA missed 
11.1%. Moreover, comparisons with 
dense regional networks show that 
NET-VISA finds up to 50% more real 
events than the final bulletins pro-
duced by the UN’s expert seismic ana-
lysts. NET-VISA also tends to associate 
more detections with a given event, 
leading to more accurate location 
estimates (see Figure 9). The CTBTO 

has announced its intention to deploy 
NET-VISA as soon as possible.

Remarks on the examples. Despite 
superficial differences, the three exam-
ples are structurally similar: there are 
unknown objects (papers, aircraft, 
earthquakes) that generate percepts 
according to some physical process (cita
tion, radar detection, seismic propaga-
tion). The same structure and reasoning 
patterns hold for areas such as database 
deduplication and natural language  
understanding. In some cases, inferring 
an object’s existence involves grouping 
percepts together—a process that resem-
bles the clustering task in machine 
learning. In other cases, an object may 
generate no percepts at all and still have 
its existence inferred—as happened, for 

example, when observations of Uranus 
led to the discovery of Neptune. Allowing 
object trajectories to be nonindepen-
dent in Figure 7 enables such inferences 
to take place.

Inference
By Equation (1), the probability P(a|e) 
for a closed query sentence a given 
evidence e is proportional to the sum 
of probabilities for all worlds in which 
a and e are satisfied, with the probability 
for each world being a product of model 
parameters as explained earlier.

Many algorithms exist to calculate 
or approximate this sum of products 
for Bayes nets. Hence, it is natural to 
consider grounding a first-order prob-
ability model by instantiating the 

Figure 8. The NET-VISA model.

#SeismicEvents  ∼  Poisson(T∗λe);
Natural(e)  ∼  Boolean(0.999);
Time(e)  ∼  UniformReal(0,T);
Magnitude(e)  ∼  Exponential(log(10));
Depth(e) if Natural(e) then  ∼  UniformReal(0,700) else = 0;
Location(e) if Natural(e) then  ∼  SpatialPrior()

else  ∼  UniformEarthDistribution();
#Detections(event=e, phase=p, station=s)

if IsDetected(e,p,s) then = 1 else = 0;
IsDetected(e,p,s)  ∼

Logistic(weights(s,p), Magnitude(e), Depth(e), Distance(e,s));
#Detections(site = s)  ∼  Poisson(T∗λf(s));
OnsetTime(d,s)

if (event(d) = null) then  ∼  UniformReal(0,T)
else = Time(event(d)) + Laplace(mt(s),st(s)) +

GeoTT(Distance(event(d),s),Depth(event(d)),phase(d));
Amplitude(d,s)

if (event(d) = null) then  ∼  NoiseAmplitudeDistribution(s)
else  ∼  AmplitudeModel(Magnitude(event(d)),

Distance(event(d),s),Depth(event(d)),phase(d));
... and similar clauses for azimuth, slowness, and phase type.

Figure 9. Location estimates for the DPRK nuclear test of February 12, 2013: UN CTBTO 
Late Event Bulletin (green triangle); NET-VISA (blue square). The tunnel entrance (black 
cross) is 0.75 km from NET-VISA’s estimate. Contours show NET-VISA’s posterior location 
distribution.
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MCMC can move among the open-uni-
verse worlds shown in Figure 1a.

As noted, a typical BLOG model has 
infinitely many possible worlds, each 
of potentially infinite size. As an exam-
ple, consider the multitarget tracking 
model in Figure 7: the function X(a, t), 
denoting the state of aircraft a at time 
t, corresponds to an infinite sequence 
of variables for an unbounded number 
of aircraft at each step. Nonetheless, 
BLOG’s MCMC inference algorithm 
converges to the correct answer, under 
the usual ergodicity conditions, for any 
well-formed BLOG model.20

The algorithm achieves this by sam-
pling not completely specified possible 
worlds but partial worlds, each corre-
sponding to a disjoint set of complete 
worlds. A partial world is a minimal self-
supporting instantiationf of a subset of 
the relevant variables, that is, ancestors 
of the evidence and query variables. 
For example, variables X(a, t) for values 
of t greater than the last observation 
time (or the query time, whichever is 
greater) are irrelevant so the algorithm 
can consider just a finite prefix of the 
infinite sequence. Moreover, the algo-
rithm eliminates isomorphisms under 
object renumberings by computing 
the required combinatorial ratios for 
MCMC transitions between partial 
worlds of different sizes.22

MCMC algorithms for first-order 
languages also benefit from local-
ity of computation27: the probability 
ratio between neighboring worlds 
depends on a subgraph of constant 

f	 An instantiation of a set of variables is self-
supporting if the parents of every variable in 
the set are also in the set.

size around the variables whose values 
are changed. Moreover, a logical query 
can be evaluated incrementally in each 
world visited, usually in constant time 
per world, rather than recomputing it 
from scratch.19, 31

Despite these optimizations, generic  
inference for BLOG and other first-order 
languages remains too slow. Most real-
world applications require a special-
purpose proposal distribution to reduce 
the mixing time. A number of avenues 
are being pursued to resolve this issue:

– � Compiler techniques can generate 
inference code that is specific to 
the model, query, and/or evidence. 
Microsoft’s infer.net uses such 
methods to handle millions of 
variables. Experiments with BLOG 
show speedups of over 100×.18

– � Special-purpose probabilistic hard-
ware—such as Analog Devices’ 
GP5 chip—offers further constant-
factor speedups.

– � Special-purpose samplers jointly 
sample groups of variables that 
are tightly constrained. A library 
of such samplers may render most 
user programs efficiently solvable.

– � Static analysis can transform pro-
grams for efficiency5, 15 and iden-
tify exactly solvable submodels.7

Finally, the rapidly advancing tech-
niques of lifted inference29 aim to unify 
probability and logic at the inferen-
tial level, borrowing and generalizing 
ideas from logical theorem proving. 
Such methods, surveyed by Van den 
Broeck,32 may avoid grounding and 
take advantage of symmetries by 
manipulating symbolic distributions 
over large sets of objects.

Learning
Generative languages such as BLOG 
and BUGS naturally support Bayesian 
parameter learning with no modi-
fication: parameters are defined as 
random variables with priors and ordi-
nary inference yields posterior param-
eter distributions given the evidence. 
For example, in Figure 8 we could 
add a prior λe ∼ Gamma(3, 0.1) for 
the seismic rate parameter λe instead 
of fixing its value in advance; learn-
ing proceeds as data arrive, even in the 
unsupervised case where no ground- 
truth events are supplied. A  “trained 

logical variables with “all possible” 
ground terms in order to generate a 
Bayes net, as illustrated in Figure 4; 
then, existing inference algorithms 
can be applied.

Because of the large size of these 
ground networks, exact inference is usu-
ally infeasible. The most general method 
for approximate inference is Markov 
chain Monte Carlo. MCMC methods 
execute a random walk among possible 
worlds, guided by the relative probabili-
ties of the worlds visited and aggregating 
query results from each world. MCMC 
algorithms vary in the choice of neigh-
borhood structure for the random walk 
and in the proposal distribution from 
which the next state is sampled; sub-
ject to an ergodicity condition on these 
choices, samples will converge to the 
true posterior in the limit. MCMC scales 
well with network size, but its mixing time 
(the time needed before samples reflect 
the true posterior) is sensitive to the 
quantitative structure of the conditional 
distributions; indeed, hard constraints 
may prevent convergence.

BUGS10 and MLNs30 apply MCMC 
to a preconstructed ground network, 
which requires a bound on the size of 
possible worlds and enforces a propo-
sitional “bit-vector” representation 
for them. An alternative approach is 
to apply MCMC directly on the space 
of first-order possible worlds26, 31; this 
provides much more freedom to use, 
for example, a sparse graph or even a 
relational database19 to represent each 
world. Moreover, in this view it is easy to 
see that MCMC moves can not only alter 
relations and functions but also add or 
subtract objects and change the inter-
pretations of constant symbols; thus, 

Figure 10. A Church program that expresses the burglary/earthquake model in Equations (4)−(6).

(define num-regions (mem (lambda () (uniform 1 3))))
(define-record-type region (fields index))
(define regions (map (lambda (i) (make-region i))

(iota(num-regions)))
(define num-houses (mem (lambda (r)(uniform 0 4))))
(define-record-type house (fields fault-region index))
(define houses (map (lambda (r)

(map (lambda (i) (make-house r i))
(iota (num-houses r)))) regions)))

(define earthquake (mem (lambda (r) (flip 0.002))))
(define burglary (mem (lambda (h) (flip 0.003))))
(define alarm (mem (lambda (h)
(if (burglary h)

(if (earthquake (house-fault-region h))
(flip 0.9) (flip 0.8))

(if (earthquake (house-fault-region h))
(flip 0.4) (flip 0.01))))
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model” with fixed parameter values can 
be obtained by, for example, choosing 
maximum a posteriori values. In this  
way many standard machine learning 
methods can be implemented using just 
a few lines of modeling code. Maximum-
likelihood parameter estimation could 
be added by stating that certain param-
eters are learnable, omitting their priors, 
and interleaving maximization steps 
with MCMC inference steps to obtain a 
stochastic online EM algorithm.

Structure learning—generating new 
dependencies and new predicates and 
functions—is more difficult. The stan-
dard idea of trading off degree of fit 
and model complexity can be applied, 
and some model search methods 
from the field of inductive logic pro-
gramming can be generalized to the 
probabilistic case, but as yet little is 
known about how to make such methods 
computationally feasible.

Probability and Programs
Probabilistic programming languages 
or PPLs17 represent a distinct but 
closely related approach for defin-
ing expressive probability models. 
The basic idea is that a randomized 
algorithm, written in an ordinary pro-
gramming language, can be viewed 
not as a program to be executed, but 
as a probability model: a distribution 
over the possible execution traces of 
the program, given inputs. Evidence 
is asserted by fixing any aspect of the 
trace and a query is any predicate on 
traces. For example, one can write a 
simple Java program that rolls three 
six-sided dice; fix the sum to be 13; and 
ask for the probability that the second 
die is even. The answer is a sum over 
probabilities of complete traces; the 
probability of a trace is the product 
of the probabilities of the random 
choices made in that trace.

The first significant PPL was Pfeffer’s 
IBAL,28 a functional language equip
ped with an effective inference engine. 
Church,11 a PPL built on Scheme, gen-
erated interest in the cognitive science 
community as a way to model complex 
forms of learning; it also led to inter-
esting connections to computability 
theory1 and programming language 
research. Figure 10 shows the bur-
glary/earthquake example in Church; 
notice that the PPL code builds a pos-
sible-world data structure explicitly. 

Inference in Church uses MCMC, 
where each move resamples one of the 
stochastic primitives involved in pro-
ducing the current trace.

Execution traces of a randomized 
program may vary in the new objects 
they generate; thus, PPLs have an open-
universe flavor. One can view BLOG as 
a declarative, relational PPL, but there 
is a significant semantic difference: in 
BLOG, in any given possible world, every 
ground term has a single value; thus, 
expressions such as f (1) = f (1) are true by 
definition. In a PPL, on the other hand, 
f (1) = f (1) may be false if f is a stochastic 
function, because each instance of f (1) 
corresponds to a distinct piece of the 
execution trace. Memoizing every sto-
chastic function (via mem in Figure 10) 
restores the standard semantics.

Prospects
These are early days in the process of uni-
fying logic and probability. Experience 
in developing models for a wide range 
of applications will uncover new model-
ing idioms and lead to new kinds of pro-
gramming constructs. And of course, 
inference and learning remain the major 
bottlenecks.

Historically, AI has suffered from 
insularity and fragmentation. Until the  
1990s, it remained isolated from fields  
such as statistics and operations 
research, while its subfields—espe-
cially vision and robotics—went their 
own separate ways. The primary cause 
was mathematical incompatibility: what 
could a statistician of the 1960s, well-
versed in linear regression and mixtures 
of Gaussians, offer an AI researcher 
building a robot to do the grocery shop-
ping? Bayes nets have begun to recon-
nect AI to statistics, vision, and language 
research; first-order probabilistic lan-
guages, which have both Bayes nets and 
first-order logic as special cases, will 
extend and broaden this process.
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