
88 COMMUNICATIONS OF THE ACM | JULY 2015 | VOL. 58 | NO. 7

review articles
DOI:10.1145/2699411

Open-universe probability models show merit
in unifying efforts.

BY STUART RUSSELL

P E R H A P S T H E M O S T enduring idea from the early
days of AI is that of a declarative system reasoning
over explicitly represented knowledge with a general
inference engine. Such systems require a formal
language to describe the real world; and the real world
has things in it. For this reason, classical AI adopted
first-order logic—the mathematics of objects and
relations—as its foundation.

The key benefit of first-order logic is its expressive
power, which leads to concise—and hence
learnable—models. For example, the rules of chess
occupy 100 pages in first-order logic, 105 pages in
propositional logic, and 1038 pages in the language of
finite automata. The power comes from separating
predicates from their arguments and quantifying over

those arguments: so one can write rules
about On(p, c, x, y, t) (piece p of color c is
on square x, y at move t) without filling
in each specific value for c, p, x, y, and t.

Modern AI research has addressed
another important property of the real
world—pervasive uncertainty about
both its state and its dynamics—using
probability theory. A key step was Pearl’s
development of Bayesian networks,
which provided the beginnings of a
formal language for probability mod-
els and enabled rapid progress in rea-
soning, learning, vision, and language
understanding. The expressive power
of Bayes nets is, however, limited.
They assume a fixed set of variables,
each taking a value from a fixed range;
thus, they are a propositional formal-
ism, like Boolean circuits. The rules of
chess and of many other domains are
beyond them.

What happened next, of course, is that
classical AI researchers noticed the perva-
sive uncertainty, while modern AI research-
ers noticed, or remembered, that the world
has things in it. Both traditions arrived at
the same place: the world is uncertain and
it has things in it. To deal with this, we have
to unify logic and probability.

But how? Even the meaning of such
a goal is unclear. Early attempts by
Leibniz, Bernoulli, De Morgan, Boole,
Peirce, Keynes, and Carnap (surveyed
by Hailperin12 and Howson14) involved
attaching probabilities to logical sen-
tences. This line of work influenced AI

Unifying
Logic and
Probability

 key insights
˽˽ First-order logic and probability

theory have addressed complementary
aspects of knowledge representation
and reasoning: the ability to describe
complex domains concisely in terms
of objects and relations and the ability
to handle uncertain information.
Their unification holds enormous
promise for AI.

˽˽ New languages for defining open-universe
probability models appear to provide
the desired unification in a natural way.
As a bonus, they support probabilistic
reasoning about the existence and identity
of objects, which is important for any
system trying to understand the world
through perceptual or textual inputs.

JULY 2015 | VOL. 58 | NO. 7 | COMMUNICATIONS OF THE ACM 89

I
M

A
G

E
 B

Y
 A

L
M

A
G

A
M

I

research but has serious shortcomings
as  a vehicle  for  representing  knowledge.

An alternative approach, arising from
both branches of AI and from statistics,
combines the syntactic and semantic
devices of logic (composable function
symbols, logical variables, quantifiers)
with the compositional semantics of
Bayes nets. The resulting languages
enable the construction of very large prob-
ability models and have changed the way
in which real-world data are analyzed.

Despite their successes, these appro
aches miss an important consequence
of uncertainty in a world of things: uncer-
tainty about what things are in the world.
Real objects seldom wear unique identi-
fiers or preannounce their existence like
the cast of a play. In areas such as vision,
language understanding, Web mining,
and computer security, the existence of
objects must be inferred from raw data
(pixels, strings, and so on) that contain
no explicit object references.

The difference between knowing all
the objects in advance and inferring
their existence from observation cor-
responds to the distinction between
closed-universe languages such as SQL
and logic programs and open-universe
languages such as full first-order logic.
This article focuses in particular on
open-universe probability models.
The section on Open-Universe Models
describes a formal language, Bayesian
logic or BLOG, for writing such models.21

90 COMMUNICATIONS OF THE ACM | JULY 2015 | VOL. 58 | NO. 7

review articles

These two assumptions force every world
to contain the same objects, which are
in one-to-one correspondence with the
ground terms of the language (see
Figure 1b).b Obviously, the set of worlds
under open-universe semantics is larger
and more heterogeneous, which makes
the task of defining open-universe prob-
ability models more challenging.

The formal semantics of a logical
language define the truth value of a sen-
tence in a possible world. For example,
the first-order sentence A = B is true in
world ω iff A and B refer to the same
object in ω; thus, it is true in the first
three worlds of Figure 1a and false in the
fourth. (It is always false under closed-
universe semantics.) Let T(a) be the set
of worlds where the sentence a is true;
then one sentence a entails another
sentence b, written a  b, if T(a) ⊆ T(b).
Logical inference algorithms generally
determine whether a query sentence is
entailed by the known sentences.

In probability theory, a probability
model P for a countable space Ω of pos-
sible worlds assigns a probability P(ω) to
each world, such that 0 ≤ P(ω) ≤ 1 and
Σω ∈ Ω P(ω) = 1. Given a probability model,
the probability of a logical sentence α
is the total probability of all worlds in
which a is true:

P(α) = Σω∈T(a) P(ω).	 (1)

The conditional probability of one sen-
tence given another is P(a|b ) = P(a ∧ b )/
P(b ), provided P(b ) > 0. A random vari-
able is a function from possible worlds
to a fixed range of values; for example,
one might define the Boolean random
variable VA = B to have the value true in
the first three worlds of Figure 1a and
false in the fourth. The distribution of
a random variable is the set of prob-
abilities associated with each of its
possible values. For example, suppose
the variable Coin has values 0 (heads)
and 1 (tails). Then the assertion Coin
∼ Bernoulli(0.6) says that Coin has a
Bernoulli distribution with parameter
0.6, that is, a probability 0.6 for the
value 1 and 0.4 for the value 0.

b	 The open/closed distinction can also be illus-
trated with a common-sense example. Suppose
a system knows that Father(William) = Bill and
Father(Junior) = Bill. How many children does Bill
have? Under closed-universe semantics—for ex-
ample, in a database—he has exactly two; under
open-universe semantics, between 1 and ∞.

It gives several examples, including (in
simplified form) a global seismic moni-
toring system for the Comprehensive
Nuclear Test-Ban Treaty.

Logic and Probability
This section explains the core concepts
of logic and probability, beginning with
possible worlds.a A possible world is a
formal object (think “data structure”)
with respect to which the truth of any
assertion can be evaluated.

For the language of propositional
logic, in which sentences are composed
from proposition symbols X1, . . . , Xn
joined by logical connectives (∧, ∨, ¬,
⇒, ⇔), the possible worlds ω ∈ Ω are all
possible assignments of true and false
to the symbols. First-order logic adds
the notion of terms, that is, expres-
sions referring to objects; a term is a
constant symbol, a logical variable, or a
k-ary function applied to k terms as
arguments. Proposition symbols are
replaced by atomic sentences, con-
sisting of either predicate symbols
applied to terms or equality between

a	 In logic, a possible world may be called a model
or structure; in probability theory, a sample
point. To avoid confusion, this paper uses
“model” to refer only to probability models.

terms. Thus, Parent(Bill, William)
and Father(William) = Bill are atomic
sentences. The quantifiers ∀ and ∃
make assertions across all objects, for
example,

∀ p, c  (Parent( p, c) ∧ Male (p))  ⇔
  Father (c) = p.

For first-order logic, a possible world
specifies (1) a set of domain elements (or
objects) o1, o2, . . . and (2) mappings from
the constant symbols to the domain
elements and from the function and
predicate symbols to functions and rela-
tions on the domain elements. Figure 1a
shows a simple example with two con-
stants and one binary predicate. Notice
that first-order logic is an open-universe
language: even though there are two con-
stant symbols, the possible worlds allow
for 1, 2, or indeed arbitrarily many objects.
A closed-universe language enforces
additional assumptions:

– � The unique names assumption
requires that distinct terms must
refer to distinct objects.

– � The domain closure assump-
tion requires that there are no
objects other than those named
by terms.

Figure 1. (a) Some of the infinitely many possible worlds for a first-order, open-universe
language with two constant symbols, A and B, and one binary predicate R(x, y). Gray arrows
indicate the interpretations of A and B and black arrows connect pairs of objects satisfying
R. (b) The analogous figure under closed-universe semantics; here, there are exactly four
possible x, y-pairs and hence 24 = 16 worlds.

A

B

A

B

A

B

A

B

A

B
(b)

A BA B A B A B A B

A BA BA B A B A B A B

. . .

.(a)

Figure 2. Left: a Bayes net with three Boolean variables, showing the conditional probability
of true for each variable given its parents. Right: the joint distribution defined by Equation (2).

0.003
P(B)

Alarm

EarthquakeBurglary

B
t
t
f
f

E
t
f
t
f

P(A | B,E)

0.9

0.4
0.01

0.8

0.002
P(E) B A P(B, E, A)E

t
t
t
t

t
f
t
f

0.0000054

0.0023952
0.0005988

0.0000006
t
t
f
f

f
f
f
f

t
f
t
f

0.0007976

0.00995006
0.98505594

0.0011964
t
t
f
f

JULY 2015 | VOL. 58 | NO. 7 | COMMUNICATIONS OF THE ACM 91

review articles

Unlike logic, probability theory lacks
broad agreement on syntactic forms for
expressing nontrivial assertions. For
communication among statisticians,
a combination of English and LATEX
usually suffices; but precise language
definitions are needed as the “input for-
mat” for general probabilistic reason-
ing systems and as the “output format”
for general learning systems. As noted,
Bayesian networks27 provided a (partial)
syntax and semantics for the propo-
sitional case. The syntax of a Bayes
net for random variables X1,  . . . , Xn
consists of a directed, acyclic graph
whose nodes correspond to the ran-
dom variables, together with associated
local conditional distributions.c The
semantics specifies a joint distribution
over the variables as follows:

P(ω) = P(x1, . . . , xn) = ∏i P(xiparents (Xi)) . � (2)

These definitions have the desirable
property that every well-formed Bayes net
corresponds to a proper probability model
on the associated Cartesian product space.
Moreover, a sparse graph—reflecting a
sparse causal structure in the underlying
domain—leads to a representation that
is exponentially smaller than the corre-
sponding complete enumeration.

The Bayes net example in Figure 2
(due to Pearl) shows two independent
causes, Earthquake and Burglary, that
influence whether or not an Alarm sounds
in Professor Pearl’s house. According
to Equation (2), the joint probability
P(Burglary, Earthquake, Alarm) is given by

P(Burglary) P(Earthquake)
  P(Alarm  Burglary, Earthquake) .

The results of this calculation are shown
in the figure. Notice the eight possible
worlds are the same ones that would
exist for a propositional logic theory
with the same symbols.

A Bayes net is more than just a speci-
fication for a distribution over worlds; it
is also a stochastic “machine” for gener-
ating worlds. By sampling the variables
in topological order (that is, parents
before children), one generates a world
exactly according to the distribution

c	 Texts on Bayes nets typically do not define a
syntax for local conditional distributions oth-
er than tables, although Bayes net software
packages do.

performed by solving linear programs,
as suggested by Hailperin. Within the
subfield of probabilistic databases one
also finds logical sentences labeled with
probabilities6—but in this case probabil-
ities are attached directly to the tuples of
the database. (In AI and statistics, prob-
ability is attached to general relation-
ships whereas observations are viewed
as incontrovertible evidence.) Although
probabilistic databases can model com-
plex dependencies, in practice one often
finds such systems using global indepen-
dence assumptions across tuples.

Halpern13 and Bacchus3 adopted and
extended Gaifman’s technical approach,
adding probability expressions to the
logic. Thus, one can write

∀ h1, h2 Burglary (h1) ∧ ¬ Burglary (h2)
  Þ  P(Alarm (h1))  >  P(Alarm (h2)),

where now Burglary and Alarm are predi-
cates applying to individual houses. The
new language is more expressive but does
not resolve the difficulty that Gaifman
faced—how to define complete and con-
sistent probability models. Each inequal-
ity constrains the underlying probability
model to lie in a half-space in the high-
dimensional space of probability mod-
els. Conjoining assertions corresponds
to intersecting the constraints. Ensuring
that the intersection yields a single point
is not easy. In fact, Gaifman’s princi-
pal result8 is a single probability model
requiring (1) a probability for every pos-
sible ground sentence and (2) probability
constraints for infinitely many existen-
tially quantified sentences.

Researchers have explored two solu-
tions to this problem. The first involves
writing a partial theory and then “com-
pleting” it by picking out one canonical
model in the allowed set. Nilsson23 pro-
posed choosing the maximum entropy
model consistent with the specified
constraints. Paskin24 developed a
“maximum-entropy probabilistic
logic” with constraints expressed
as weights (relative probabilities)
attached to first-order clauses. Such
models are often called Markov logic
networks or MLNs30 and have become
a popular technique for applications
involving relational data. There is,
however, a semantic difficulty with
such models: weights trained in one sce-
nario do not generalize to scenarios
with different numbers of objects.

defined in Equation (2). This generative
view will be helpful in extending Bayes
nets to the first-order case.

Adding Probabilities to Logic
Early attempts to unify logic and prob-
ability attached probabilities directly
to logical sentences. The first rigor-
ous treatment, Gaifman’s propositional
probability logic,9 was augmented with
algorithmic analysis by Hailperin12 and
Nilsson.23 In such a logic, one can assert,
for example,

P(Burglary ⇒ Earthquake) = 0.997006,�(3)

a claim that is implicit in the model
of Figure 2. The sentence Burglary ⇒
Earthquake is true in six of the eight pos-
sible worlds; so, by Equation (1), asser-
tion (3) is equivalent to

P(t t t) + P(t t f) + P(f t t) + P(  f t f)
  + P(f f t) + P(  f f f) = 0.997006 .

Because any particular probability model
m assigns a probability to every possible
world, such a constraint will be either true
or false in m; thus, m, a distribution over
possible propositional worlds, acts as
a single possible world, with respect to
which the truth of any probability assertion
can be evaluated. Entailment between
probability assertions is then defined in
exactly the same way as in ordinary logic;
thus, assertion (3) entails the assertion

P(Burglary ∧ Earthquake) £ 0.997006,

because the latter is true in every prob-
ability model in which assertion (3) holds.
Satisfiability of sets of such assertions can
be determined by linear programming.12
Hence, we have a “probability logic” in the
same sense as “temporal logic”—that is, a
deductive logical system specialized for
reasoning with probabilistic assertions.

To apply probability logic to tasks
such as proving the theorems of probabil-
ity theory, a more expressive language
was needed. Gaifman8 proposed a first-
order probability logic, with possible
worlds being first-order model structures
and with probabilities attached to sen-
tences of (function-free) first-order logic.

Within AI, the most direct descendant
of these ideas appears in Lukasiewicz’s
probabilistic logic programs, in which
a probability range is attached to each
first-order Horn clause and inference is

92 COMMUNICATIONS OF THE ACM | JULY 2015 | VOL. 58 | NO. 7

review articles

Moreover, by adding irrelevant objects
to a scenario, one can change the mod-
el’s predictions for a given query to an
arbitrary extent.16,20

A second approach, which hap-
pens to avoid the problems just noted,d
builds on the fact that every well-formed
Bayes net necessarily defines a unique
probability distribution—a complete
theory in the terminology of probability
logics—over the variables it contains. The
next section describes how this property
can be combined with the expressive
power of first-order logical notation.

Bayes Nets with Quantifiers
Soon after their introduction, research-
ers developing Bayes nets for applica-
tions came up against the limitations
of a propositional language. For exam-
ple, suppose that in Figure 2 there are
many houses in the same general area
as Professor Pearl’s: each one needs an
Alarm variable and a Burglary variable
with the same CPTs and connected to
the Earthquake variable in the same
way. In a propositional language, this
repeated structure has to be built manu-
ally, one variable at a time. The same
problem arises with models for sequen-
tial data such as text and time series,
which contain sequences of identical
submodels, and in models for Baye
sian parameter learning, where every
instance variable is influenced by the
parameter variables in the same way.

At first, researchers simply wrote
programs to build the networks, using
ordinary loops to handle repeated struc-
ture. Figure 3 shows pseudocode to build
an alarm network for R geological fault
regions, each with H(r) houses.

The pictorial notation of plates was
developed to denote repeated structure
and software tools such as BUGS10 and
Microsoft’s infer.net have facilitated
a rapid expansion in applications of
probabilistic methods. In all these tools,
the model structure is built by a fixed
program, so every possible world has
the same random variables connected
in the same way. Moreover, the code for
constructing the models is not viewed
as something that could be the output
of a learning algorithm.

d	 Briefly, the problems are avoided by separating
the generative models for object existence and
object properties and relations and by allowing
for unobserved objects.

Breese4 proposed a more declarative
approach reminiscent of Horn clauses.
Other declarative languages included
Poole’s Independent Choice Logic, Sato’s
PRISM, Koller and Pfeffer’s probabilis-
tic relational models, and de Raedt’s
Bayesian Logic Programs. In all these
cases, the head of each clause or depen-
dency statement corresponds to a para
meterized set of child random variables,
with the parent variables being the cor-
responding ground instances of the
literals in the body of the clause. For exam-
ple, Equation (4) shows the dependency
statements equivalent to the code frag-
ment in Figure 3:

Burglary(h) ∼ Bernoulli(0.003)
Earthquake(r) ∼ Bernoulli(0.002)
Alarm(h) ∼

�CPT [. . .] (Earthquake
(Faultregion(h)), Burglary(h))�

(4)

where CPT denotes a suitable conditional
probability table indexed by the corre-
sponding arguments. Here, h and r are
logical variables ranging over houses and
regions; they are implicitly universally
quantified. FaultRegion is a function sym-
bol connecting a house to its geological
region. Together with a relational skeleton
that enumerates the objects of each type
and specifies the values of each function
and relation, a set of dependency state-
ments such as Equation (4) corresponds
to an ordinary, albeit potentially very
large, Bayes net. For example, if there are
two houses in region A and three in region
B, the corresponding Bayes net is the one
in Figure 4.

Open-Universe Models
As noted earlier, closed-universe lan
guages disallow uncertainty about what
things are in the world; the existence
and identity of all objects must be known
in advance.

In contrast, an open-universe prob-
ability model (OUPM) defines a proba-
bility distribution over possible worlds
that vary in the objects they contain
and in the mapping from symbols to
objects. Thus, OUPMs can handle data
from sources (text, video, radar, intelli-
gence reports, among others) that vio-
late the closed-universe assumption.
Given evidence, OUPMs learn about the
objects the world contains.

Looking at Figure 1a, the first problem
is how to ensure that the model specifies a

An open-universe
probability model
(OUPM) defines
a probability
distribution over
possible worlds
that vary in the
objects they contain
and in the mapping
from symbols
to objects. Thus,
OUPMs can handle
data from sources
that violate the
closed-universe
assumption.

JULY 2015 | VOL. 58 | NO. 7 | COMMUNICATIONS OF THE ACM 93

review articles

proper distribution over a heterogeneous,
unbounded set of possible worlds. The
key is to extend the generative view of
Bayes nets from the propositional to the
first-order, open-universe case:

– � Bayes nets generate propositional
worlds one event at a time; each
event fixes the value of a variable.

– � First-order, closed-universe mod-
els such as Equation (4) define
generation steps for entire classes
of events.

– � First-order, open-universe models
include generative steps that add
objects to the world rather than just
fixing their properties and relations.

Consider, for example, an open-universe
version of the alarm model in Equation
(4). If one suspects the existence of up
to three geological fault regions, with
equal probability, this can be expressed
as a number statement:

Region ∼ UniformInt (1, 3) .� (5)

For the sake of illustration, let us assume
that the number of houses in a region r is
drawn uniformly between 0 and 4:

House(FaultRegion = r)
  ∼ UniformInt(0, 4) .� (6)

Here, FaultRegion is called an origin
function, since it connects a house to the
region from which it originates.

Together, the dependency state-
ments (4) and the two number state-
ments (5 and 6), along with the
necessary type signatures, specify a
complete distribution over all the
possible worlds definable with this
vocabulary. There are infinitely many
such worlds, but, because the number
statements are bounded, only finitely
many—317,680,374 to be precise—
have non-zero probability. Figure 5
shows an example of a particular world
constructed from this model.

The BLOG language21 provides a pre-
cise syntax, semantics, and inference
capability for open-universe probabil-
ity models composed of dependency
and number statements. BLOG mod-
els can be arbitrarily complex, but they
inherit the key declarative property
of Bayes nets: every well-formed BLOG
model specifies a well-defined probabil-
ity distribution over possible worlds.

To make such a claim precise, one
must define exactly what these worlds
are and how the model assigns a prob-
ability to each. The definitions (given
in full in Brian Milch’s PhD thesis20)
begin with the objects each world
contains. In the standard semantics
of typed first-order logic, objects are
just numbered tokens with types. In
BLOG, each object also has an origin,
indicating how it was generated. (The
reason for this slightly baroque con-
struction will become clear shortly.)
For number statements with no ori-
gin functions—for example, Equation
(5)—the objects have an empty origin;
for example, 〈Region, , 2〉 refers to the
second region generated from that
statement. For number statements
with origin functions—for example,

Equation (6)—each object records
its origin; for example, 〈House, 〈Fault
Region, 〈Region, , 2〉〉, 3〉 is the third
house in the second region.

The number variables of a BLOG
model specify how many objects there
are of each type with each possible ori-
gin; thus #House〈FaultRegion,〈Region, ,2〉〉 (ω) = 4
means that in world ω there are 4 houses
in region 2. The basic variables deter-
mine the values of predicates and func-
tions for all tuples of objects; thus,
Earthquake〈Region, ,2〉 (ω) = true means that
in world ω there is an earthquake in
region 2. A possible world is defined by
the values of all the number variables
and basic variables. A world may be
generated from the model by sampling
in topological order, for example, see
Figure 5.

Figure 4. The Bayes net corresponding to Equation (4), given two houses in region A and
three in B.

AlarmA,1 AlarmA,2

AlarmB,1 AlarmB,2 AlarmB,3

EarthquakeABurglaryA,1 BurglaryA,2

EarthquakeBBurglaryB,1 BurglaryB,2 BurglaryB,3

Figure 5. Construction of one possible world by sampling from the burglary/earthquake
model. Each row shows the variable being sampled, the value it receives, and the
probability of that value conditioned on the preceding assignments.

Prob.ValueVariable
#Region
Earthquake〈Region, ,1〉 false 0.998
Earthquake〈Region, ,2〉 false 0.998
#House〈FaultRegion,〈Region, ,1〉〉
#House〈FaultRegion,〈Region, ,2〉〉

2 0.3333

1 0.2
1 0.2

Burglary〈House,〈FaultRegion,〈Region, ,1〉〉,1〉 false 0.997
Burglary〈House,〈FaultRegion,〈Region, ,2〉〉,1〉 true 0.003

Figure 3. Illustrative pseudocode for building a version of the Bayes net in Figure 2 that
handles R different regions with H(r) houses in each.

loop for r from 1 to R do
add node Earthquaker with no parents, prior 0.002
loop for h from 1 to H(r) do

add node Burglaryr,h with no parents, prior 0.003
add node Alarmr,h with parents Earthquaker, Burglaryr,h

94 COMMUNICATIONS OF THE ACM | JULY 2015 | VOL. 58 | NO. 7

review articles

Examples
The standard “use case” for BLOG has
three elements: the model, the evi-
dence (the known facts in a given sce-
nario), and the query, which may be
any expression, possibly with free logi-
cal variables. The answer is a posterior
joint probability for each possible set
of substitutions for the free variables,
given the evidence, according to the
model.e Every model includes type
declarations, type signatures for the
predicates and functions, one or more
number statements for each type, and
one dependency statement for each
predicate and function. (In the exam-
ples here, declarations and signatures
are omitted where the meaning is
clear.) Dependency statements use an
if-then-else syntax to handle so-called
context-specific dependencies, whereby
one variable may or may not be a parent

e	 As with Prolog, there may be infinitely many
sets of substitutions of unbounded size; de-
signing exploratory interfaces for such answers
is an interesting HCI challenge.

of another, depending on the value of a
third variable.

Citation matching. Systems such as
CiteSeer and Google Scholar extract a
database-like representation, relating
papers and researchers by authorship
and citation links, from raw ASCII citation
strings. These strings contain no object
identifiers and include errors of syntax,
spelling, punctuation, and content, which
lead in turn to errors in the extracted
databases. For example, in 2002, Cite
Seer reported over 120 distinct books
written by Russell and Norvig.

A generative model for this domain
(Figure 6) connects an underlying,
unobserved world to the observed
strings: there are researchers, who
have names; researchers write papers,
which have titles; people cite the
papers, combining the authors’ names
and the paper’s title (with errors) into
the text of the citation according to
some grammar. Given citation strings
as evidence, a multi-author version
of this model, trained in an unsuper-
vised fashion, had an error rate two
to three times lower than CiteSeer’s
on four standard test sets.25 The infer-
ence process in such a vertically inte-
grated model also exhibits a form of
collective, knowledge-driven disam-
biguation: the more citations there
are for a given paper, the more accu-
rately each of them is parsed, because
the parses have to agree on the facts
about the paper.

Multitarget tracking. Given a set of
unlabeled data points generated by
some unknown, time-varying set of
objects, the goal is to detect and track
the underlying objects. In radar sys-
tems, for example, each rotation of the
radar dish produces a set of blips. New
objects may appear, existing objects
may disappear, and false alarms and
detection failures are possible. The
standard model (Figure 7) assumes
independent, linear–Gaussian
dynamics and measurements. Exact
inference is provably intractable, but
MCMC typically works well in practice.
Perhaps more importantly, elabora-
tions of the scenario (formation fly-
ing, objects heading for unknown
destinations, objects taking off or
landing) can be handled by small
changes to the model without resort-
ing to new mathematical derivations
and complex programming.

Figure 6. BLOG model for citation information extraction. For simplicity the model assumes
one author per paper and omits details of the grammar and error models. OM(a, b) is a
discrete log-normal, base 10, that is, the order of magnitude is 10a±b.

type Researcher, Paper, Citation;
random String Name(Researcher);
random String Title(Paper);
random Paper PubCited(Citation);
random String Text(Citation);
random Boolean Prof(Researcher);
origin Researcher Author(Paper);
#Researcher ∼ OM(3,1);
Name(r) ∼ CensusDB_NamePrior();
Prof(r) ∼ Boolean(0.2);
#Paper(Author=r)

if Prof(r) then ∼ OM(1.5,0.5) else ∼ OM(1,0.5);
Title(p) ∼ CSPaperDB_TitlePrior();
CitedPaper(c) ∼ UniformChoice(Paper p);
Text(c) ∼ HMMGrammar(Name(Author(CitedPaper(c))),

Title(CitedPaper(c)));

Figure 7. BLOG model for radar tracking of multiple targets. X(a, t) is the state of aircraft a
at time t, while Z(b) is the observed position of blip b.

#Aircraft(EntryTime = t) ∼ Poisson(λa);
Exits(a,t) if InFlight(a,t) then ∼ Boolean(ae);
InFlight(a,t) =

(t == EntryTime(a)) | (InFlight(a,t-1) & !Exits(a,t-1));
X(a,t) if t = EntryTime(a) then ∼ InitState()

else if InFlight(a,t) then ∼ Normal(F*X(a,t-1),Σx);
#Blip(Source=a, Time=t)

if InFlight(a,t) then ∼ Bernoulli(DetectionProb(X(a,t)));
#Blip(Time=t) ∼ Poisson(λf);
Z(b) if Source(b)=null then ∼ UniformInRegion(R);

else ∼ Normal(H*X(Source(b),Time(b)),Σb);

The probability of a world so con-
structed is the product of the prob-
abilities for all the sampled values; in
this case, 0.00003972063952. Now it
becomes clear why each object contains
its origin: this property ensures that
every world can be constructed by exactly
one sampling sequence. If this were not
the case, the probability of a world would
be the sum over all possible sampling
sequences that create it.

Open-universe models may have
infinitely many random variables,
so the full theory involves nontrivial
measure-theoretic considerations.
For example, the number statement
#Region ∼ Poisson( m) assigns prob-
ability e−m mk/k! to each nonnegative
integer k. Moreover, the language
allows recursion and infinite types
(integers, strings, and so on). Finally,
well-formedness disallows cyclic
dependencies and infinitely receding
ancestor chains; these conditions are
undecidable in general, but certain
syntactic sufficient conditions can be
checked easily.

JULY 2015 | VOL. 58 | NO. 7 | COMMUNICATIONS OF THE ACM 95

review articles

Nuclear treaty monitoring. Verifying
the Comprehensive Nuclear-Test-Ban
Treaty requires finding all seismic events
on Earth above a minimum magnitude.
The UN CTBTO maintains a network of
sensors, the International Monitoring
System (IMS); its automated processing
software, based on 100 years of seismol-
ogy research, has a detection failure rate
of about 30%. The NET-VISA system,2
based on an OUPM, significantly reduces
detection failures.

The NET-VISA model (Figure 8)
expresses the relevant geophysics
directly. It describes distributions
over the number of events in a given
time interval (most of which are natu-
rally occurring) as well as over their
time, magnitude, depth, and location.
The locations of natural events are dis-
tributed according to a spatial prior
trained (like other parts of the model)
from historical data; man-made
events are, by the treaty rules, assumed
to occur uniformly. At every station s,
each phase (seismic wave type) p from
an event e produces either 0 or 1 detec-
tions (above-threshold signals); the
detection probability depends on the
event magnitude and depth and its dis-
tance from the station. (“False alarm”
detections also occur according to a
station-specific rate parameter.) The
measured arrival time, amplitude, and
other properties of a detection d depend
on the properties of the originating
event and its distance from the station.

Once trained, the model runs con-
tinuously. The evidence consists of
detections (90% of which are false
alarms) extracted from raw IMS wave-
form data and the query typically asks
for the most likely event history, or
bulletin, given the data. For reasons
previously explained, NET-VISA uses
a special-purpose inference algo-
rithm. Results so far are encouraging:
for example, in 2009 the UN’s SEL3
automated bulletin missed 27.4% of
the 27,294 events in the magnitude
range 3–4 while NET-VISA missed
11.1%. Moreover, comparisons with
dense regional networks show that
NET-VISA finds up to 50% more real
events than the final bulletins pro-
duced by the UN’s expert seismic ana-
lysts. NET-VISA also tends to associate
more detections with a given event,
leading to more accurate location
estimates (see Figure 9). The CTBTO

has announced its intention to deploy
NET-VISA as soon as possible.

Remarks on the examples. Despite
superficial differences, the three exam-
ples are structurally similar: there are
unknown objects (papers, aircraft,
earthquakes) that generate percepts
according to some physical process (cita
tion, radar detection, seismic propaga-
tion). The same structure and reasoning
patterns hold for areas such as database
deduplication and natural language
understanding. In some cases, inferring
an object’s existence involves grouping
percepts together—a process that resem-
bles the clustering task in machine
learning. In other cases, an object may
generate no percepts at all and still have
its existence inferred—as happened, for

example, when observations of Uranus
led to the discovery of Neptune. Allowing
object trajectories to be nonindepen-
dent in Figure 7 enables such inferences
to take place.

Inference
By Equation (1), the probability P(a|e)
for a closed query sentence a given
evidence e is proportional to the sum
of probabilities for all worlds in which
a and e are satisfied, with the probability
for each world being a product of model
parameters as explained earlier.

Many algorithms exist to calculate
or approximate this sum of products
for Bayes nets. Hence, it is natural to
consider grounding a first-order prob-
ability model by instantiating the

Figure 8. The NET-VISA model.

#SeismicEvents ∼ Poisson(T∗λe);
Natural(e) ∼ Boolean(0.999);
Time(e) ∼ UniformReal(0,T);
Magnitude(e) ∼ Exponential(log(10));
Depth(e) if Natural(e) then ∼ UniformReal(0,700) else = 0;
Location(e) if Natural(e) then ∼ SpatialPrior()

else ∼ UniformEarthDistribution();
#Detections(event=e, phase=p, station=s)

if IsDetected(e,p,s) then = 1 else = 0;
IsDetected(e,p,s) ∼

Logistic(weights(s,p), Magnitude(e), Depth(e), Distance(e,s));
#Detections(site = s) ∼ Poisson(T∗λf(s));
OnsetTime(d,s)

if (event(d) = null) then ∼ UniformReal(0,T)
else = Time(event(d)) + Laplace(mt(s),st(s)) +

GeoTT(Distance(event(d),s),Depth(event(d)),phase(d));
Amplitude(d,s)

if (event(d) = null) then ∼ NoiseAmplitudeDistribution(s)
else ∼ AmplitudeModel(Magnitude(event(d)),

Distance(event(d),s),Depth(event(d)),phase(d));
... and similar clauses for azimuth, slowness, and phase type.

Figure 9. Location estimates for the DPRK nuclear test of February 12, 2013: UN CTBTO
Late Event Bulletin (green triangle); NET-VISA (blue square). The tunnel entrance (black
cross) is 0.75 km from NET-VISA’s estimate. Contours show NET-VISA’s posterior location
distribution.

96 COMMUNICATIONS OF THE ACM | JULY 2015 | VOL. 58 | NO. 7

review articles

MCMC can move among the open-uni-
verse worlds shown in Figure 1a.

As noted, a typical BLOG model has
infinitely many possible worlds, each
of potentially infinite size. As an exam-
ple, consider the multitarget tracking
model in Figure 7: the function X(a, t),
denoting the state of aircraft a at time
t, corresponds to an infinite sequence
of variables for an unbounded number
of aircraft at each step. Nonetheless,
BLOG’s MCMC inference algorithm
converges to the correct answer, under
the usual ergodicity conditions, for any
well-formed BLOG model.20

The algorithm achieves this by sam-
pling not completely specified possible
worlds but partial worlds, each corre-
sponding to a disjoint set of complete
worlds. A partial world is a minimal self-
supporting instantiationf of a subset of
the relevant variables, that is, ancestors
of the evidence and query variables.
For example, variables X(a, t) for values
of t greater than the last observation
time (or the query time, whichever is
greater) are irrelevant so the algorithm
can consider just a finite prefix of the
infinite sequence. Moreover, the algo-
rithm eliminates isomorphisms under
object renumberings by computing
the required combinatorial ratios for
MCMC transitions between partial
worlds of different sizes.22

MCMC algorithms for first-order
languages also benefit from local-
ity of computation27: the probability
ratio between neighboring worlds
depends on a subgraph of constant

f	 An instantiation of a set of variables is self-
supporting if the parents of every variable in
the set are also in the set.

size around the variables whose values
are changed. Moreover, a logical query
can be evaluated incrementally in each
world visited, usually in constant time
per world, rather than recomputing it
from scratch.19, 31

Despite these optimizations, generic
inference for BLOG and other first-order
languages remains too slow. Most real-
world applications require a special-
purpose proposal distribution to reduce
the mixing time. A number of avenues
are being pursued to resolve this issue:

– � Compiler techniques can generate
inference code that is specific to
the model, query, and/or evidence.
Microsoft’s infer.net uses such
methods to handle millions of
variables. Experiments with BLOG
show speedups of over 100×.18

– � Special-purpose probabilistic hard-
ware—such as Analog Devices’
GP5 chip—offers further constant-
factor speedups.

– � Special-purpose samplers jointly
sample groups of variables that
are tightly constrained. A library
of such samplers may render most
user programs efficiently solvable.

– � Static analysis can transform pro-
grams for efficiency5, 15 and iden-
tify exactly solvable submodels.7

Finally, the rapidly advancing tech-
niques of lifted inference29 aim to unify
probability and logic at the inferen-
tial level, borrowing and generalizing
ideas from logical theorem proving.
Such methods, surveyed by Van den
Broeck,32 may avoid grounding and
take advantage of symmetries by
manipulating symbolic distributions
over large sets of objects.

Learning
Generative languages such as BLOG
and BUGS naturally support Bayesian
parameter learning with no modi-
fication: parameters are defined as
random variables with priors and ordi-
nary inference yields posterior param-
eter distributions given the evidence.
For example, in Figure 8 we could
add a prior λe ∼ Gamma(3, 0.1) for
the seismic rate parameter λe instead
of fixing its value in advance; learn-
ing proceeds as data arrive, even in the
unsupervised case where no ground-
truth events are supplied. A “trained

logical variables with “all possible”
ground terms in order to generate a
Bayes net, as illustrated in Figure 4;
then, existing inference algorithms
can be applied.

Because of the large size of these
ground networks, exact inference is usu-
ally infeasible. The most general method
for approximate inference is Markov
chain Monte Carlo. MCMC methods
execute a random walk among possible
worlds, guided by the relative probabili-
ties of the worlds visited and aggregating
query results from each world. MCMC
algorithms vary in the choice of neigh-
borhood structure for the random walk
and in the proposal distribution from
which the next state is sampled; sub-
ject to an ergodicity condition on these
choices, samples will converge to the
true posterior in the limit. MCMC scales
well with network size, but its mixing time
(the time needed before samples reflect
the true posterior) is sensitive to the
quantitative structure of the conditional
distributions; indeed, hard constraints
may prevent convergence.

BUGS10 and MLNs30 apply MCMC
to a preconstructed ground network,
which requires a bound on the size of
possible worlds and enforces a propo-
sitional “bit-vector” representation
for them. An alternative approach is
to apply MCMC directly on the space
of first-order possible worlds26, 31; this
provides much more freedom to use,
for example, a sparse graph or even a
relational database19 to represent each
world. Moreover, in this view it is easy to
see that MCMC moves can not only alter
relations and functions but also add or
subtract objects and change the inter-
pretations of constant symbols; thus,

Figure 10. A Church program that expresses the burglary/earthquake model in Equations (4)−(6).

(define num-regions (mem (lambda () (uniform 1 3))))
(define-record-type region (fields index))
(define regions (map (lambda (i) (make-region i))

(iota(num-regions)))
(define num-houses (mem (lambda (r)(uniform 0 4))))
(define-record-type house (fields fault-region index))
(define houses (map (lambda (r)

(map (lambda (i) (make-house r i))
(iota (num-houses r)))) regions)))

(define earthquake (mem (lambda (r) (flip 0.002))))
(define burglary (mem (lambda (h) (flip 0.003))))
(define alarm (mem (lambda (h)
(if (burglary h)

(if (earthquake (house-fault-region h))
(flip 0.9) (flip 0.8))

(if (earthquake (house-fault-region h))
(flip 0.4) (flip 0.01))))

JULY 2015 | VOL. 58 | NO. 7 | COMMUNICATIONS OF THE ACM 97

review articles

model” with fixed parameter values can
be obtained by, for example, choosing
maximum a posteriori values. In this
way many standard machine learning
methods can be implemented using just
a few lines of modeling code. Maximum-
likelihood parameter estimation could
be added by stating that certain param-
eters are learnable, omitting their priors,
and interleaving maximization steps
with MCMC inference steps to obtain a
stochastic online EM algorithm.

Structure learning—generating new
dependencies and new predicates and
functions—is more difficult. The stan-
dard idea of trading off degree of fit
and model complexity can be applied,
and some model search methods
from the field of inductive logic pro-
gramming can be generalized to the
probabilistic case, but as yet little is
known about how to make such methods
computationally feasible.

Probability and Programs
Probabilistic programming languages
or PPLs17 represent a distinct but
closely related approach for defin-
ing expressive probability models.
The basic idea is that a randomized
algorithm, written in an ordinary pro-
gramming language, can be viewed
not as a program to be executed, but
as a probability model: a distribution
over the possible execution traces of
the program, given inputs. Evidence
is asserted by fixing any aspect of the
trace and a query is any predicate on
traces. For example, one can write a
simple Java program that rolls three
six-sided dice; fix the sum to be 13; and
ask for the probability that the second
die is even. The answer is a sum over
probabilities of complete traces; the
probability of a trace is the product
of the probabilities of the random
choices made in that trace.

The first significant PPL was Pfeffer’s
IBAL,28 a functional language equip
ped with an effective inference engine.
Church,11 a PPL built on Scheme, gen-
erated interest in the cognitive science
community as a way to model complex
forms of learning; it also led to inter-
esting connections to computability
theory1 and programming language
research. Figure 10 shows the bur-
glary/earthquake example in Church;
notice that the PPL code builds a pos-
sible-world data structure explicitly.

Inference in Church uses MCMC,
where each move resamples one of the
stochastic primitives involved in pro-
ducing the current trace.

Execution traces of a randomized
program may vary in the new objects
they generate; thus, PPLs have an open-
universe flavor. One can view BLOG as
a declarative, relational PPL, but there
is a significant semantic difference: in
BLOG, in any given possible world, every
ground term has a single value; thus,
expressions such as f (1) = f (1) are true by
definition. In a PPL, on the other hand,
f (1) = f (1) may be false if f is a stochastic
function, because each instance of f (1)
corresponds to a distinct piece of the
execution trace. Memoizing every sto-
chastic function (via mem in Figure 10)
restores the standard semantics.

Prospects
These are early days in the process of uni-
fying logic and probability. Experience
in developing models for a wide range
of applications will uncover new model-
ing idioms and lead to new kinds of pro-
gramming constructs. And of course,
inference and learning remain the major
bottlenecks.

Historically, AI has suffered from
insularity and fragmentation. Until the
1990s, it remained isolated from fields
such as statistics and operations
research, while its subfields—espe-
cially vision and robotics—went their
own separate ways. The primary cause
was mathematical incompatibility: what
could a statistician of the 1960s, well-
versed in linear regression and mixtures
of Gaussians, offer an AI researcher
building a robot to do the grocery shop-
ping? Bayes nets have begun to recon-
nect AI to statistics, vision, and language
research; first-order probabilistic lan-
guages, which have both Bayes nets and
first-order logic as special cases, will
extend and broaden this process.

Acknowledgments
My former students Brian Milch, Hanna
Pasula, Nimar Arora, Erik Sudderth,
Bhaskara Marthi, David Sontag, Daniel
Ong, and Andrey Kolobov contributed
to this research, as did NSF, DARPA, the
Chaire Blaise Pascal, and ANR.�

References

1.	 Ackerman, N., Freer, C., Roy, D. On the computability of
conditional probability. arXiv 1005.3014, 2013.

2.	 Arora, N.S., Russell, S., Sudderth, E. NET-VISA:

Network processing vertically integrated
seismic analysis. Bull. Seism. Soc. Am.
103 (2013).

3.	 Bacchus, F. Representing and Reasoning with
Probabilistic Knowledge. MIT Press, 1990.

4.	 Breese, J.S. Construction of belief and decision
networks. Comput. Intell. 8 (1992) 624–647.

5.	 Claret, G., Rajamani, S.K., Nori, A.V., Gordon, A.D.,
Borgström, J. Bayesian inference using data flow
analysis. In FSE-13 (2013).

6.	 Dalvi, N.N., Ré, C., Suciu, D. Probabilistic databases.
CACM 52, 7 (2009), 86–94.

7.	 Fischer, B., Schumann, J. AutoBayes: A system for
generating data analysis programs from statistical
models. J. Funct. Program 13 (2003).

8.	 Gaifman, H. Concerning measures in first order calculi.
Israel J. Math. 2 (1964), 1–18.

9.	 Gaifman, H. Concerning measures on
Boolean algebras. Pacific J. Math. 14 (1964),
61–73.

10.	 Gilks, W.R., Thomas, A., Spiegelhalter, D.J. A language
and program for complex Bayesian modelling. The
Statistician 43 (1994), 169–178.

11.	 Goodman, N.D., Mansinghka, V.K., Roy, D., Bonawitz, K.,
Tenenbaum, J.B. Church: A language for generative
models. In UAI-08 (2008).

12.	 Hailperin, T. Probability logic. Notre Dame J. Formal
Logic 25, 3 (1984), 198–212.

13.	 Halpern, J.Y. An analysis of first-order logics of
probability. AIJ 46, 3 (1990), 311–350.

14.	 Howson, C. Probability and logic. J. Appl. Logic 1, 3–4
(2003), 151–165.

15.	 Hur, C.-K., Nori, A.V., Rajamani, S.K., Samuel, S. Slicing
probabilistic programs. In PLDI-14 (2014).

16.	 Jain, D., Kirchlechner, B., Beetz, M. Extending Markov
logic to model probability distributions in relational
domains. In KI-07 (2007).

17.	 Koller, D., McAllester, D.A., Pfeffer, A. Effective Bayesian
inference for stochastic programs. In AAAI-97 (1997).

18.	 Li, L., Wu, Y., Russell, S. SWIFT: Compiled inference for
probabilistic programs. Tech. Report EECS-2015-12, UC
Berkeley, 2015.

19.	 McCallum, A., Schultz, K., Singh, S. FACTORIE:
Probabilistic programming via imperatively defined
factor graphs. In NIPS 22 (2010).

20.	 Milch, B. Probabilistic models with unknown objects.
PhD thesis, UC Berkeley, 2006.

21.	 Milch, B., Marthi, B., Sontag, D., Russell, S.J., Ong, D.,
Kolobov, A. BLOG: Probabilistic models with unknown
objects. In IJCAI-05 (2005).

22.	 Milch, B., Russell, S.J. General-purpose MCMC inference
over relational structures. In UAI-06 (2006).

23.	 Nilsson, N.J. Probabilistic logic. AIJ 28 (1986), 71–87.
24.	 Paskin, M. Maximum entropy probabilistic logic. Tech.

Report UCB/CSD-01-1161, UC Berkeley, 2002.
25.	 Pasula, H., Marthi, B., Milch, B., Russell, S.J., Shpitser, I.

Identity uncertainty and citation matching. In NIPS
15 (2003).

26.	 Pasula, H., Russell, S.J. Approximate inference for
first-order probabilistic languages. In IJCAI-01 (2001).

27.	 Pearl, J. Probabilistic Reasoning in Intelligent Systems.
Morgan Kaufmann, 1988.

28.	 Pfeffer, A. IBAL: A probabilistic rational programming
language. In IJCAI-01 (2001).

29.	 Poole, D. First-order probabilistic inference. In
IJCAI-03 (2003).

30.	 Richardson, M., Domingos, P. Markov logic networks.
Machine Learning 62, 1–2 (2006), 107–136.

31.	 Russell, S.J. Expressive probability models in science.
In Discovery Science (Tokyo, 1999).

32.	 Van den Broeck, G. Lifted Inference and Learning in
Statistical Relational Models. PhD thesis, Katholieke
Universiteit Leuven, 2013.

Stuart Russell (russell@cs.berkeley.edu), is a professor
of computer science and Smith-Zadeh Professor of
Engineering at the University of California, Berkeley.

Copyright held by author.
Publication rights licensed to ACM. $15.00.

Watch the authors discuss
their work in this exclusive
Communications video.
http://cacm.acm.org/
videos/unifying-logic-
and-probability

