# TEMPORAL PROBABILITY MODELS

Chapter 15, Sections 1-5

#### Outline

- Time and uncertainty
- $\diamondsuit$  Inference: filtering, prediction, smoothing
- Hidden Markov models
- Kalman filters (a brief mention)
- $\Diamond$ Dynamic Bayesian networks
- $\Diamond$ Particle filtering

#### Time and uncertainty

The world changes; we need to track and predict it

Diabetes management vs vehicle diagnosis

Basic idea: copy state and evidence variables for each time step

 $\mathbf{X}_t = \mathsf{set}$  of unobservable state variables at time t

e.g.,  $BloodSugar_t$ ,  $StomachContents_t$ , etc.

 $\mathbf{E}_t = \mathsf{set}$  of observable evidence variables at time t

e.g.,  $MeasuredBloodSugar_t$ ,  $PulseRate_t$ ,  $FoodEaten_t$ 

This assumes discrete time; step size depends on problem

Notation:  $\mathbf{X}_{a:b} = \mathbf{X}_a, \mathbf{X}_{a+1}, \dots, \mathbf{X}_{b-1}, \mathbf{X}_b$ 

# Markov processes (Markov chains)

Construct a Bayes net from these variables: parents?

Markov assumption:  $\mathbf{X}_t$  depends on **bounded** subset of  $\mathbf{X}_{0:t-1}$ 

First-order Markov process:  $P(X_t|X_{0:t-1}) = P(X_t|X_{t-1})$ Second-order Markov process:  $P(X_t|X_{0:t-1}) = P(X_t|X_{t-2},X_{t-1})$ 

 $\begin{pmatrix} \mathbf{x} \\ \mathbf{x} \end{pmatrix}$ 



Sensor Markov assumption:  $P(\mathbf{E}_t|\mathbf{X}_{0:t},\mathbf{E}_{0:t-1}) = P(\mathbf{E}_t|\mathbf{X}_t)$ 

Stationary process: transition model  $P(\mathbf{X}_t|\mathbf{X}_{t-1})$  and sensor model  $P(\mathbf{E}_t|\mathbf{X}_t)$  fixed for all t

#### Example



First-order Markov assumption not exactly true in real world!

- Increase order of Markov process
   Augment state, e.g., add Tempt, Pressure,

Example: robot motion.

Augment position and velocity with  $Battery_t$ 

#### Inference tasks

Filtering:  $\mathbf{P}(\mathbf{X}_t|\mathbf{e}_{1:t})$ 

belief state—input to the decision process of a rational agent

Prediction:  $P(\mathbf{X}_{t+k}|\mathbf{e}_{1:t})$  for k>0evaluation of possible action sequences;

like filtering without the evidence

Smoothing:  $\mathbf{P}(\mathbf{X}_k|\mathbf{e}_{1:t})$  for  $0 \leq k < t$  better estimate of past states, essential for learning

Most likely explanation:  $\arg\max_{\mathbf{x}_{1:t}} P(\mathbf{x}_{1:t}|\mathbf{e}_{1:t})$  speech recognition, decoding with a noisy channel

#### Filtering

Aim: devise a recursive state estimation algorithm:

$$P(X_{t+1}|e_{1:t+1}) = f(e_{t+1}, P(X_t|e_{1:t}))$$

$$\begin{split} \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) &= \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t},\mathbf{e}_{t+1}) \\ &= \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1},\mathbf{e}_{1:t})\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t}) \\ &= \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1})\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t}) \end{split}$$

I.e., prediction + estimation. Prediction by summing out  $\mathbf{X}_{i}$ :

$$\begin{split} \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) &= \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}) \sum_{\mathbf{x}_t} \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{x}_t,\mathbf{e}_{1:t}) P(\mathbf{x}_t|\mathbf{e}_{1:t}) \\ &= \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}) \sum_{\mathbf{x}_t} \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{x}_t) P(\mathbf{x}_t|\mathbf{e}_{1:t}) \end{split}$$

 $\begin{aligned} \mathbf{f}_{1:t+1} &= \text{FORWARD}(\mathbf{f}_{1:t}, \mathbf{e}_{t+1}) \text{ where } \mathbf{f}_{1:t} = \mathbf{P}(\mathbf{X}_t|\mathbf{e}_{1:t}) \\ \text{Time and space constant (independent of } t) \end{aligned}$ 

#### Filtering example



#### Smoothing



Divide evidence  $\mathbf{e}_{1:t}$  into  $\mathbf{e}_{1:k}$ ,  $\mathbf{e}_{k+1:t}$ :

$$\begin{split} \mathbf{P}(\mathbf{X}_k|\mathbf{e}_{1:t}) &= \mathbf{P}(\mathbf{X}_k|\mathbf{e}_{1:k},\mathbf{e}_{k+1:t}) \\ &= \alpha \mathbf{P}(\mathbf{X}_k|\mathbf{e}_{1:k}) \mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{X}_k,\mathbf{e}_{1:k}) \\ &= \alpha \mathbf{P}(\mathbf{X}_k|\mathbf{e}_{1:k}) \mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{X}_k) \\ &= \alpha \mathbf{f}_{1:k} \mathbf{b}_{k+1:t} \end{split}$$

Backward message computed by a backwards recursion:

$$\begin{split} \mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{X}_k) &= \sum_{\mathbf{x}_{k+1}} \mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{X}_k, \mathbf{x}_{k+1}) \mathbf{P}(\mathbf{x}_{k+1}|\mathbf{X}_k) \\ &= \sum_{\mathbf{x}_{k+1}} \mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{x}_{k+1}) \mathbf{P}(\mathbf{x}_{k+1}|\mathbf{X}_k) \\ &= \sum_{\mathbf{x}_{k+1}} \mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{x}_{k+1}) \mathbf{P}(\mathbf{e}_{k+2:t}|\mathbf{x}_{k+1}) \mathbf{P}(\mathbf{x}_{k+1}|\mathbf{X}_k) \end{split}$$

Smoothing example Rain<sub>1</sub>  $Rain_2$ 

Forward-backward algorithm: cache forward messages along the way Time linear in t (polytree inference), space  $O(t|\mathbf{f}|)$ 

# Most likely explanation

Most likely sequence  $\neq$  sequence of most likely states!!!!

Most likely path to each  $x_{i+1}$ = most likely path to some  $x_i$  plus one more step

$$\max_{\mathbf{x}_1...\mathbf{x}_t} \mathbf{P}(\mathbf{x}_1,\dots,\mathbf{x}_t,\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1})$$

$$= P\left(e_{\ell+1}|\mathbf{X}_{\ell+1}\right) \max_{\mathbf{X}_{\ell}} \left( P(\mathbf{X}_{\ell+1}|\mathbf{x}_{\ell}) \max_{\mathbf{x}_{\ell} = \mathbf{X}_{\ell-1}} P(\mathbf{x}_{1}, \dots, \mathbf{x}_{\ell-1}, \mathbf{x}_{\ell}|e_{1:\ell}) \right)$$

Identical to filtering, except  $\mathbf{f}_{1:t}$  replaced by

$$\mathbf{m}_{1:t} = \max_{\mathbf{x}_1 \dots \mathbf{x}_{t-1}} \mathbf{P}(\mathbf{x}_1, \dots, \mathbf{x}_{t-1}, \mathbf{X}_t | \mathbf{e}_{1:t}),$$

I.e.,  $\mathbf{m}_{1:t}(i)$  gives the probability of the most likely path to state i. Update has sum replaced by max, giving the Viterbi algorithm:

$$\mathbf{m}_{1:t+1} = \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}) \max_{\mathbf{X}_t} \left( \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{x}_t)\mathbf{m}_{1:t} \right)$$

#### Viterbi example



#### <u> Hidden Markov models</u>

 $\mathbf{X}_t$  is a single, discrete variable (usually  $\mathbf{E}_t$  is too) Domain of  $X_t$  is  $\{1,\dots,S\}$ 

Transition matrix 
$$\mathbf{T}_{ij}=P(X_t\!=\!j|X_{t-1}\!=\!i)$$
, e.g.,  $\begin{pmatrix}0.7&0.3\\0.3&0.7\end{pmatrix}$ 

e.g., with  $U_1\!=\!true$ ,  $\mathbf{O}_1=\left[\begin{array}{cc} & & & \\ & 0 & & 0.2 \end{array}\right]$ Sensor matrix  $O_t$  for each time step, diagonal elements  $P(e_t|X_t=i)$  or with  $II_t=true$   $O_t=\int_0^t 0.9$ 

Forward and backward messages as column vectors:

$$\mathbf{f}_{1:t+1} = \alpha \mathbf{O}_{t+1} \mathbf{T}^{\mathsf{T}} \mathbf{f}_{1:t}$$
$$\mathbf{b}_{k+1:t} = \mathbf{T} \mathbf{O}_{k+1} \mathbf{b}_{k+2:t}$$

Forward-backward algorithm needs time  ${\cal O}(S^2t)$  and space  ${\cal O}(St)$ 

## Country dance algorithm

Can avoid storing all forward messages in smoothing by running forward algorithm backwards:

$$\begin{array}{ccc} \mathbf{f}_{1:t+1} &= \alpha \mathbf{O}_{t+1} \mathbf{T}^{\top} \mathbf{f}_{1:t} \\ \mathbf{O}_{t+1}^{-1} \mathbf{f}_{1:t+1} &= \alpha \mathbf{T}^{\top} \mathbf{f}_{1:t} \\ \alpha'(\mathbf{T}^{\top})^{-1} \mathbf{O}_{t+1}^{-1} \mathbf{f}_{1:t+1} &= \mathbf{f}_{1:t} \end{array}$$

Algorithm: forward pass computes  $\mathbf{f}_t$ , backward pass does  $\mathbf{f}_i$ ,  $\mathbf{b}_i$ 



## Country dance algorithm

Can avoid storing all forward messages in smoothing by running forward algorithm backwards:

$$\begin{array}{c} \mathbf{f}_{1:t+1} = \alpha \mathbf{O}_{t+1} \mathbf{T}^{\top} \mathbf{f}_{1:t} \\ \mathbf{O}_{t+1}^{-1} \mathbf{f}_{1:t+1} = \alpha \mathbf{T}^{\top} \mathbf{f}_{1:t} \\ \alpha'(\mathbf{T}^{\top})^{-1} \mathbf{O}_{t+1}^{-1} \mathbf{f}_{1:t+1} = \mathbf{f}_{1:t} \end{array}$$

Algorithm: forward pass computes  $f_t$ , backward pass does  $f_i$ ,  $b_i$ 



## Country dance algorithm

Can avoid storing all forward messages in smoothing by running forward algorithm backwards:

$$\begin{aligned} \mathbf{f}_{1:t+1} &= \alpha \mathbf{O}_{t+1} \mathbf{T}^{\mathsf{T}} \mathbf{f}_{1:t} \\ \mathbf{O}_{t+1}^{-1} \mathbf{f}_{1:t+1} &= \alpha \mathbf{T}^{\mathsf{T}} \mathbf{f}_{1:t} \\ \alpha'(\mathbf{T}^{\mathsf{T}})^{-1} \mathbf{O}_{t+1}^{-1} \mathbf{f}_{1:t+1} &= \mathbf{f}_{1:t} \end{aligned}$$

Algorithm: forward pass computes  $f_t$ , backward pass does  $f_i$ ,  $b_i$ 



### Country dance algorithm

Can avoid storing all forward messages in smoothing by running forward algorithm backwards:

$$\begin{aligned} \mathbf{f}_{1:t+1} &= \alpha \mathbf{O}_{t+1} \mathbf{T}^{\top} \mathbf{f}_{1:t} \\ \mathbf{O}_{t+1}^{-1} \mathbf{f}_{1:t+1} &= \alpha \mathbf{T}^{\top} \mathbf{f}_{1:t} \\ \alpha'(\mathbf{T}^{\top})^{-1} \mathbf{O}_{t+1}^{-1} \mathbf{f}_{1:t+1} &= \mathbf{f}_{1:t} \end{aligned}$$

Algorithm: forward pass computes  $f_t$ , backward pass does  $f_i$ ,  $b_i$ 



## Country dance algorithm

Can avoid storing all forward messages in smoothing by running forward algorithm backwards:

$$\begin{aligned} \mathbf{f}_{1:t+1} &= \alpha \mathbf{O}_{t+1} \mathbf{T}^{\mathsf{T}} \mathbf{f}_{1:t} \\ \mathbf{O}_{t+1}^{-1} \mathbf{f}_{1:t+1} &= \alpha \mathbf{T}^{\mathsf{T}} \mathbf{f}_{1:t} \\ \alpha'(\mathbf{T}^{\mathsf{T}})^{-1} \mathbf{O}_{t+1}^{-1} \mathbf{f}_{1:t+1} &= \mathbf{f}_{1:t} \end{aligned}$$

Algorithm: forward pass computes  $f_t$ , backward pass does  $f_i$ ,  $b_i$ 



## Country dance algorithm

Can avoid storing all forward messages in smoothing by running forward algorithm backwards:

$$\begin{array}{ccc} \mathbf{f}_{1:t+1} &= \alpha \mathbf{O}_{t+1} \mathbf{T}^{\mathsf{T}} \mathbf{f}_{1:t} \\ \mathbf{O}_{t+1}^{-1} \mathbf{f}_{1:t+1} &= \alpha \mathbf{T}^{\mathsf{T}} \mathbf{f}_{1:t} \\ \alpha' (\mathbf{T}^{\mathsf{T}})^{-1} \mathbf{O}_{t+1}^{-1} \mathbf{f}_{1:t+1} &= \mathbf{f}_{1:t} \end{array}$$

Algorithm: forward pass computes  $f_t$ , backward pass does  $f_i$ ,  $b_i$ 



## Country dance algorithm

Can avoid storing all forward messages in smoothing by running forward algorithm backwards:

$$\begin{array}{ccc} \mathbf{f}_{1:t+1} &= \alpha \mathbf{O}_{t+1} \mathbf{T}^{\top} \mathbf{f}_{1:t} \\ \mathbf{O}_{t+1}^{-1} \mathbf{f}_{1:t+1} &= \alpha \mathbf{T}^{\top} \mathbf{f}_{1:t} \\ \alpha'(\mathbf{T}^{\top})^{-1} \mathbf{O}_{t+1}^{-1} \mathbf{f}_{1:t+1} &= \mathbf{f}_{1:t} \end{array}$$

Algorithm: forward pass computes  $f_t$ , backward pass does  $f_i$ ,  $b_i$ 



## Country dance algorithm

Can avoid storing all forward messages in smoothing by running forward algorithm backwards:

$$\begin{array}{c} \mathbf{f}_{1:t+1} = \alpha \mathbf{O}_{t+1} \mathbf{T}^{\mathsf{T}} \mathbf{f}_{1:t} \\ \mathbf{O}_{t+1}^{-1} \mathbf{f}_{1:t+1} = \alpha \mathbf{T}^{\mathsf{T}} \mathbf{f}_{1:t} \\ \alpha' (\mathbf{T}^{\mathsf{T}})^{-1} \mathbf{O}_{t+1}^{-1} \mathbf{f}_{1:t+1} = \mathbf{f}_{1:t} \end{array}$$

Algorithm: forward pass computes  $f_t$ , backward pass does  $f_i$ ,  $b_i$ 



## Country dance algorithm

Can avoid storing all forward messages in smoothing by running forward algorithm backwards:

$$\begin{aligned} \mathbf{f}_{1:t+1} &= \alpha \mathbf{O}_{t+1} \mathbf{T}^{\mathsf{T}} \mathbf{f}_{1:t} \\ \mathbf{O}_{t+1}^{-1} \mathbf{f}_{1:t+1} &= \alpha \mathbf{T}^{\mathsf{T}} \mathbf{f}_{1:t} \\ \alpha'(\mathbf{T}^{\mathsf{T}})^{-1} \mathbf{O}_{t+1}^{-1} \mathbf{f}_{1:t+1} &= \mathbf{f}_{1:t} \end{aligned}$$

Algorithm: forward pass computes  $f_t$ , backward pass does  $f_i$ ,  $b_i$ 



### Country dance algorithm

Can avoid storing all forward messages in smoothing by running forward algorithm backwards:

$$\begin{array}{c} \mathbf{f}_{1:t+1} = \alpha \mathbf{O}_{t+1} \mathbf{T}^{\top} \mathbf{f}_{1:t} \\ \mathbf{O}_{t+1}^{-1} \mathbf{f}_{1:t+1} = \alpha \mathbf{T}^{\top} \mathbf{f}_{1:t} \\ \alpha' (\mathbf{T}^{\top})^{-1} \mathbf{O}_{t+1}^{-1} \mathbf{f}_{1:t+1} = \mathbf{f}_{1:t} \end{array}$$

Algorithm: forward pass computes  $f_t$ , backward pass does  $f_i$ ,  $b_i$ 



#### Kalman filters

Modelling systems described by a set of continuous variables, e.g., tracking a bird flying— $\mathbf{X}_t = X, Y, Z, X, Y, Z$ . Airplanes, robots, ecosystems, economies, chemical plants, planets,



Gaussian prior, linear Gaussian transition model and sensor model

# Updating Gaussian distributions

Prediction step: if  $\mathbf{P}(\mathbf{X}_t|\mathbf{e}_{1:t})$  is Gaussian, then prediction

$$\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t}) = \int_{\mathbf{X}_t} \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{x}_t) P(\mathbf{x}_t|\mathbf{e}_{1:t}) \ d\mathbf{x}_t$$

is Gaussian. If  $\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t})$  is Gaussian, then the updated distribution

$$\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) = \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1})\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t})$$

Hence  $\mathbf{P}(\mathbf{X}_t|\mathbf{e}_{1:t})$  is multivariate Gaussian  $N(\pmb{\mu}_t,\pmb{\Sigma}_t)$  for all t

unboundedly as  $t \to \infty$ General (nonlinear, non-Gaussian) process: description of posterior grows

#### Simple 1-D example

Gaussian random walk on X-axis, s.d.  $\sigma_x$ , sensor s.d.  $\sigma_z$ 

9

-2 X position

> 4 6

### General Kalman update

Transition and sensor models:

$$P(\mathbf{x}_{t+1}|\mathbf{x}_t) = N(\mathbf{F}\mathbf{x}_t, \mathbf{\Sigma}_x)(\mathbf{x}_{t+1})$$
  
$$P(\mathbf{z}_t|\mathbf{x}_t) = N(\mathbf{H}\mathbf{x}_t, \mathbf{\Sigma}_z)(\mathbf{z}_t)$$

 ${\bf F}$  is the matrix for the transition;  ${\bf \Sigma}_x$  the transition noise covariance  ${\bf H}$  is the matrix for the sensors;  ${\bf \Sigma}_z$  the sensor noise covariance

Filter computes the following update:

$$\begin{aligned} & \boldsymbol{\mu}_{t+1} \, = \, \mathbf{F} \boldsymbol{\mu}_t + \mathbf{K}_{t+1} (\mathbf{z}_{t+1} - \mathbf{H} \mathbf{F} \boldsymbol{\mu}_t) \\ & \boldsymbol{\Sigma}_{t+1} \, = \, (\mathbf{I} - \mathbf{K}_{t+1}) (\mathbf{F} \boldsymbol{\Sigma}_t \mathbf{F}^\top + \boldsymbol{\Sigma}_x) \end{aligned}$$

is the Kalman gain matrix where  $\mathbf{K}_{t+1} = (\mathbf{F} \mathbf{\Sigma}_t \mathbf{F}^\top + \mathbf{\Sigma}_x) \mathbf{H}^\top (\mathbf{H} (\mathbf{F} \mathbf{\Sigma}_t \mathbf{F}^\top + \mathbf{\Sigma}_x) \mathbf{H}^\top + \mathbf{\Sigma}_z)^{-1}$ 

 $\mathbf{\Sigma}_t$  and  $\mathbf{K}_t$  are independent of observation sequence, so compute offline

# 2-D tracking example: filtering



# 2-D tracking example: smoothing



#### Where it breaks

Cannot be applied if the transition model is nonlinear

Extended Kalman Filter models transition as locally linear around  $\mathbf{x}_t = \mu_t$  Fails if systems is locally unsmooth



## Dynamic Bayesian networks

 $\mathbf{X}_t$ ,  $\mathbf{E}_t$  contain arbitrarily many variables in a replicated Bayes net





#### $\overline{\mathrm{DBNs}}$ vs. ${ m HMMs}$

Every HMM is a single-variable DBN; every discrete DBN is an HMM





Sparse dependencies  $\Rightarrow$  exponentially fewer parameters; e.g., 20 state variables, three parents each DBN has  $20\times2^3=160$  parameters, HMM has  $2^{20}\times2^{20}\approx10^{12}$ 

### DBNs vs Kalman filters

real world requires non-Gaussian posteriors Every Kalman filter model is a DBN, but few DBNs are KFs;

E.g., where are bin Laden and my keys? What's the battery charge?





### Exact inference in DBNs

Naive method: unroll the network and run any exact algorithm



Problem: inference cost for each update grows with  $t\,$ 

Rollup filtering: add slice t+1, "sum out" slice t using variable elimination

Largest factor is  $O(d^{n+1})$ , update cost  $O(d^{n+2})$  (cf. HMM update cost  $O(d^{2n})$ )

Likelihood weighting for DBNs

Set of weighted samples approximates the belief state



LW samples pay no attention to the evidence!  $\Rightarrow \mbox{fraction "agreeing" falls exponentially with } t$ 

 $\Rightarrow$  number of samples required grows exponentially with t



#### Particle filtering

tracks the high-likelihood regions of the state-space Basic idea: ensure that the population of samples ("particles")

Replicate particles proportional to likelihood for e



Widely used for tracking nonlinear systems, esp. in vision

Also used for simultaneous localization and mapping in mobile robots  $10^{6}\text{-}\mathrm{dimensional}$  state space

#### Particle filtering contd.

Assume consistent at time  $t \colon N(\mathbf{x}_t|\mathbf{e}_{1:t})/N = P(\mathbf{x}_t|\mathbf{e}_{1:t})$ 

Propagate forward: populations of  $\mathbf{x}_{t+1}$  are

$$N(\mathbf{x}_{t+1}|\mathbf{e}_{1:t}) = \sum_{\mathbf{x}_t} P(\mathbf{x}_{t+1}|\mathbf{x}_t) N(\mathbf{x}_t|\mathbf{e}_{1:t})$$

Weight samples by their likelihood for  $\mathbf{e}_{t+1}$ :

$$W(\mathbf{x}_{t+1}|\mathbf{e}_{1:t+1}) = P(\mathbf{e}_{t+1}|\mathbf{x}_{t+1})N(\mathbf{x}_{t+1}|\mathbf{e}_{1:t})$$

Resample to obtain populations proportional to  $W\colon$ 

$$\begin{split} N(\mathbf{x}_{t+1}|\mathbf{e}_{1:t+1})/N &= \alpha W(\mathbf{x}_{t+1}|\mathbf{e}_{1:t+1}) = \alpha P(\mathbf{e}_{t+1}|\mathbf{x}_{t+1})N(\mathbf{x}_{t+1}|\mathbf{e}_{1:t}) \\ &= \alpha P(\mathbf{e}_{t+1}|\mathbf{x}_{t+1})\sum_{\mathbf{x}_{t}} P(\mathbf{x}_{t+1}|\mathbf{x}_{t})N(\mathbf{x}_{t}|\mathbf{e}_{1:t}) \\ &= \alpha' P(\mathbf{e}_{t+1}|\mathbf{x}_{t+1})\sum_{\mathbf{x}_{t}} P(\mathbf{x}_{t+1}|\mathbf{x}_{t})P(\mathbf{x}_{t}|\mathbf{e}_{1:t}) \\ &= P(\mathbf{x}_{t+1}|\mathbf{e}_{1:t+1}) \end{split}$$

## Particle filtering performance

Approximation error of particle filtering remains bounded over time, at least empirically—theoretical analysis is difficult



#### Summary

Temporal models use state and sensor variables replicated over time

Markov assumptions and stationarity assumption, so we need — transition model  $P(\mathbf{X}_t|\mathbf{X}_{t-1})$  — sensor model  $P(\mathbf{E}_t|\mathbf{X}_t)$ 

all done recursively with constant cost per time step Tasks are filtering, prediction, smoothing, most likely sequence;

for speech recognition Hidden Markov models have a single discrete state variable; used

Kalman filters allow  $\boldsymbol{n}$  state variables, linear Gaussian,  $O(\boldsymbol{n}^3)$  update

Dynamic Bayes nets subsume HMMs, Kalman filters; exact update intractable

Particle filtering is a good approximate filtering algorithm for DBNs