TEMPORAL PROBABILITY MODELS

CHAPTER 15, SECTIONS 1-5

I Outline |

Time and uncertainty

Inference: filtering, prediction, smoothing
Hidden Markov models

Kalman filters (a brief mention)

Dynamic Bayesian networks

AR SR C R SRR G O

Particle filtering

I Time and uncertainty |

The world changes; we need to track and predict it
Diabetes management vs vehicle diagnosis
Basic idea: copy state and evidence variables for each time step

X, = set of unobservable state variables at time
e.g., BloodSugar;, StomachContents;, etc.

E, = set of observable evidence variables at time ¢
e.g., MeasuredBloodSugar;, PulseRate;, FoodEaten,

This assumes discrete time; step size depends on problem

Notation: X = X, Xop1,- -5 Xpo1, X

l Markov processes (Markov chains) |

Construct a Bayes net from these variables: parents?

Markov assumption: X; depends on bounded subset of X,

First-order Markov process: P(X;|X,-1) = P(Xy|X;-1)
Second-order Markov process: P (XX, 1) = P(X¢|X; 2, X; 1)

First-order e e e e e
Second-order 6’6’9’6’6

Sensor Markov assumption: P(E;|X., Eo;1) = P(E/X;)

Stationary process: transition model P(X;|X;_1) and
sensor model P (E,|X;) fixed for all ¢

I Example |
Ri-1| P(R)
w 0.7
03
(Reing3) \mm_@ Reifg 1y
R [PU)
t 0.9
f 0.2

T W G

First-order Markov assumption not exactly true in real world!

Possible fixes:
1. Increase order of Markov process
2. Augment state, e.g., add Temp;, Pressure;

Example: robot motion.
Augment position and velocity with Battery;

I Inference tasks |

Filtering: P(X;|e1.)

belief state—input to the decision process of a rational agent
Prediction: P (X, ;|e1,) for k >0

evaluation of possible action sequences;

like filtering without the evidence

Smoothing: P(Xj|ey.) for 0 < k < ¢
better estimate of past states, essential for learning

Most likely explanation: arg maxx,, P(x1.¢|e1.;)
speech recognition, decoding with a noisy channel

I Filtering

Aim: devise a recursive state estimation algorithm:

HuQmjL_mEiv = \Amlﬁwuﬁn;mr;v

P(Xiilen) = P(Xiplerns e1)
= aP(er 1| X1, e1)P(Xpsilery)
= aP(ep1|Xe1)P(Xet1lerr)

l.e., prediction + estimation. Prediction by summing out X;:

P(Xyi1leri1) = aP(ep| X)Xk P (X[, €1:) P(x¢]er)
= DE@TLUm:r_vmunwu@m\i_x;ﬁhx\imiv

1111 = FORWARD(f1.1, €:,1) where f1, =P (X;|e.)
Time and space constant (independent of)

I Filtering example

0.500 0.627
0.500 0.373
True 0.500 o.%u.m o.%mw
False 0.500 0.182 0.117

I Smoothing

GO D) CD

Divide evidence ey into €., €p+14:
P(Xilers) = P(Xylerr, €rii)
= aP(Xj|err)P(ey 14| Xy, err)
= aP(Xlew)P(err|Xs)
= afigbpirs
Backward message computed by a backwards recursion:
P(ep1:4|Xs) = Ex,, PlepsraeXn, Xpi) P (3011 | X)
= Y, Plepsre[Xpa) P(x411| X))

= Yy, Plers|xpr1) Pepyo X1 P (%01 X)

I Smoothing example |

0.500 0627
0.500 0373
True 0.500 cvMHm o.%mm P d
False 0.500 opﬂm oAH«: orwar
0.883 0.883
0117 0117 smoothed
0.690 1.000
0410 1.000
Raing (Rainy) Rain,

Umbrella; Umbrella,

Forward—backward algorithm: cache forward messages along the way
Time linear in ¢ (polytree inference), space O(t|f])

I Most likely explanation |

Most likely sequence # sequence of most likely states

Most likely path to each x;;
= most likely path to some x; plus one more step

kﬁwﬁﬁmxr con X Xipaleri)
= Pler]Xip1) max ?u@m?;%;xﬁwﬁ P(xi,... ,foﬁ_mZvv

Identical to filtering, except f;.; replaced by

my; = xw,ﬂ,ﬁ/& P(xy, .. X1, vﬁozv,

l.e., my.(i) gives the probability of the most likely path to state i.
Update has sum replaced by max, giving the Viterbi algorithm:

myy = Ple | X)) Iyax (P(Xip1|x)myy)

I Viterbi example |

Rainy Rain, Raing Rain, Raing

state true true true true true 7
space
paths
false false false false false 7
umbrella true true false true true
.8182 5155 .0361 .0334 .0210 _
most
likely
paths 1818 0491 1237 0173 0024 7
My Myo My My Mys

I Hidden Markov models |

X, is a single, discrete variable (usually E; is too)
Domain of X;is {1,...,S}

Transition matrix T;; = P(X; =j|X;_ 1 =1), eg., ﬁ

Sensor matrix O, for each time step, diagonal elements P(¢;

(C
e.g., with U, =true, O = ﬁ:% :ccw

X, =i)

Forward and backward messages as column vectors:

fiin = a0 T,
bii1t = TOpbyioy

Forward-backward algorithm needs time O(S%t) and space O(St)

I Country dance algorithm |

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

fii = a0 T,
O i1 = T fiy
::\,HJLOH_P“:_ = fi

Algorithm: forward pass computes f;, backward pass does f;, b;

586838

I Country dance algorithm |

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

fien = a0 T iy
O i1 = T fiy
(T ﬁ u_o‘\h_mi F1 fiy

Algorithm: forward pass computes f;, backward pass does f;, b;

586838

I Country dance algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:
fii = a0 T,
O\ i1 = T fiy
(T ﬁ u_o‘\h_mi io= fiy

Algorithm: forward pass computes f;, backward pass does f;, b;

I Country dance algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:
fien = a0 Ty
O\ i1 = T fiy
(T ﬁ u_o‘\h_mi io= fiy

Algorithm: forward pass computes f;, backward pass does f;, b;

I Country dance algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

4
fi.ip1 = a0y T fyy
1 T
O fi = aT ' fyy
1Ty 11
o (T) 7O iy = fiy

Algorithm: forward pass computes f;, backward pass does f;, b;

58683

I Country dance algorithm |

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

fien = a0 T iy
O i1 = T fiy
::\,HJLOH_P“:_ = fi

Algorithm: forward pass computes f;, backward pass does f;, b;

586838

I Country dance algorithm |

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:
fien = a0 T iy
O i1 = T fiy
(T ﬁ u_o‘\h_mi io= fiy

Algorithm: forward pass computes f;, backward pass does f;, b;

I Country dance algorithm |

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

fien = a0 T iy
O i1 = T fiy
(T ﬁ u_o‘\h_mi F1 fiy

Algorithm: forward pass computes f;, backward pass does f;, b;

I Country dance algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:
fii = a0 T,
O\ i1 = T fiy
(T ﬁ u_o‘\h_mi io= fiy

Algorithm: forward pass computes f;, backward pass does f;, b;

5363838

I Country dance algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

fien = a0 Ty
O\ i1 = T fiy
::\,HJLOH_P“:_ = fiy

Algorithm: forward pass computes f;, backward pass does f;, b;

§36838

I Kalman filters

Modelling systems described by a set of continuous variables,
e.g., tracking a bird flying—X, =XV, Z. XY, Z.

Airplanes, robots, ecosystems, economies, chemical plants, planets, .

7
@

O
@l
@)

Gaussian prior, linear Gaussian transition model and sensor model

I Updating Gaussian distributions |

Prediction step: if P(X;|e.) is Gaussian, then prediction
P(X;1len) = \x‘ P(Xyi1]xt) P(x¢]e1.) dxy

is Gaussian. If P(X;;|e;.;) is Gaussian, then the updated distribution
P(Xiilerin) = aP(ep | X)) P(Xiifers)

is Gaussian

Hence P(X;|e;,) is multivariate Gaussian N (g, 3;) for all ¢

General (nonlinear, non-Gaussian) process: description of posterior grows
unboundedly as ¢t — co

I Simple 1-D example |

Gaussian random walk on X-axis, s.d. o,, sensor s.d. 0.
2

o} + 0’402

(07 + 02201 + o2 » _ (of+0d)

Hi+1 = - - - o=
o} +o2+0? +

0.45 T T T T T T T
04
0.35 -
03
0.25
0.2
0.15
0.1
0.05

P(X)

X position

I General Kalman update |

Transition and sensor models:

P(xi1]x) = N(Fxy, 3,)(X41)
NUAN;k; = N(Hx;, 3.)(z)

F' is the matrix for the transition; 3, the transition noise covariance
H is the matrix for the sensors; 3. the sensor noise covariance

Filter computes the following update:

M = Fp+ HAI\;N\L —HFp,)
Y= (I-Ki)(FEF + X))

where K, 1= (FE,F' + 3, H (HFZ,F' +2,)H + X))

is the Kalman gain matrix

3%, and K are independent of observation sequence, so compute offline

I 2-D tracking example: filtering |

—e— true
* observed
x filtered

I 2-D tracking example: smoothing |

2D smoothing

121

—e— true
* observed
smoothed

X

1

10F

I Where it breaks |

Cannot be applied if the transition model is nonlinear

Extended Kalman Filter models transition as locally linear around x; = p,
Fails if systems is locally unsmooth

o

I Dynamic Bayesian networks |

X, E; contain arbitrarily many variables in a replicated Bayes net

_7 DBNs vs. HMMs __

Every HMM is a single-variable DBN; every discrete DBN is an HMM

!

Sparse dependencies = exponentially fewer parameters;
e.g., 20 state variables, three parents each
DBN has 20 x 2° =160 parameters, HMM has 220 x 220 ~ 10'?

I DBNs vs Kalman filters |

Every Kalman filter model is a DBN, but few DBNs are KFs;

real world requires non-Gaussian posteriors

E.g., where are bin Laden and my keys? What's the battery charge?

' " E(Battery}]..5555005555...
5 S

S~
*
oo
—_

4r E(Battery|... 5555000000,

E(Batery)
oo

N P(BMBroken]...5555000000...)
r "

o-o-o-g G 5 685

o

P(BMBroken].. 5555005555..)

9 a

15 20 2 30
Time step

I Exact inference in DBNs |

Naive method: unroll the network and run any exact algorithm

Problem: inference cost for each update grows with ¢
Rollup filtering: add slice ¢ + 1, “sum out” slice ¢ using variable elimination

Largest factor is O(d""'), update cost O(d"*?)
(cf. HMM update cost O(d*"))

I Likelihood weighting for DBNs |

Set of weighted samples approximates the belief state

LW samples pay no attention to the evidence!
= fraction “agreeing” falls exponentially with ¢
= number of samples required grows exponentially with ¢
1 2

0 5 10 15 20 25 30 35 40 45 50
Time step

: Particle filtering __

Basic idea: ensure that the population of samples (“particles”)
tracks the high-likelihood regions of the state-space

Replicate particles proportional to likelihood for e;

Rain; Raing; Rain .,y
true ° 7
L]
L] o0
false | | 00 7 7
(a) Propagate (b) Weight (c) Resample

Widely used for tracking nonlinear systems, esp. in vision

Also used for simultaneous localization and mapping in mobile robots
10°-dimensional state space

I Particle filtering contd. |

Assume consistent at time ¢: N(x;|e1;)/N = P(x:|e})

Propagate forward: populations of x;, are

N(xi1]en) = M“xkuﬁst_un; N(x/|er)
Weight samples by their likelihood for e;.1:
W(xs1lerii1) = Pleqa]Xe1) N (Xe1]ers)

Resample to obtain populations proportional to :

[(Xp1leri1) /N = aW(xplerin) = al(er[Xen) N (Xev1]e1s)
aP(ep|xi1) 2% P(xp1[x) N (x| e
o Pes1|xps1) Dx, P (X1 |x4) P(xt| €14)

P(x¢11lers+1)

I Particle filtering performance |

Approximation error of particle filtering remains bounded over time,
at least empirically—theoretical analysis is difficult

LW(25) ——

0.

©
=
z
g

ER/SOF(25) -+
06

04

Avg absolute error

0.2

0O 5 10 15 20 25 30 35 40 45 50
Time step

I Summary |

Temporal models use state and sensor variables replicated over time

Markov assumptions and stationarity assumption, so we need
— transition modelP (X;|X; ;)
— sensor model P(E;|X;)

Tasks are filtering, prediction, smoothing, most likely sequence;
all done recursively with constant cost per time step

Hidden Markov models have a single discrete state variable; used
for speech recognition

Kalman filters allow 7 state variables, linear Gaussian, O(n®) update
Dynamic Bayes nets subsume HMMs, Kalman filters; exact update intractable

Particle filtering is a good approximate filtering algorithm for DBNs

30

