
CHAPTER 1
INTRODUCTION

CHAPTER 2
INTELLIGENT AGENTS

function TABLE-DRIVEN-AGENT(percept) returns an action

persistent: percepts , a sequence, initially empty

table , a table of actions, indexed by percept sequences, initially fully specified

append percept to the end of percepts

action← LOOKUP(percepts , table)

return action

Figure 2.7 The TABLE-DRIVEN-AGENT program is invoked for each new percept and re-

turns an action each time. It retains the complete percept sequence in memory.

function REFLEX-VACUUM-AGENT([location ,status]) returns an action

if status = Dirty then return Suck

else if location = A then return Right

else if location = B then return Left

Figure 2.8 The agent program for a simple reflex agent in the two-location vacuum environ-

ment. This program implements the agent function tabulated in Figure ??.

function SIMPLE-REFLEX-AGENT(percept) returns an action

persistent: rules , a set of condition–action rules

state← INTERPRET-INPUT(percept)

rule←RULE-MATCH(state, rules)

action← rule.ACTION

return action

Figure 2.10 A simple reflex agent. It acts according to a rule whose condition matches the

current state, as defined by the percept.

3

function MODEL-BASED-REFLEX-AGENT(percept) returns an action

persistent: state, the agent’s current conception of the world state

transition model , a description of how the next state depends on

the current state and action

sensor model , a description of how the current world state is reflected

in the agent’s percepts

rules, a set of condition–action rules

action , the most recent action, initially none

state←UPDATE-STATE(state,action ,percept , transition model , sensor model)

rule←RULE-MATCH(state, rules)

action← rule.ACTION

return action

Figure 2.12 A model-based reflex agent. It keeps track of the current state of the world,

using an internal model. It then chooses an action in the same way as the reflex agent.

CHAPTER 3
SOLVING PROBLEMS BY SEARCHING

function BEST-FIRST-SEARCH(problem, f) returns a solution node or failure

node←NODE(STATE=problem .INITIAL)

frontier← a priority queue ordered by f , with node as an element

reached← a lookup table, with one entry with key problem .INITIAL and value node

while not IS-EMPTY(frontier) do

node← POP(frontier)

if problem .IS-GOAL(node.STATE) then return node

for each child in EXPAND(problem , node) do

s← child .STATE

if s is not in reached or child .PATH-COST < reached [s].PATH-COST then

reached [s]← child

add child to frontier

return failure

function EXPAND(problem ,node) yields nodes

s←node.STATE

for each action in problem .ACTIONS(s) do

s ′← problem .RESULT(s ,action)

cost←node.PATH-COST + problem .ACTION-COST(s ,action , s ′)

yield NODE(STATE=s ′, PARENT=node, ACTION=action , PATH-COST=cost)

Figure 3.7 The best-first search algorithm, and the function for expanding a node. The data

structures used here are described in Section ??. See Appendix B for yield.

5

function BREADTH-FIRST-SEARCH(problem) returns a solution node or failure

node←NODE(problem .INITIAL)

if problem .IS-GOAL(node.STATE) then return node

frontier← a FIFO queue, with node as an element

reached←{problem .INITIAL}
while not IS-EMPTY(frontier) do

node← POP(frontier)

for each child in EXPAND(problem , node) do

s← child .STATE

if problem .IS-GOAL(s) then return child

if s is not in reached then

add s to reached

add child to frontier

return failure

function UNIFORM-COST-SEARCH(problem) returns a solution node, or failure

return BEST-FIRST-SEARCH(problem , PATH-COST)

Figure 3.9 Breadth-first search and uniform-cost search algorithms.

function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution node or failure

for depth = 0 to∞ do

result←DEPTH-LIMITED-SEARCH(problem ,depth)

if result 6= cutoff then return result

function DEPTH-LIMITED-SEARCH(problem , ℓ) returns a node or failure or cutoff

frontier← a LIFO queue (stack) with NODE(problem .INITIAL) as an element

result← failure

while not IS-EMPTY(frontier) do

node← POP(frontier)

if problem .IS-GOAL(node.STATE) then return node

if DEPTH(node) > ℓ then

result← cutoff

else if not IS-CYCLE(node) do

for each child in EXPAND(problem , node) do

add child to frontier

return result

Figure 3.12 Iterative deepening and depth-limited tree-like search. Iterative deepening re-

peatedly applies depth-limited search with increasing limits. It returns one of three different

types of values: either a solution node; or failure , when it has exhausted all nodes and proved

there is no solution at any depth; or cutoff , to mean there might be a solution at a deeper depth

than ℓ. This is a tree-like search algorithm that does not keep track of reached states, and

thus uses much less memory than best-first search, but runs the risk of visiting the same state

multiple times on different paths. Also, if the IS-CYCLE check does not check all cycles,

then the algorithm may get caught in a loop.

6 Chapter 3 Solving Problems by Searching

function BIBF-SEARCH(problemF , fF , problemB , fB) returns a solution node, or failure

nodeF ←NODE(problemF .INITIAL) // Node for a start state

nodeB←NODE(problemB .INITIAL) // Node for a goal state

frontierF ← a priority queue ordered by fF , with nodeF as an element

frontierB← a priority queue ordered by fB , with nodeB as an element

reachedF ← a lookup table, with one key nodeF .STATE and value nodeF
reachedB← a lookup table, with one key nodeB .STATE and value nodeB
solution← failure

while not TERMINATED(solution , frontierF , frontierB) do

if fF (TOP(frontierF)) < fB(TOP(frontierB)) then

solution← PROCEED(F , problemF frontierF , reachedF , reachedB , solution)

else solution← PROCEED(B , problemB , frontierB , reachedB , reachedF , solution)

return solution

function PROCEED(dir , problem , frontier , reached , reached2, solution) returns a solution

// Expand node on frontier; check against the other frontier in reached2.

// The variable “dir” is the direction: either F for forward or B for backward.

node← POP(frontier)

for each child in EXPAND(problem , node) do

s← child .STATE

if s not in reached or PATH-COST(child) < PATH-COST(reached [s]) then

reached [s]← child

add child to frontier

if s is in reached2 then

solution2← JOIN-NODES(dir , child , reached2[s]))

if PATH-COST(solution2) < PATH-COST(solution) then

solution← solution2

return solution

Figure 3.14 Bidirectional best-first search keeps two frontiers and two tables of reached

states. When a path in one frontier reaches a state that was also reached in the other half of

the search, the two paths are joined (by the function JOIN-NODES) to form a solution. The

first solution we get is not guaranteed to be the best; the function TERMINATED determines

when to stop looking for new solutions.

7

function RECURSIVE-BEST-FIRST-SEARCH(problem) returns a solution or failure

solution , fvalue←RBFS(problem , NODE(problem .INITIAL),∞)

return solution

function RBFS(problem ,node , f limit) returns a solution or failure , and a new f -cost limit

if problem .IS-GOAL(node.STATE) then return node

successors← LIST(EXPAND(node))

if successors is empty then return failure ,∞
for each s in successors do // update f with value from previous search

s .f ←max(s .PATH-COST + h(s), node.f))
while true do

best← the node in successors with lowest f -value

if best .f > f limit then return failure , best .f
alternative← the second-lowest f -value among successors

result , best .f←RBFS(problem , best ,min(f limit , alternative))
if result 6= failure then return result , best .f

Figure 3.22 The algorithm for recursive best-first search.

CHAPTER 4
SEARCH IN COMPLEX

ENVIRONMENTS

function HILL-CLIMBING(problem) returns a state that is a local maximum

current← problem .INITIAL

while true do

neighbor← a highest-valued successor state of current

if VALUE(neighbor) ≤ VALUE(current) then return current

current←neighbor

Figure 4.2 The hill-climbing search algorithm, which is the most basic local search tech-

nique. At each step the current node is replaced by the best neighbor.

function SIMULATED-ANNEALING(problem , schedule) returns a solution state

current← problem .INITIAL

for t = 1 to∞ do

T← schedule(t)

if T = 0 then return current

next← a randomly selected successor of current

∆E←VALUE(current) – VALUE(next)

if ∆E > 0 then current←next

else current←next only with probability e−∆E/T

Figure 4.4 The simulated annealing algorithm, a version of stochastic hill climbing where

some downhill moves are allowed. The schedule input determines the value of the “temper-

ature” T as a function of time.

9

function GENETIC-ALGORITHM(population ,fitness) returns an individual

repeat

weights←WEIGHTED-BY(population , fitness)

population2 ← empty list

for i = 1 to SIZE(population) do

parent1 , parent2←WEIGHTED-RANDOM-CHOICES(population ,weights , 2)

child←REPRODUCE(parent1 ,parent2)

if (small random probability) then child←MUTATE(child)

add child to population2

population← population2

until some individual is fit enough, or enough time has elapsed

return the best individual in population , according to fitness

function REPRODUCE(parent1 ,parent2) returns an individual

n← LENGTH(parent1)

c← random number from 1 to n

return APPEND(SUBSTRING(parent1 , 1, c), SUBSTRING(parent2 , c + 1,n))

Figure 4.7 A genetic algorithm. Within the function, population is an ordered list of indi-

viduals, weights is a list of corresponding fitness values for each individual, and fitness is a

function to compute these values.

function AND-OR-SEARCH(problem) returns a conditional plan, or failure

return OR-SEARCH(problem ,problem .INITIAL, [])

function OR-SEARCH(problem , state,path) returns a conditional plan, or failure

if problem .IS-GOAL(state) then return the empty plan

if IS-CYCLE(path) then return failure

for each action in problem .ACTIONS(state) do

plan←AND-SEARCH(problem , RESULTS(state,action), [state] + path])
if plan 6= failure then return [action] + plan]

return failure

function AND-SEARCH(problem , states ,path) returns a conditional plan, or failure

for each si in states do

plan i←OR-SEARCH(problem , si,path)

if plan i = failure then return failure

return [if s1 then plan1 else if s2 then plan2 else . . . if sn−1 then plann−1 else plann]

Figure 4.10 An algorithm for searching AND–OR graphs generated by nondeterministic en-

vironments. A solution is a conditional plan that considers every nondeterministic outcome

and makes a plan for each one.

10 Chapter 4 Search in Complex Environments

function ONLINE-DFS-AGENT(problem , s ′) returns an action

s , a, the previous state and action, initially null

persistent: result , a table mapping (s, a) to s′, initially empty

untried , a table mapping s to a list of untried actions

unbacktracked , a table mapping s to a list of states never backtracked to

if problem .IS-GOAL(s ′) then return stop

if s ′ is a new state (not in untried) then untried[s ′]← problem .ACTIONS(s ′)

if s is not null then

result[s ,a]← s ′

add s to the front of unbacktracked [s ′]

if untried[s ′] is empty then

if unbacktracked [s ′] is empty then return stop

else a← an action b such that result[s ′, b] = POP(unbacktracked [s ′])

else a← POP(untried[s ′])

s← s ′

return a

Figure 4.20 An online search agent that uses depth-first exploration. The agent can safely

explore only in state spaces in which every action can be “undone” by some other action.

function LRTA*-AGENT(problem , s ′, h) returns an action

s , a, the previous state and action, initially null

persistent: result , a table mapping (s, a) to s′, initially empty

H , a table mapping s to a cost estimate, initially empty

if IS-GOAL(s ′) then return stop

if s ′ is a new state (not in H) then H [s ′]←h(s ′)

if s is not null then

result[s ,a]← s ′

H [s]← min
b∈ACTIONS(s)

LRTA*-COST(s , b, result[s , b],H)

a← argmin
b∈ACTIONS(s)

LRTA*-COST(problem , s ′, b, result [s ′, b],H)

s← s ′

return a

function LRTA*-COST(problem , s ,a, s ′,H) returns a cost estimate

if s ′ is undefined then return h(s)
else return problem .ACTION-COST(s, a, s′) + H [s′]

Figure 4.23 LRTA∗-AGENT selects an action according to the values of neighboring states,

which are updated as the agent moves about the state space.

CHAPTER 5
ADVERSARIAL SEARCH AND GAMES

function MINIMAX-SEARCH(game , state) returns an action

player← game .TO-MOVE(state)

value , move←MAX-VALUE(game , state)

return move

function MAX-VALUE(game , state) returns a (utility , move) pair

if game.IS-TERMINAL(state) then return game .UTILITY(state, player), null

v←−∞
for each a in game .ACTIONS(state) do

v2 , a2 ←MIN-VALUE(game, game .RESULT(state, a))

if v2 > v then

v , move← v2 , a

return v , move

function MIN-VALUE(game, state) returns a (utility , move) pair

if game.IS-TERMINAL(state) then return game .UTILITY(state, player), null

v←+∞
for each a in game .ACTIONS(state) do

v2 , a2 ←MAX-VALUE(game, game .RESULT(state, a))

if v2 < v then

v , move← v2 , a

return v , move

Figure 5.3 An algorithm for calculating the optimal move using minimax—the move that

leads to a terminal state with maximum utility, under the assumption that the opponent plays

to minimize utility. The functions MAX-VALUE and MIN-VALUE go through the whole

game tree, all the way to the leaves, to determine the backed-up value of a state and the move

to get there.

12 Chapter 5 Adversarial Search and Games

function ALPHA-BETA-SEARCH(game , state) returns an action

player← game .TO-MOVE(state)

value , move←MAX-VALUE(game , state,−∞,+∞)

return move

function MAX-VALUE(game , state,α,β) returns a (utility , move) pair

if game .IS-TERMINAL(state) then return game .UTILITY(state, player), null

v←−∞
for each a in game.ACTIONS(state) do

v2 , a2←MIN-VALUE(game, game .RESULT(state, a),α,β)

if v2 > v then

v , move← v2 , a

α←MAX(α, v)

if v ≥ β then return v , move

return v , move

function MIN-VALUE(game, state,α,β) returns a (utility , move) pair

if game .IS-TERMINAL(state) then return game .UTILITY(state, player), null

v←+∞
for each a in game.ACTIONS(state) do

v2 , a2←MAX-VALUE(game, game .RESULT(state, a),α,β)

if v2 < v then

v , move← v2 , a

β←MIN(β, v)

if v ≤ α then return v , move

return v , move

Figure 5.7 The alpha–beta search algorithm. Notice that these functions are the same as the

MINIMAX-SEARCH functions in Figure ??, except that we maintain bounds in the variables

α and β, and use them to cut off search when a value is outside the bounds.

function MONTE-CARLO-TREE-SEARCH(state) returns an action

tree←NODE(state)

while IS-TIME-REMAINING() do

leaf ← SELECT(tree)

child← EXPAND(leaf)

result← SIMULATE(child)

BACK-PROPAGATE(result , child)

return the move in ACTIONS(state) whose node has highest number of playouts

Figure 5.11 The Monte Carlo tree search algorithm. A game tree, tree, is initialized, and

then we repeat a cycle of SELECT / EXPAND / SIMULATE / BACK-PROPAGATE until we run

out of time, and return the move that led to the node with the highest number of playouts.

CHAPTER 6
CONSTRAINT SATISFACTION

PROBLEMS

function AC-3(csp) returns false if an inconsistency is found and true otherwise

queue← a queue of arcs, initially all the arcs in csp

while queue is not empty do

(Xi, Xj)← POP(queue)

if REVISE(csp, Xi, Xj) then

if size of Di = 0 then return false

for each Xk in Xi.NEIGHBORS - {Xj} do

add (Xk, Xi) to queue

return true

function REVISE(csp, Xi, Xj) returns true iff we revise the domain of Xi

revised← false

for each x in Di do

if no value y in Dj allows (x ,y) to satisfy the constraint between Xi and Xj then

delete x from Di

revised← true

return revised

Figure 6.3 The arc-consistency algorithm AC-3. After applying AC-3, either every arc is

arc-consistent, or some variable has an empty domain, indicating that the CSP cannot be

solved. The name “AC-3” was used by the algorithm’s inventor (?) because it was the third

version developed in the paper.

14 Chapter 6 Constraint Satisfaction Problems

function BACKTRACKING-SEARCH(csp) returns a solution or failure

return BACKTRACK(csp,{ })

function BACKTRACK(csp,assignment) returns a solution or failure

if assignment is complete then return assignment

var← SELECT-UNASSIGNED-VARIABLE(csp,assignment)

for each value in ORDER-DOMAIN-VALUES(csp, var ,assignment) do

if value is consistent with assignment then

add {var = value} to assignment

inferences← INFERENCE(csp, var ,assignment)

if inferences 6= failure then

add inferences to csp

result←BACKTRACK(csp,assignment)

if result 6= failure then return result

remove inferences from csp

remove {var = value} from assignment

return failure

Figure 6.5 A simple backtracking algorithm for constraint satisfaction problems. The

algorithm is modeled on the recursive depth-first search of Chapter ??. The functions

SELECT-UNASSIGNED-VARIABLE and ORDER-DOMAIN-VALUES, implement the general-

purpose heuristics discussed in Section ??. The INFERENCE function can optionally im-

pose arc-, path-, or k-consistency, as desired. If a value choice leads to failure (noticed

either by INFERENCE or by BACKTRACK), then value assignments (including those made by

INFERENCE) are retracted and a new value is tried.

function MIN-CONFLICTS(csp,max steps) returns a solution or failure

inputs: csp, a constraint satisfaction problem

max steps , the number of steps allowed before giving up

current← an initial complete assignment for csp

for i = 1 to max steps do

if current is a solution for csp then return current

var← a randomly chosen conflicted variable from csp.VARIABLES

value← the value v for var that minimizes CONFLICTS(csp, var , v , current)

set var = value in current

return failure

Figure 6.9 The MIN-CONFLICTS local search algorithm for CSPs. The initial state may be

chosen randomly or by a greedy assignment process that chooses a minimal-conflict value

for each variable in turn. The CONFLICTS function counts the number of constraints violated

by a particular value, given the rest of the current assignment.

15

function TREE-CSP-SOLVER(csp) returns a solution, or failure

inputs: csp, a CSP with components X, D, C

n← number of variables in X
assignment← an empty assignment

root← any variable in X
X ← TOPOLOGICALSORT(X , root)

for j = n down to 2 do

MAKE-ARC-CONSISTENT(PARENT(Xj),Xj)

if it cannot be made consistent then return failure

for i = 1 to n do

assignment [Xi]← any consistent value from Di

if there is no consistent value then return failure

return assignment

Figure 6.11 The TREE-CSP-SOLVER algorithm for solving tree-structured CSPs. If the

CSP has a solution, we will find it in linear time; if not, we will detect a contradiction.

CHAPTER 7
LOGICAL AGENTS

function KB-AGENT(percept) returns an action

persistent: KB , a knowledge base

t , a counter, initially 0, indicating time

TELL(KB , MAKE-PERCEPT-SENTENCE(percept , t))

action←ASK(KB , MAKE-ACTION-QUERY(t))

TELL(KB , MAKE-ACTION-SENTENCE(action , t))

t← t + 1

return action

Figure 7.1 A generic knowledge-based agent. Given a percept, the agent adds the percept

to its knowledge base, asks the knowledge base for the best action, and tells the knowledge

base that it has in fact taken that action.

17

function TT-ENTAILS?(KB ,α) returns true or false

inputs: KB , the knowledge base, a sentence in propositional logic

α, the query, a sentence in propositional logic

symbols← a list of the proposition symbols in KB and α
return TT-CHECK-ALL(KB ,α, symbols ,{ })

function TT-CHECK-ALL(KB ,α, symbols ,model) returns true or false

if EMPTY?(symbols) then

if PL-TRUE?(KB ,model) then return PL-TRUE?(α,model)

else return true // when KB is false, always return true

else

P← FIRST(symbols)

rest←REST(symbols)

return (TT-CHECK-ALL(KB ,α, rest ,model ∪ {P = true})
and

TT-CHECK-ALL(KB ,α, rest ,model ∪ {P = false }))

Figure 7.10 A truth-table enumeration algorithm for deciding propositional entailment. (TT

stands for truth table.) PL-TRUE? returns true if a sentence holds within a model. The

variable model represents a partial model—an assignment to some of the symbols. The key-

word and here is an infix function symbol in the pseudocode programming language, not an

operator in proposition logic; it takes two arguments and returns true or false .

function PL-RESOLUTION(KB ,α) returns true or false

inputs: KB , the knowledge base, a sentence in propositional logic

α, the query, a sentence in propositional logic

clauses← the set of clauses in the CNF representation of KB ∧ ¬α
new←{}
while true do

for each pair of clauses Ci, Cj in clauses do

resolvents← PL-RESOLVE(Ci,Cj)

if resolvents contains the empty clause then return true

new←new ∪ resolvents

if new ⊆ clauses then return false

clauses← clauses ∪new

Figure 7.13 A simple resolution algorithm for propositional logic. PL-RESOLVE returns the

set of all possible clauses obtained by resolving its two inputs.

18 Chapter 7 Logical Agents

function PL-FC-ENTAILS?(KB , q) returns true or false

inputs: KB , the knowledge base, a set of propositional definite clauses

q , the query, a proposition symbol

count← a table, where count[c] is initially the number of symbols in clause c’s premise

inferred← a table, where inferred [s] is initially false for all symbols

queue← a queue of symbols, initially symbols known to be true in KB

while queue is not empty do

p← POP(queue)

if p = q then return true

if inferred [p] = false then

inferred [p]← true

for each clause c in KB where p is in c.PREMISE do

decrement count[c]

if count[c] = 0 then add c.CONCLUSION to queue

return false

Figure 7.15 The forward-chaining algorithm for propositional logic. The agenda keeps

track of symbols known to be true but not yet “processed.” The count table keeps track of

how many premises of each implication are not yet proven. Whenever a new symbol p from

the agenda is processed, the count is reduced by one for each implication in whose premise

p appears (easily identified in constant time with appropriate indexing.) If a count reaches

zero, all the premises of the implication are known, so its conclusion can be added to the

agenda. Finally, we need to keep track of which symbols have been processed; a symbol that

is already in the set of inferred symbols need not be added to the agenda again. This avoids

redundant work and prevents loops caused by implications such as P ⇒ Q and Q⇒ P .

19

function DPLL-SATISFIABLE?(s) returns true or false

inputs: s , a sentence in propositional logic

clauses← the set of clauses in the CNF representation of s

symbols← a list of the proposition symbols in s

return DPLL(clauses , symbols ,{ })

function DPLL(clauses , symbols ,model) returns true or false

if every clause in clauses is true in model then return true

if some clause in clauses is false in model then return false

P , value← FIND-PURE-SYMBOL(symbols , clauses ,model)

if P is non-null then return DPLL(clauses , symbols – P ,model ∪ {P=value})
P , value← FIND-UNIT-CLAUSE(clauses ,model)

if P is non-null then return DPLL(clauses , symbols – P ,model ∪ {P=value})
P← FIRST(symbols); rest←REST(symbols)

return DPLL(clauses , rest ,model ∪ {P=true}) or

DPLL(clauses , rest ,model ∪ {P=false}))

Figure 7.17 The DPLL algorithm for checking satisfiability of a sentence in propositional

logic. The ideas behind FIND-PURE-SYMBOL and FIND-UNIT-CLAUSE are described in

the text; each returns a symbol (or null) and the truth value to assign to that symbol. Like

TT-ENTAILS?, DPLL operates over partial models.

function WALKSAT(clauses ,p,max flips) returns a satisfying model or failure

inputs: clauses , a set of clauses in propositional logic

p, the probability of choosing to do a “random walk” move, typically around 0.5

max flips , number of value flips allowed before giving up

model← a random assignment of true/false to the symbols in clauses

for each i = 1 to max flips do

if model satisfies clauses then return model

clause← a randomly selected clause from clauses that is false in model

if RANDOM(0, 1) ≤ p then

flip the value in model of a randomly selected symbol from clause

else flip whichever symbol in clause maximizes the number of satisfied clauses

return failure

Figure 7.18 The WALKSAT algorithm for checking satisfiability by randomly flipping the

values of variables. Many versions of the algorithm exist.

20 Chapter 7 Logical Agents

function HYBRID-WUMPUS-AGENT(percept) returns an action

inputs: percept , a list, [stench,breeze,glitter ,bump,scream]

persistent: KB , a knowledge base, initially the atemporal “wumpus physics”

t , a counter, initially 0, indicating time

plan , an action sequence, initially empty

TELL(KB , MAKE-PERCEPT-SENTENCE(percept , t))

TELL the KB the temporal “physics” sentences for time t

safe←{[x , y] : ASK(KB ,OK t
x,y) = true}

if ASK(KB ,Glitter t) = true then

plan← [Grab] + PLAN-ROUTE(current ,{[1,1]}, safe) + [Climb]

if plan is empty then

unvisited←{[x , y] : ASK(KB , Lt′

x,y) = false for all t′ ≤ t}
plan← PLAN-ROUTE(current ,unvisited ∩ safe , safe)

if plan is empty and ASK(KB ,HaveArrow t) = true then

possible wumpus←{[x , y] : ASK(KB ,¬Wx,y) = false}
plan← PLAN-SHOT(current ,possible wumpus, safe)

if plan is empty then // no choice but to take a risk

not unsafe←{[x , y] : ASK(KB ,¬ OK t
x,y) = false}

plan← PLAN-ROUTE(current ,unvisited ∩not unsafe, safe)

if plan is empty then

plan← PLAN-ROUTE(current ,{[1, 1]}, safe) + [Climb]
action← POP(plan)

TELL(KB , MAKE-ACTION-SENTENCE(action , t))

t← t + 1

return action

function PLAN-ROUTE(current ,goals ,allowed) returns an action sequence

inputs: current , the agent’s current position

goals , a set of squares; try to plan a route to one of them

allowed , a set of squares that can form part of the route

problem←ROUTE-PROBLEM(current , goals ,allowed)

return SEARCH(problem) // Any search algorithm from Chapter ??

Figure 7.20 A hybrid agent program for the wumpus world. It uses a propositional knowl-

edge base to infer the state of the world, and a combination of problem-solving search and

domain-specific code to choose actions. Each time HYBRID-WUMPUS-AGENT is called, it

adds the percept to the knowledge base, and then either relies on a previously-defined plan or

creates a new plan, and pops off the first step of the plan as the action to do next.

21

function SATPLAN(init , transition, goal , T max) returns solution or failure

inputs: init , transition, goal , constitute a description of the problem

T max, an upper limit for plan length

for t = 0 to T max do

cnf ← TRANSLATE-TO-SAT(init , transition, goal , t)
model← SAT-SOLVER(cnf)

if model is not null then

return EXTRACT-SOLUTION(model)

return failure

Figure 7.22 The SATPLAN algorithm. The planning problem is translated into a CNF sen-

tence in which the goal is asserted to hold at a fixed time step t and axioms are included for

each time step up to t. If the satisfiability algorithm finds a model, then a plan is extracted by

looking at those proposition symbols that refer to actions and are assigned true in the model.

If no model exists, then the process is repeated with the goal moved one step later.

CHAPTER 8
FIRSTORDER LOGIC

CHAPTER 9
INFERENCE IN FIRSTORDER LOGIC

function UNIFY(x , y , θ=empty) returns a substitution to make x and y identical, or failure

if θ = failure then return failure

else if x = y then return θ
else if VARIABLE?(x) then return UNIFY-VAR(x , y , θ)

else if VARIABLE?(y) then return UNIFY-VAR(y , x , θ)

else if COMPOUND?(x) and COMPOUND?(y) then

return UNIFY(ARGS(x), ARGS(y), UNIFY(OP(x), OP(y), θ))

else if LIST?(x) and LIST?(y) then

return UNIFY(REST(x), REST(y), UNIFY(FIRST(x), FIRST(y), θ))

else return failure

function UNIFY-VAR(var , x , θ) returns a substitution

if {var/val} ∈ θ for some val then return UNIFY(val , x , θ)

else if {x/val} ∈ θ for some val then return UNIFY(var , val , θ)

else if OCCUR-CHECK?(var , x) then return failure

else return add {var /x} to θ

Figure 9.1 The unification algorithm. The arguments x and y can be any expression: a

constant or variable, or a compound expression such as a complex sentence or term, or a list

of expressions. The argument θ is a substitution, initially the empty substitution, but with

{var/val} pairs added to it as we recurse through the inputs, comparing the expressions

element by element. In a compound expression such as F (A,B), OP(x) field picks out the

function symbol F and ARGS(x) field picks out the argument list (A,B).

24 Chapter 9 Inference in First-Order Logic

function FOL-FC-ASK(KB ,α) returns a substitution or false

inputs: KB , the knowledge base, a set of first-order definite clauses

α, the query, an atomic sentence

while true do

new←{} // The set of new sentences inferred on each iteration

for each rule in KB do

(p1 ∧ . . . ∧ pn ⇒ q)← STANDARDIZE-VARIABLES(rule)

for each θ such that SUBST(θ,p1 ∧ . . . ∧ pn) = SUBST(θ,p′
1 ∧ . . . ∧ p′

n)

for some p′
1, . . . , p

′
n in KB

q ′← SUBST(θ, q)

if q ′ does not unify with some sentence already in KB or new then

add q ′ to new

φ←UNIFY(q ′,α)

if φ is not failure then return φ
if new = { } then return false

add new to KB

Figure 9.3 A conceptually straightforward, but inefficient, forward-chaining algorithm. On

each iteration, it adds to KB all the atomic sentences that can be inferred in one step

from the implication sentences and the atomic sentences already in KB . The function

STANDARDIZE-VARIABLES replaces all variables in its arguments with new ones that have

not been used before.

function FOL-BC-ASK(KB , query) returns a generator of substitutions

return FOL-BC-OR(KB , query ,{ })

function FOL-BC-OR(KB , goal , θ) returns a substitution

for each rule in FETCH-RULES-FOR-GOAL(KB , goal) do

(lhs ⇒ rhs)← STANDARDIZE-VARIABLES(rule)

for each θ′ in FOL-BC-AND(KB , lhs , UNIFY(rhs , goal , θ)) do

yield θ′

function FOL-BC-AND(KB , goals , θ) returns a substitution

if θ = failure then return

else if LENGTH(goals) = 0 then yield θ
else

first ,rest← FIRST(goals), REST(goals)

for each θ′ in FOL-BC-OR(KB , SUBST(θ, first), θ) do

for each θ′′ in FOL-BC-AND(KB , rest , θ′) do

yield θ′′

Figure 9.6 A simple backward-chaining algorithm for first-order knowledge bases.

25

procedure APPEND(ax , y ,az , continuation)

trail←GLOBAL-TRAIL-POINTER()

if ax = [] and UNIFY(y ,az) then CALL(continuation)

RESET-TRAIL(trail)

a, x , z←NEW-VARIABLE(), NEW-VARIABLE(), NEW-VARIABLE()

if UNIFY(ax , [a] + x) and UNIFY(az , [a | z]) then APPEND(x , y , z , continuation)

Figure 9.8 Pseudocode representing the result of compiling the Append predicate. The

function NEW-VARIABLE returns a new variable, distinct from all other variables used so far.

The procedure CALL(continuation) continues execution with the specified continuation.

CHAPTER 10
KNOWLEDGE REPRESENTATION

CHAPTER 11
AUTOMATED PLANNING

Init(At(C1, SFO) ∧ At(C2, JFK) ∧ At(P1, SFO) ∧ At(P2, JFK)
∧ Cargo(C1) ∧ Cargo(C2) ∧ Plane(P1) ∧ Plane(P2)
∧ Airport(JFK) ∧ Airport(SFO))

Goal (At(C1, JFK) ∧ At(C2, SFO))
Action(Load(c, p, a),

PRECOND: At(c, a) ∧ At(p, a) ∧ Cargo(c) ∧ Plane(p) ∧ Airport(a)
EFFECT: ¬ At(c, a) ∧ In(c, p))

Action(Unload(c, p, a),
PRECOND: In(c, p) ∧ At(p, a) ∧ Cargo(c) ∧ Plane(p) ∧ Airport(a)
EFFECT: At(c, a) ∧ ¬ In(c, p))

Action(Fly(p, from , to),
PRECOND: At(p, from) ∧ Plane(p) ∧ Airport(from) ∧ Airport(to)
EFFECT: ¬ At(p, from) ∧ At(p, to))

Figure 11.1 A PDDL description of an air cargo transportation planning problem.

Init(Tire(Flat) ∧ Tire(Spare) ∧ At(Flat ,Axle) ∧ At(Spare,Trunk))
Goal(At(Spare,Axle))
Action(Remove(obj , loc),

PRECOND: At(obj , loc)
EFFECT: ¬ At(obj , loc) ∧ At(obj ,Ground))

Action(PutOn(t , Axle),
PRECOND: Tire(t) ∧ At(t ,Ground) ∧ ¬ At(Flat ,Axle) ∧ ¬ At(Spare,Axle)
EFFECT: ¬ At(t ,Ground) ∧ At(t ,Axle))

Action(LeaveOvernight ,

PRECOND:

EFFECT: ¬ At(Spare,Ground) ∧ ¬ At(Spare,Axle) ∧ ¬ At(Spare,Trunk)
∧ ¬ At(Flat ,Ground) ∧ ¬ At(Flat ,Axle) ∧ ¬ At(Flat , Trunk))

Figure 11.2 The simple spare tire problem.

28 Chapter 11 Automated Planning

Init(On(A,Table) ∧ On(B,Table) ∧ On(C,A)
∧ Block (A) ∧ Block (B) ∧ Block (C) ∧ Clear (B) ∧ Clear (C) ∧ Clear (Table))

Goal (On(A,B) ∧ On(B,C))
Action(Move(b, x, y),

PRECOND: On(b, x) ∧ Clear (b) ∧ Clear (y) ∧ Block (b) ∧ Block (y) ∧
(b 6=x) ∧ (b 6=y) ∧ (x6=y),

EFFECT: On(b, y) ∧ Clear (x) ∧ ¬On(b, x) ∧ ¬Clear (y))
Action(MoveToTable (b, x),

PRECOND: On(b, x) ∧ Clear (b) ∧ Block (b) ∧ Block (x),
EFFECT: On(b,Table) ∧ Clear (x) ∧ ¬On(b, x))

Figure 11.4 A planning problem in the blocks world: building a three-block tower. One

solution is the sequence [MoveToTable(C,A),Move(B,Table, C),Move(A,Table , B)].

Refinement(Go(Home, SFO),
STEPS: [Drive(Home, SFOLongTermParking),

Shuttle(SFOLongTermParking , SFO)])
Refinement(Go(Home, SFO),

STEPS: [Taxi(Home, SFO)])

Refinement(Navigate([a, b], [x, y]),
PRECOND: a=x ∧ b= y
STEPS: [])

Refinement(Navigate([a, b], [x, y]),
PRECOND:Connected([a, b], [a− 1, b])
STEPS: [Left ,Navigate([a− 1, b], [x, y])])

Refinement(Navigate([a, b], [x, y]),
PRECOND:Connected([a, b], [a+ 1, b])
STEPS: [Right ,Navigate([a+ 1, b], [x, y])])

. . .

Figure 11.7 Definitions of possible refinements for two high-level actions: going to San

Francisco airport and navigating in the vacuum world. In the latter case, note the recursive

nature of the refinements and the use of preconditions.

29

function HIERARCHICAL-SEARCH(problem ,hierarchy) returns a solution or failure

frontier← a FIFO queue with [Act] as the only element

while true do

if IS-EMPTY(frontier) then return failure

plan← POP(frontier) // chooses the shallowest plan in frontier

hla← the first HLA in plan , or null if none

prefix ,suffix← the action subsequences before and after hla in plan

outcome←RESULT(problem .INITIAL, prefix)

if hla is null then // so plan is primitive and outcome is its result

if problem .IS-GOAL(outcome) then return plan

else for each sequence in REFINEMENTS(hla ,outcome,hierarchy) do

add APPEND(prefix , sequence, suffix) to frontier

Figure 11.8 A breadth-first implementation of hierarchical forward planning search. The

initial plan supplied to the algorithm is [Act]. The REFINEMENTS function returns a set of

action sequences, one for each refinement of the HLA whose preconditions are satisfied by

the specified state, outcome.

30 Chapter 11 Automated Planning

function ANGELIC-SEARCH(problem ,hierarchy , initialPlan) returns solution or fail

frontier← a FIFO queue with initialPlan as the only element

while true do

if EMPTY?(frontier) then return fail

plan← POP(frontier) // chooses the shallowest node in frontier

if REACH
+(problem .INITIAL,plan) intersects problem .GOAL then

if plan is primitive then return plan // REACH
+ is exact for primitive plans

guaranteed←REACH
−(problem .INITIAL, plan) ∩ problem .GOAL

if guaranteed 6={ } and MAKING-PROGRESS(plan , initialPlan) then

finalState← any element of guaranteed

return DECOMPOSE(hierarchy ,problem .INITIAL,plan ,finalState)

hla← some HLA in plan

prefix ,suffix← the action subsequences before and after hla in plan

outcome←RESULT(problem .INITIAL, prefix)

for each sequence in REFINEMENTS(hla ,outcome ,hierarchy) do

frontier← Insert(APPEND(prefix , sequence, suffix), frontier)

function DECOMPOSE(hierarchy , s0 ,plan , sf) returns a solution

solution← an empty plan

while plan is not empty do

action←REMOVE-LAST(plan)

si← a state in REACH
−(s0 ,plan) such that sf ∈REACH

−(si ,action)
problem← a problem with INITIAL = si and GOAL = sf
solution←APPEND(ANGELIC-SEARCH(problem ,hierarchy ,action), solution)

sf ← si
return solution

Figure 11.11 A hierarchical planning algorithm that uses angelic semantics to identify and

commit to high-level plans that work while avoiding high-level plans that don’t. The predi-

cate MAKING-PROGRESS checks to make sure that we aren’t stuck in an infinite regression

of refinements. At top level, call ANGELIC-SEARCH with [Act] as the initialPlan .

31

Jobs({AddEngine1 ≺AddWheels1 ≺ Inspect1},
{AddEngine2 ≺AddWheels2 ≺ Inspect2})

Resources(EngineHoists(1), WheelStations(1), Inspectors(e2), LugNuts(500))

Action(AddEngine1 , DURATION:30,
USE:EngineHoists(1))

Action(AddEngine2 , DURATION:60,
USE:EngineHoists(1))

Action(AddWheels1 , DURATION:30,
CONSUME:LugNuts(20), USE:WheelStations(1))

Action(AddWheels2 , DURATION:15,
CONSUME:LugNuts(20), USE:WheelStations(1))

Action(Inspect i, DURATION:10,
USE:Inspectors(1))

Figure 11.13 A job-shop scheduling problem for assembling two cars, with resource con-

straints. The notation A≺B means that action A must precede action B.

CHAPTER 12
QUANTIFYING UNCERTAINTY

function DT-AGENT(percept) returns an action

persistent: belief state, probabilistic beliefs about the current state of the world

action , the agent’s action

update belief state based on action and percept

calculate outcome probabilities for actions,

given action descriptions and current belief state

select action with highest expected utility

given probabilities of outcomes and utility information

return action

Figure 12.1 A decision-theoretic agent that selects rational actions.

CHAPTER 13
PROBABILISTIC REASONING

function ENUMERATION-ASK(X , e, bn) returns a distribution over X

inputs: X , the query variable

e, observed values for variables E

bn , a Bayes net with variables vars

Q(X)← a distribution over X , initially empty

for each value xi of X do

Q(xi)← ENUMERATE-ALL(vars , exi
)

where exi
is e extended with X = xi

return NORMALIZE(Q(X))

function ENUMERATE-ALL(vars , e) returns a real number

if EMPTY?(vars) then return 1.0

V ← FIRST(vars)

if V is an evidence variable with value v in e

then return P (v | parents(V)) × ENUMERATE-ALL(REST(vars), e)

else return
∑

v P (v | parents(V)) × ENUMERATE-ALL(REST(vars), ev)

where ev is e extended with V = v

Figure 13.11 The enumeration algorithm for exact inference in Bayes nets.

function ELIMINATION-ASK(X , e, bn) returns a distribution over X

inputs: X , the query variable

e, observed values for variables E

bn , a Bayesian network with variables vars

factors← []
for each V in ORDER(vars) do

factors← [MAKE-FACTOR(V , e)] + factors

if V is a hidden variable then factors← SUM-OUT(V , factors)

return NORMALIZE(POINTWISE-PRODUCT(factors))

Figure 13.13 The variable elimination algorithm for exact inference in Bayes nets.

34 Chapter 13 Probabilistic Reasoning

function PRIOR-SAMPLE(bn) returns an event sampled from the prior specified by bn

inputs: bn , a Bayesian network specifying joint distribution P(X1, . . . , Xn)

x← an event with n elements

for each variable Xi in X1, . . . , Xn do

x[i]← a random sample from P(Xi | parents(Xi))
return x

Figure 13.16 A sampling algorithm that generates events from a Bayesian network. Each

variable is sampled according to the conditional distribution given the values already sampled

for the variable’s parents.

function REJECTION-SAMPLING(X , e, bn ,N) returns an estimate of P(X | e)
inputs: X , the query variable

e, observed values for variables E

bn , a Bayesian network

N , the total number of samples to be generated

local variables: C, a vector of counts for each value of X , initially zero

for j = 1 to N do

x← PRIOR-SAMPLE(bn)

if x is consistent with e then

C[j]←C[j]+1 where xj is the value of X in x

return NORMALIZE(C)

Figure 13.17 The rejection-sampling algorithm for answering queries given evidence in a

Bayesian network.

35

function LIKELIHOOD-WEIGHTING(X , e, bn ,N) returns an estimate of P(X | e)
inputs: X , the query variable

e, observed values for variables E

bn , a Bayesian network specifying joint distribution P(X1, . . . , Xn)
N , the total number of samples to be generated

local variables: W, a vector of weighted counts for each value of X , initially zero

for j = 1 to N do

x,w←WEIGHTED-SAMPLE(bn , e)

W[j]←W[j] + w where xj is the value of X in x

return NORMALIZE(W)

function WEIGHTED-SAMPLE(bn, e) returns an event and a weight

w← 1; x← an event with n elements, with values fixed from e

for i = 1 to n do

if Xi is an evidence variable with value xij in e

then w←w × P (Xi= xij | parents(Xi))
else x[i]← a random sample from P(Xi | parents(Xi))

return x, w

Figure 13.18 The likelihood-weighting algorithm for inference in Bayesian networks. In

WEIGHTED-SAMPLE, each nonevidence variable is sampled according to the conditional

distribution given the values already sampled for the variable’s parents, while a weight is

accumulated based on the likelihood for each evidence variable.

function GIBBS-ASK(X , e, bn ,N) returns an estimate of P(X | e)
local variables: C, a vector of counts for each value of X , initially zero

Z, the nonevidence variables in bn

x, the current state of the network, initialized from e

initialize x with random values for the variables in Z

for k = 1 to N do

choose any variable Zi from Z according to any distribution ρ(i)
set the value of Zi in x by sampling from P(Zi |mb(Zi))
C[j]←C[j] + 1 where xj is the value of X in x

return NORMALIZE(C)

Figure 13.20 The Gibbs sampling algorithm for approximate inference in Bayes nets; this

version chooses variables at random, but cycling through the variables but also works.

CHAPTER 14
PROBABILISTIC REASONING OVER

TIME

function FORWARD-BACKWARD(ev,prior) returns a vector of probability distributions

inputs: ev, a vector of evidence values for steps 1, . . . , t
prior , the prior distribution on the initial state, P(X0)

local variables: fv, a vector of forward messages for steps 0, . . . , t
b, a representation of the backward message, initially all 1s

sv, a vector of smoothed estimates for steps 1, . . . , t

fv[0]← prior

for i= 1 to t do

fv[i]← FORWARD(fv[i− 1], ev[i])
for i= t down to 1 do

sv[i]←NORMALIZE(fv[i]×b)
b←BACKWARD(b, ev[i])

return sv

Figure 14.4 The forward–backward algorithm for smoothing: computing posterior prob-

abilities of a sequence of states given a sequence of observations. The FORWARD and

BACKWARD operators are defined by Equations (??) and (??), respectively.

37

function FIXED-LAG-SMOOTHING(et,hmm ,d) returns a distribution over Xt−d

inputs: et, the current evidence for time step t
hmm , a hidden Markov model with S× S transition matrix T

d , the length of the lag for smoothing

persistent: t , the current time, initially 1

f, the forward message P(Xt | e1:t), initially hmm .PRIOR

B, the d-step backward transformation matrix, initially the identity matrix

et−d:t, double-ended list of evidence from t− d to t, initially empty

local variables: Ot−d,Ot, diagonal matrices containing the sensor model information

add et to the end of et−d:t

Ot← diagonal matrix containing P(et |Xt)
if t > d then

f← FORWARD(f, et−d)
remove et−d−1 from the beginning of et−d:t

Ot−d← diagonal matrix containing P(et−d |Xt−d)
B←O−1

t−dT−1BTOt

else B←BTOt

t← t + 1
if t > d+ 1 then return NORMALIZE(f × B1) else return null

Figure 14.6 An algorithm for smoothing with a fixed time lag of d steps, implemented as

an online algorithm that outputs the new smoothed estimate given the observation for a new

time step. Notice that the final output NORMALIZE(f×B1) is just α f×b, by Equation (??).

function PARTICLE-FILTERING(e,N ,dbn) returns a set of samples for the next time step

inputs: e, the new incoming evidence

N , the number of samples to be maintained

dbn , a DBN defined by P(X0), P(X1 |X0), and P(E1 |X1)
persistent: S , a vector of samples of size N , initially generated from P(X0)
local variables: W , a vector of weights of size N

for i = 1 to N do

S [i]← sample from P(X1 |X0 = S [i]) // step 1

W [i]←P(e |X1 = S[i]) // step 2

S←WEIGHTED-SAMPLE-WITH-REPLACEMENT(N ,S ,W) // step 3

return S

Figure 14.17 The particle filtering algorithm implemented as a recursive update oper-

ation with state (the set of samples). Each of the sampling operations involves sam-

pling the relevant slice variables in topological order, much as in PRIOR-SAMPLE. The

WEIGHTED-SAMPLE-WITH-REPLACEMENT operation can be implemented to run in O(N)
expected time. The step numbers refer to the description in the text.

CHAPTER 15
PROBABILISTIC PROGRAMMING

type Researcher, Paper, Citation

random String Name(Researcher)

random String Title(Paper)

random Paper PubCited(Citation)

random String Text(Citation)

random Boolean Professor(Researcher)

origin Researcher Author(Paper)

#Researcher ∼ OM(3, 1)
Name(r) ∼ NamePrior ()
Professor (r) ∼ Boolean(0.2)
#Paper (Author = r) ∼ if Professor (r) then OM(1.5, 0.5) else OM(1, 0.5)
Title(p) ∼ PaperTitlePrior ()
CitedPaper (c) ∼ UniformChoice({Paper p})
Text(c) ∼ HMMGrammar (Name(Author(CitedPaper (c))),Title(CitedPaper (c)))

Figure 15.5 An OUPM for citation information extraction. For simplicity the model assumes

one author per paper and omits details of the grammar and error models.

39

#SeismicEvents ∼ Poisson(T ∗ λe)
Time(e) ∼ UniformReal(0, T)
EarthQuake(e) ∼ Boolean(0.999)
Location(e) ∼ if Earthquake(e) then SpatialPrior () else UniformEarth()
Depth(e) ∼ if Earthquake(e) then UniformReal(0, 700) else Exactly(0)
Magnitude(e) ∼ Exponential(log(10))
Detected(e, p, s) ∼ Logistic(weights(s, p),Magnitude(e), Depth(e), Dist(e, s))
#Detections(site = s) ∼ Poisson(T ∗ λf (s))
#Detections(event=e, phase=p, station=s) = if Detected(e, p, s) then 1 else 0
OnsetTime(a, s) if (event(a) = null) then ∼ UniformReal(0, T)

else = Time(event(a)) + GeoTT (Dist(event(a), s),Depth(event(a)), phase(a))
+ Laplace(µt(s), σt(s))

Amplitude(a, s) if (event(a) = null) then ∼ NoiseAmpModel (s)
else = AmpModel (Magnitude(event(a)),Dist(event(a), s),Depth(event(a)), phase(a))

Azimuth(a, s) if (event(a) = null) then ∼ UniformReal(0, 360)
else = GeoAzimuth(Location(event(a)),Depth(event(a)), phase(a), Site(s))

+ Laplace(0, σa(s))
Slowness(a, s) if (event(a) = null) then ∼ UniformReal(0, 20)

else = GeoSlowness(Location(event(a)),Depth(event(a)), phase(a), Site(s))
+ Laplace(0, σs(s))

ObservedPhase(a, s) ∼ CategoricalPhaseModel (phase(a))

Figure 15.6 A simplified version of the NET-VISA model (see text).

#Aircraft(EntryTime =t) ∼ Poisson(λa)
Exits(a, t) ∼ if InFlight(a, t) then Boolean(αe)
InFlight(a, t) = (t=EntryTime(a)) ∨ (InFlight(a, t− 1) ∧ ¬ Exits(a, t− 1))
X(a, t) ∼ if t = EntryTime(a) then InitX ()

else if InFlight(a, t) thenN (FX(a, t− 1),Σx)
#Blip(Source=a, Time=t) ∼ if InFlight(a, t) then Bernoulli(DetectionProb(X(a, t)))
#Blip(Time=t) ∼ Poisson(λf)
Z(b) ∼ if Source(b)=null then UniformZ (R) elseN (HX(Source(b),Time(b)),Σz)

Figure 15.9 An OUPM for radar tracking of multiple targets with false alarms, detection

failure, and entry and exit of aircraft. The rate at which new aircraft enter the scene is λa,

while the probability per time step that an aircraft exits the scene is αe. False alarm blips (i.e.,

ones not produced by an aircraft) appear uniformly in space at a rate of λf per time step. The

probability that an aircraft is detected (i.e., produces a blip) depends on its current position.

40 Chapter 15 Probabilistic Programming

function GENERATE-IMAGE() returns an image with some letters

letters←GENERATE-LETTERS(10)

return RENDER-NOISY-IMAGE(letters, 32, 128)

function GENERATE-LETTERS(λ) returns a vector of letters

n ∼ Poisson(λ)
letters← []
for i = 1 to n do

letters[i] ∼ UniformChoice({a, b, c, · · ·})
return letters

function RENDER-NOISY-IMAGE(letters ,width ,height) returns a noisy image of the letters

clean image←RENDER(letters,width ,height , text top = 10, text left = 10)

noisy image← []
noise variance ∼ UniformReal(0.1, 1)
for row = 1 to width do

for col = 1 to height do

noisy image [row , col] ∼ N (clean image[row, col], noise variance)
return noisy image

Figure 15.11 Generative program for an open-universe probability model for optical charac-

ter recognition. The generative program produces degraded images containing sequences of

letters by generating each sequence, rendering it into a 2D image, and incorporating additive

noise at each pixel.

function GENERATE-MARKOV-LETTERS(λ) returns a vector of letters

n ∼ Poisson(λ)
letters← []
letter probs←MARKOV-INITIAL()

for i = 1 to n do

letters[i] ∼ Categorical (letter probs)
letter probs←MARKOV-TRANSITION(letters[i])

return letters

Figure 15.15 Generative program for an improved optical character recognition model that

generates letters according to a letter bigram model whose pairwise letter frequencies are

estimated from a list of English words.

CHAPTER 16
MAKING SIMPLE DECISIONS

function INFORMATION-GATHERING-AGENT(percept) returns an action

persistent: D , a decision network

integrate percept into D

j ← the value that maximizes VPI (Ej) / C (Ej)
if VPI (Ej) > C (Ej)

then return Request(Ej)
else return the best action from D

Figure 16.9 Design of a simple, myopic information-gathering agent. The agent works by

repeatedly selecting the observation with the highest information value, until the cost of the

next observation is greater than its expected benefit.

CHAPTER 17
MAKING COMPLEX DECISIONS

function VALUE-ITERATION(mdp, ǫ) returns a utility function

inputs: mdp, an MDP with states S , actions A(s), transition model P (s′ | s, a),
rewards R(s, a, s′), discount γ

ǫ, the maximum error allowed in the utility of any state

local variables: U , U ′, vectors of utilities for states in S , initially zero

δ, the maximum relative change in the utility of any state

repeat

U ←U ′; δ← 0

for each state s in S do

U ′[s]←maxa∈A(s) Q-VALUE(mdp, s , a,U)
if |U ′[s] − U [s]| > δ then δ←|U ′[s] − U [s]|

until δ ≤ ǫ(1− γ)/γ
return U

Figure 17.6 The value iteration algorithm for calculating utilities of states. The termination

condition is from Equation (??).

function POLICY-ITERATION(mdp) returns a policy

inputs: mdp, an MDP with states S , actions A(s), transition model P (s′ | s, a)
local variables: U , a vector of utilities for states in S , initially zero

π, a policy vector indexed by state, initially random

repeat

U ← POLICY-EVALUATION(π,U ,mdp)

unchanged?← true

for each state s in S do

a∗← argmax
a∈A(s)

Q-VALUE(mdp, s , a,U)

if Q-VALUE(mdp, s ,a∗,U) > Q-VALUE(mdp, s , π[s],U) then

π[s]← a∗; unchanged?← false

until unchanged?
return π

Figure 17.9 The policy iteration algorithm for calculating an optimal policy.

43

function POMDP-VALUE-ITERATION(pomdp, ǫ) returns a utility function

inputs: pomdp , a POMDP with states S , actions A(s), transition model P (s′ | s, a),
sensor model P (e | s), rewards R(s), discount γ

ǫ, the maximum error allowed in the utility of any state

local variables: U , U ′, sets of plans p with associated utility vectors αp

U ′← a set containing just the empty plan [], with α[](s)= R(s)
repeat

U ←U ′

U ′← the set of all plans consisting of an action and, for each possible next percept,

a plan in U with utility vectors computed according to Equation (??)

U ′←REMOVE-DOMINATED-PLANS(U ′)

until MAX-DIFFERENCE(U ,U ′) ≤ ǫ(1− γ)/γ
return U

Figure 17.16 A high-level sketch of the value iteration algorithm for POMDPs. The

REMOVE-DOMINATED-PLANS step and MAX-DIFFERENCE test are typically implemented

as linear programs.

CHAPTER 18
MULTIAGENT DECISION MAKING

Actors(A,B)
Init(At(A,LeftBaseline) ∧ At(B,RightNet) ∧

Approaching(Ball ,RightBaseline) ∧ Partner(A,B) ∧ Partner(B,A)
Goal (Returned(Ball) ∧ (At(x ,RightNet) ∨ At(x,LeftNet))
Action(Hit(actor ,Ball),

PRECOND:Approaching(Ball , loc) ∧ At(actor , loc)
EFFECT:Returned(Ball))

Action(Go(actor , to),
PRECOND:At(actor , loc) ∧ to 6= loc,
EFFECT:At(actor , to) ∧ ¬ At(actor , loc))

Figure 18.1 The doubles tennis problem. Two actors, A and B, are playing together and can

be in one of four locations: LeftBaseline , RightBaseline , LeftNet , and RightNet . The ball

can be returned only if a player is in the right place. The NoOp action is a dummy, which

has no effect. Note that each action must include the actor as an argument.

CHAPTER 19
LEARNING FROM EXAMPLES

function LEARN-DECISION-TREE(examples ,attributes ,parent examples) returns a tree

if examples is empty then return PLURALITY-VALUE(parent examples)

else if all examples have the same classification then return the classification

else if attributes is empty then return PLURALITY-VALUE(examples)

else

A← argmaxa ∈ attributes IMPORTANCE(a, examples)
tree← a new decision tree with root test A

for each value v of A do

exs←{e : e∈ examples and e.A = v}
subtree← LEARN-DECISION-TREE(exs,attributes −A, examples)

add a branch to tree with label (A = v) and subtree subtree

return tree

Figure 19.5 The decision tree learning algorithm. The function IMPORTANCE is described in

Section ??. The function PLURALITY-VALUE selects the most common output value among

a set of examples, breaking ties randomly.

46 Chapter 19 Learning from Examples

function MODEL-SELECTION(Learner , examples , k) returns a (hypothesis, error rate) pair

err← an array, indexed by size, storing validation-set error rates

training set , test set← a partition of examples into two sets

for size = 1 to∞ do

err [size]←CROSS-VALIDATION(Learner , size, training set , k)

if err is starting to increase significantly then

best size← the value of size with minimum err [size]

h←Learner (best size , training set)

return h, ERROR-RATE(h, test set)

function CROSS-VALIDATION(Learner , size , examples , k) returns error rate

N ← the number of examples

errs← 0

for i = 1 to k do

validation set← examples[(i − 1) × N/k:i × N/k]

training set← examples − validation set

h←Learner (size, training set)

errs← errs + ERROR-RATE(h, validation set)

return errs / k // average error rate on validation sets, across k-fold cross-validation

Figure 19.8 An algorithm to select the model that has the lowest validation error. It builds

models of increasing complexity, and choosing the one with best empirical error rate, err ,

on the validation data set. Learner(size, examples) returns a hypothesis whose complexity

is set by the parameter size , and which is trained on examples . In CROSS-VALIDATION,

each iteration of the for loop selects a different slice of the examples as the validation set,

and keeps the other examples as the training set. It then returns the average validation set

error over all the folds. Once we have determined which value of the size parameter is best,

MODEL-SELECTION returns the model (i.e., learner/hypothesis) of that size, trained on all

the training examples, along with its error rate on the held-out test examples.

function DECISION-LIST-LEARNING(examples) returns a decision list, or failure

if examples is empty then return the trivial decision list No

t← a test that matches a nonempty subset examplest of examples

such that the members of examples t are all positive or all negative

if there is no such t then return failure

if the examples in examples t are positive then o←Yes else o←No

return a decision list with initial test t and outcome o and remaining tests given by

DECISION-LIST-LEARNING(examples − examples t)

Figure 19.11 An algorithm for learning decision lists.

47

function ADABOOST(examples ,L,K) returns a hypothesis

inputs: examples , set of N labeled examples (x1, y1), . . . , (xN , yN)
L, a learning algorithm

K , the number of hypotheses in the ensemble

local variables: w, a vector of N example weights, initially all 1/N
h, a vector of K hypotheses

z, a vector of K hypothesis weights

ǫ← a small positive number, used to avoid division by zero

for k = 1 to K do

h[k]←L(examples , w)

error← 0

for j = 1 to N do // Compute the total error for h[k]
if h[k](xj) 6= yj then error← error + w[j]

if error > 1/2 then break from loop

error←min(error , 1 − ǫ)
for j = 1 to N do // Give more weight to the examples h[k] got wrong

if h[k](xj) = yj then w[j]←w[j] · error/(1− error)
w←NORMALIZE(w)

z[k]← 1
2 log ((1 − error)/error) // Give more weight to accurate h[k]

return Function(x) :
∑

zi hi(x)

Figure 19.25 The ADABOOST variant of the boosting method for ensemble learning. The

algorithm generates hypotheses by successively reweighting the training examples. The func-

tion WEIGHTED-MAJORITY generates a hypothesis that returns the output value with the

highest vote from the hypotheses in h, with votes weighted by z. For regression problems, or

for binary classification with two classes -1 and 1, this is
∑

k h[k]z[k].

CHAPTER 20
LEARNING PROBABILISTIC MODELS

CHAPTER 21
DEEP LEARNING

CHAPTER 22
REINFORCEMENT LEARNING

function PASSIVE-ADP-LEARNER(percept) returns an action

inputs: percept , a percept indicating the current state s ′ and reward signal r

persistent: π, a fixed policy

mdp, an MDP with model P , rewards R, actions A, discount γ
U , a table of utilities for states, initially empty

N s′|s,a, a table of outcome count vectors indexed by state and action, initially zero

s , a, the previous state and action, initially null

if s ′ is new then U [s ′]← 0

if s is not null then

increment N s′|s,a[s ,a][s’]

R[s , a, s ′]← r

add a to A[s]

P(· | s, a)←NORMALIZE(N s′|s,a[s , a])

U ← POLICYEVALUATION(π,U ,mdp)

s ,a← s ′,π[s ′]

return a

Figure 22.2 A passive reinforcement learning agent based on adaptive dynamic program-

ming. The agent chooses a value for γ and then incrementally computes the P and R values

of the MDP. The POLICY-EVALUATION function solves the fixed-policy Bellman equations,

as described on page ??.

51

function PASSIVE-TD-LEARNER(percept) returns an action

inputs: percept , a percept indicating the current state s ′ and reward signal r

persistent: π, a fixed policy

s , the previous state, initially null

U , a table of utilities for states, initially empty

Ns, a table of frequencies for states, initially zero

if s ′ is new then U [s ′]← 0

if s is not null then

increment N s[s]

U [s]←U [s] + α(N s[s]) × (r + γ U [s ′] - U [s])

s← s ′

return π[s ′]

Figure 22.4 A passive reinforcement learning agent that learns utility estimates using tem-

poral differences. The step-size function α(n) is chosen to ensure convergence.

function Q-LEARNING-AGENT(percept) returns an action

inputs: percept , a percept indicating the current state s ′ and reward signal r

persistent: Q , a table of action values indexed by state and action, initially zero

Nsa , a table of frequencies for state–action pairs, initially zero

s , a, the previous state and action, initially null

if s is not null then

increment Nsa [s ,a]

Q [s ,a]←Q [s ,a] + α(Nsa [s , a])(r + γ maxa′ Q [s′, a′] − Q [s ,a])
s ,a← s ′,argmaxa′ f(Q [s ′, a′],Nsa [s

′, a′])
return a

Figure 22.8 An exploratory Q-learning agent. It is an active learner that learns the value

Q(s, a) of each action in each situation. It uses the same exploration function f as the ex-

ploratory ADP agent, but avoids having to learn the transition model.

CHAPTER 23
NATURAL LANGUAGE PROCESSING

function CYK-PARSE(words , grammar) returns a table of parse trees

inputs: words , a list of words

grammar , a structure with LEXICALRULES and GRAMMARRULES

T← a table // T [X , i , k] is most probable X tree spanning words i:k
P← a table, initially all 0 // P[X , i , k] is probability of tree T [X , i , k]

// Insert lexical categories for each word.

for i = 1 to LEN(words) do

for each (X , p) in grammar .LEXICALRULES(words i) do

P [X , i , i]← p

T [X , i , i]← TREE(X , words i)

// Construct Xi:k from Yi:j + Zj+1:k, shortest spans first.

for each (i , j , k) in SUBSPANS(LEN(words)) do

for each (X , Y , Z , p) in grammar .GRAMMARRULES do

PYZ ←P [Y , i , j] × P [Z , j + 1, k] × p

if PYZ > P [X , i , k] do

P [X , i , k]←PYZ

T [X , i , k]← TREE(X , T [Y , i , j], T [Z , j + 1, k])

return T

function SUBSPANS(N) yields (i , j , k) tuples

for length = 2 to N do

for i = 1 to N + 1 − length do

k← i + length − 1
for j = i to k − 1 do

yield (i, j, k)

Figure 23.5 The CYK algorithm for parsing. Given a sequence of words, it finds the most

probable parse tree for the sequence and its subsequences. The table P [X , i , k] gives the

probability of the most probable tree of category X spanning words i:k. The output table

T [X , i , k] contains the most probable tree of category X spanning positions i to k inclu-

sive. The function SUBSPANS returns all tuples (i , j , k) covering a span of words i:k, with

i ≤ j < k, listing the tuples by increasing length of the i : k span, so that when we go

to combine two shorter spans into a longer one, the shorter spans are already in the table.

LEXICALRULES(word) returns a collection of (X , p) pairs, one for each rule of the form

X → word [htbp], and GRAMMARRULES gives (X ,Y ,Z , p) tuples, one for each grammar

rule of the form X → Y Z [p].

53

[[S [NP -2 Her eyes]

[VP were

[VP glazed

[NP *-2]

[SBAR-ADV as if

[S [NP she]

[VP did n’t

[VP [VP hear [NP *-1]]

or

[VP [ADVP even] see [NP *-1]]

[NP-1 him]]]]]]]]

.]

Figure 23.8 Annotated tree for the sentence “Her eyes were glazed as if she didn’t hear

or even see him.” from the Penn Treebank. Note a grammatical phenomenon we have not

covered yet: the movement of a phrase from one part of the tree to another. This tree analyzes

the phrase “hear or even see him” as consisting of two constituent VPs, [VP hear [NP *-1]]

and [VP [ADVP even] see [NP *-1]], both of which have a missing object, denoted *-1,

which refers to the NP labeled elsewhere in the tree as [NP-1 him]. Similarly, the [NP *-2]

refers to the [NP-2 Her eyes].

CHAPTER 24
DEEP LEARNING FOR NATURAL

LANGUAGE PROCESSING

It is a truth universally acknowledged that the earth is not the center of the uni-

verse. There are those who assert there is. I do not accept them, but others I

consider to be of the same opinion. The truth is, however, that if there are other

than the center, and if there are any other living things in the universe and if they

are not human, then we do not yet have our answers. We have to go on. This page

gives a simplified, simplified answer to the problem. We don’t have all the answers.

The truth is, however, that the truth is out there.

When Gregor Samsa woke up one morning, he did not notice anything strange.

“When my wife is looking at me, I feel like she is looking at a piece of art,” he said.

“I think she is admiring something I have created.” The idea is that by looking at

your own life, you learn something important and become a better person. It is a

theory that emerged from psychologist Daniel Goleman’s work, in which he asked

“How do you know you’re not a loser?”

Alice was beginning to get very tired of sitting with her sister on the bank. She

sat up, yawned, and said, with a loud little scream, “I hope you don’t mind if I keep

on doing what I should like to do, and if someone asks me which of us will do

more, don’t tell them that I won’t do much, my dear sister.”

All happy families are alike; each happy family is like a garden of paradise. The

only difference between happy families and unhappy families, is that the unhappy

family doesn’t have any flowers or trees.

Tell me a story. Tell me a story. Tell me a story. Tell me a story. Tell me a story.

Tell me a story. Tell me a story. Tell me a story. Tell me a story. Tell me a story.

Tell me a story. Tell me a story. Please fill out the following details. Thank you...

Thank you for your interest in this interview. Please wait...

Figure 24.13 Example completion texts generated by the GPT-2 language model, given the

prompts in bold. Most of the texts are quite fluent English, at least locally. The final example

demonstrates that sometimes the model just breaks down.

CHAPTER 25
COMPUTER VISION

CHAPTER 26
ROBOTICS

function MONTE-CARLO-LOCALIZATIONa, z , N , P (X ′|X, v, ω), P (z|z∗), map

returns a set of samples, S, for the next time step

inputs: a, robot velocities v and ω
z, a vector of M range scan data points

P (X ′|X, v, ω), motion model

P (z|z∗), a range sensor noise model

map, a 2D map of the environment

persistent: S, a vector of N samples

local variables: W , a vector of N weights

S′, a temporary vector of N samples

if S is empty then

for i = 1 to N do // initialization phase

S[i]← sample from P (X0)
for i = 1 to N do // update cycle

S′[i]← sample from P (X ′|X = S[i], v, ω)
W [i]← 1

for j = 1 to M do

z∗←RAYCAST(j, X = S′[i], map)

W [i]←W [i] · P (zj | z∗)
S←WEIGHTED-SAMPLE-WITH-REPLACEMENT(N , S ′, W)

return S

Figure 26.6 A Monte Carlo localization algorithm using a range-scan sensor model with

independent noise.

CHAPTER 27
PHILOSOPHY, ETHICS, AND SAFETY

OF AI

CHAPTER 28
THE FUTURE OF AI

CHAPTER 29
MATHEMATICAL BACKGROUND

CHAPTER 30
NOTES ON LANGUAGES AND

ALGORITHMS

