
4 INFORMED SEARCH AND
EXPLORATION

In which we see how information about the state space can prevent algorithms
from blundering about in the dark.

Chapter 3 showed that uninformed search strategies can find solutions to problems by system-
atically generating new states and testing them against the goal. Unfortunately, these strate-
gies are incredibly inefficient in most cases. This chapter shows how an informed search
strategy—one that uses problem-specific knowledge—can find solutions more efficiently.
Section 4.1 describes informed versions of the algorithms in Chapter 3, and Section 4.2 ex-
plains how the necessary problem-specific information can be obtained. Sections 4.3 and 4.4
cover algorithms that perform purely local search in the state space, evaluating and modify-
ing one or more current states rather than systematically exploring paths from an initial state.
These algorithms are suitable for problems in which the path cost is irrelevant and all that
matters is the solution state itself. The family of local-search algorithms includes methods
inspired by statistical physics (simulated annealing) and evolutionary biology (genetic al-
gorithms). Finally, Section 4.5 investigates online search, in which the agent is faced with a
state space that is completely unknown.

4.1 INFORMED (HEURISTIC) SEARCH STRATEGIES

This section shows how an informed search strategy—one that uses problem-specific knowl-INFORMED SEARCH

edge beyond the definition of the problem itself—can find solutions more efficiently than an
uninformed strategy.

The general approach we will consider is called best-first search. Best-first search isBEST-FIRST SEARCH

an instance of the general TREE-SEARCH or GRAPH-SEARCH algorithm in which a node is
selected for expansion based on an evaluation function, f(n). Traditionally, the node withEVALUATION

FUNCTION

the lowest evaluation is selected for expansion, because the evaluation measures distance to
the goal. Best-first search can be implemented within our general search framework via a
priority queue, a data structure that will maintain the fringe in ascending order of f -values.

The name “best-first search” is a venerable but inaccurate one. After all, if we could
really expand the best node first, it would not be a search at all; it would be a straight march to
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Section 4.1. Informed (Heuristic) Search Strategies 95

the goal. All we can do is choose the node that appears to be best according to the evaluation
function. If the evaluation function is exactly accurate, then this will indeed be the best
node; in reality, the evaluation function will sometimes be off, and can lead the search astray.
Nevertheless, we will stick with the name “best-first search,” because “seemingly-best-first
search” is a little awkward.

There is a whole family of BEST-FIRST-SEARCH algorithms with different evaluation
functions.1 A key component of these algorithms is a heuristic function,2 denoted h(n):HEURISTIC

FUNCTION

h(n) = estimated cost of the cheapest path from node n to a goal node.

For example, in Romania, one might estimate the cost of the cheapest path from Arad to
Bucharest via the straight-line distance from Arad to Bucharest.

Heuristic functions are the most common form in which additional knowledge of the
problem is imparted to the search algorithm. We will study heuristics in more depth in Sec-
tion 4.2. For now, we will consider them to be arbitrary problem-specific functions, with one
constraint: if n is a goal node, then h(n)= 0. The remainder of this section covers two ways
to use heuristic information to guide search.

Greedy best-first search

Greedy best-first search3 tries to expand the node that is closest to the goal, on the groundsGREEDY BEST-FIRST
SEARCH

that this is likely to lead to a solution quickly. Thus, it evaluates nodes by using just the
heuristic function: f(n) = h(n).

Let us see how this works for route-finding problems in Romania, using the straight-
line distance heuristic, which we will call hSLD . If the goal is Bucharest, we will need toSTRAIGHT-LINE

DISTANCE

know the straight-line distances to Bucharest, which are shown in Figure 4.1. For example,
hSLD(In(Arad))= 366. Notice that the values of hSLD cannot be computed from the prob-
lem description itself. Moreover, it takes a certain amount of experience to know that hSLD

is correlated with actual road distances and is, therefore, a useful heuristic.
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Figure 4.1 Values of hSLD—straight-line distances to Bucharest.

1 Exercise 4.3 asks you to show that this family includes several familiar uninformed algorithms.
2 A heuristic function h(n) takes a node as input, but is depends only on the state at that node.
3 Our first edition called this greedy search; other authors have called it best-first search. Our more general
usage of the latter term follows Pearl (1984).
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Figure 4.2 Stages in a greedy best-first search for Bucharest using the straight-line dis-
tance heuristic hSLD . Nodes are labeled with their h-values.

Figure 4.2 shows the progress of a greedy best-first search using hSLD to find a path
from Arad to Bucharest. The first node to be expanded from Arad will be Sibiu, because it
is closer to Bucharest than either Zerind or Timisoara. The next node to be expanded will
be Fagaras, because it is closest. Fagaras in turn generates Bucharest, which is the goal.
For this particular problem, greedy best-first search using hSLD finds a solution without ever
expanding a node that is not on the solution path; hence, its search cost is minimal. It is
not optimal, however: the path via Sibiu and Fagaras to Bucharest is 32 kilometers longer
than the path through Rimnicu Vilcea and Pitesti. This shows why the algorithm is called
“greedy”—at each step it tries to get as close to the goal as it can.

Minimizing h(n) is susceptible to false starts. Consider the problem of getting from
Iasi to Fagaras. The heuristic suggests that Neamt be expanded first, because it is closest
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to Fagaras, but it is a dead end. The solution is to go first to Vaslui—a step that is actually
farther from the goal according to the heuristic—and then to continue to Urziceni, Bucharest,
and Fagaras. In this case, then, the heuristic causes unnecessary nodes to be expanded. Fur-
thermore, if we are not careful to detect repeated states, the solution will never be found—the
search will oscillate between Neamt and Iasi.

Greedy best-first search resembles depth-first search in the way it prefers to follow a
single path all the way to the goal, but will back up when it hits a dead end. It suffers from
the same defects as depth-first search—it is not optimal, and it is incomplete (because it can
start down an infinite path and never return to try other possibilities). The worst-case time
and space complexity is O(bm), where m is the maximum depth of the search space. With a
good heuristic function, however, the complexity can be reduced substantially. The amount
of the reduction depends on the particular problem and on the quality of the heuristic.

A* search: Minimizing the total estimated solution cost

The most widely-known form of best-first search is called A∗ search (pronounced “A-starA
∗

SEARCH

search”). It evaluates nodes by combining g(n), the cost to reach the node, and h(n), the cost
to get from the node to the goal:

f(n) = g(n) + h(n) .

Since g(n) gives the path cost from the start node to node n, and h(n) is the estimated cost
of the cheapest path from n to the goal, we have

f(n) = estimated cost of the cheapest solution through n .

Thus, if we are trying to find the cheapest solution, a reasonable thing to try first is the
node with the lowest value of g(n) + h(n). It turns out that this strategy is more than just
reasonable: provided that the heuristic function h(n) satisfies certain conditions, A∗ search is
both complete and optimal.

The optimality of A∗ is straightforward to analyze if it is used with TREE-SEARCH.
In this case, A∗ is optimal if h(n) is an admissible heuristic—that is, provided that h(n)ADMISSIBLE

HEURISTIC

never overestimates the cost to reach the goal. Admissible heuristics are by nature optimistic,
because they think the cost of solving the problem is less than it actually is. Since g(n) is the
exact cost to reach n, we have as immediate consequence that f(n) never overestimates the
true cost of a solution through n.

An obvious example of an admissible heuristic is the straight-line distance hSLD that
we used in getting to Bucharest. Straight-line distance is admissible because the shortest path
between any two points is a straight line, so the straight line cannot be an overestimate. In
Figure 4.3, we show the progress of an A∗ tree search for Bucharest. The values of g are
computed from the step costs in Figure 3.2, and the values of hSLD are given in Figure 4.1.
Notice in particular that Bucharest first appears on the fringe at step (e), but it is not selected
for expansion because its f -cost (450) is higher than that of Pitesti (417). Another way to
say this is that there might be a solution through Pitesti whose cost is as low as 417, so the
algorithm will not settle for a solution that costs 450. From this example, we can extract
a general proof that A∗ using TREE-SEARCH is optimal if h(n) is admissible. Suppose a
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Figure 4.3 Stages in an A∗ search for Bucharest. Nodes are labeled with f = g + h. The
h values are the straight-line distances to Bucharest taken from Figure 4.1.
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suboptimal goal node G2 appears on the fringe, and let the cost of the optimal solution be C∗.
Then, because G2 is suboptimal and because h(G2)= 0 (true for any goal node), we know

f(G2) = g(G2) + h(G2) = g(G2) > C∗ .

Now consider a fringe node n that is on an optimal solution path—for example, Pitesti in the
example of the preceding paragraph. (There must always be such a node if a solution exists.)
If h(n) does not overestimate the cost of completing the solution path, then we know that

f(n) = g(n) + h(n) ≤ C∗ .

Now we have shown that f(n) ≤ C∗ < f(G2), so G2 will not be expanded and A∗ must
return an optimal solution.

If we use the GRAPH-SEARCH algorithm of Figure 3.19 instead of TREE-SEARCH,
then this proof breaks down. Suboptimal solutions can be returned because GRAPH-SEARCH

can discard the optimal path to a repeated state if it is not the first one generated. (See
Exercise 4.4.) There are two ways to fix this problem. The first solution is to extend
GRAPH-SEARCH so that it discards the more expensive of any two paths found to the same
node. (See the discussion in Section 3.5.) The extra bookkeeping is messy, but it does guar-
antee optimality. The second solution is to ensure that the optimal path to any repeated state is
always the first one followed—as is the case with uniform-cost search. This property holds if
we impose an extra requirement on h(n), namely the requirement of consistency (also calledCONSISTENCY

monotonicity). A heuristic h(n) is consistent if, for every node n and every successor n′ ofMONOTONICITY

n generated by any action a, the estimated cost of reaching the goal from n is no greater than
the step cost of getting to n′ plus the estimated cost of reaching the goal from n′:

h(n) ≤ c(n, a, n′) + h(n′) .

This is a form of the general triangle inequality, which stipulates that each side of a triangleTRIANGLE
INEQUALITY

cannot be longer than the sum of the other two sides. Here, the triangle is formed by n, n′,
and the goal closest to n. It is fairly easy to show (Exercise 4.7) that every consistent heuristic
is also admissible. The most important consequence of consistency is the following: A∗ using
GRAPH-SEARCH is optimal if h(n) is consistent.

Although consistency is a stricter requirement than admissibility, one has to work quite
hard to concoct heuristics that are admissible but not consistent. All the admissible heuristics
we discuss in this chapter are also consistent. Consider, for example, hSLD . We know that
the general triangle inequality is satisfied when each side is measured by the straight-line
distance, and that the straight-line distance between n and n′ is no greater than c(n, a, n′).
Hence, hSLD is a consistent heuristic.

Another important consequence of consistency is the following: If h(n) is consistent,
then the values of f(n) along any path are nondecreasing. The proof follows directly from
the definition of consistency. Suppose n′ is a successor of n; then g(n′)= g(n) + c(n, a, n′)
for some a, and we have

f(n′) = g(n′) + h(n′) = g(n) + c(n, a, n′) + h(n′) ≥ g(n) + h(n) = f(n) .

It follows that the sequence of nodes expanded by A∗ using GRAPH-SEARCH is in nonde-
creasing order of f(n). Hence, the first goal node selected for expansion must be an optimal
solution, since all later nodes will be at least as expensive.
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Figure 4.4 Map of Romania showing contours at f = 380, f = 400 and f = 420, with
Arad as the start state. Nodes inside a given contour have f -costs less than or equal to the
contour value.

The fact that f -costs are nondecreasing along any path also means that we can draw
contours in the state space, just like the contours in a topographic map. Figure 4.4 shows anCONTOURS

example. Inside the contour labeled 400, all nodes have f(n) less than or equal to 400, and so
on. Then, because A∗ expands the fringe node of lowest f -cost, we can see that an A∗ search
fans out from the start node, adding nodes in concentric bands of increasing f -cost.

With uniform-cost search (A∗ search using h(n) = 0), the bands will be “circular”
around the start state. With more accurate heuristics, the bands will stretch toward the goal
state and become more narrowly focused around the optimal path. If C∗ is the cost of the
optimal solution path, then we can say the following:

• A∗ expands all nodes with f(n) < C∗.

• A∗ might then expand some of the nodes right on the “goal contour” (where f(n) = C∗)
before selecting a goal node.

Intuitively, it is obvious that the first solution found must be an optimal one, because goal
nodes in all subsequent contours will have higher f -cost, and thus higher g-cost (because all
goal nodes have h(n) = 0). Intuitively, it is also obvious that A∗ search is complete. As we
add bands of increasing f , we must eventually reach a band where f is equal to the cost of
the path to a goal state.4

Notice that A∗ expands no nodes with f(n) > C∗—for example, Timisoara is not
expanded in Figure 4.3 even though it is a child of the root. We say that the subtree below
Timisoara is pruned; because hSLD is admissible, the algorithm can safely ignore this subtreePRUNING

4 Completeness requires that there be only finitely many nodes with cost less than or equal to C
∗, a condition

that is true if all step costs exceed some finite ε and if b is finite.
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while still guaranteeing optimality. The concept of pruning—eliminating possibilities from
consideration without having to examine them—is important for many areas of AI.

One final observation is that among optimal algorithms of this type—algorithms that
extend search paths from the root—A∗ is optimally efficient for any given heuristic function.OPTIMALLY

EFFICIENT

That is, no other optimal algorithm is guaranteed to expand fewer nodes than A∗ (except
possibly through tie-breaking among nodes with f(n)=C∗). This is because any algorithm
that does not expand all nodes with f(n) < C∗ runs the risk of missing the optimal solution.

That A∗ search is complete, optimal, and optimally efficient among all such algorithms
is rather satisfying. Unfortunately, it does not mean that A∗ is the answer to all our searching
needs. The catch is that, for most problems, the number of nodes within the goal contour
search space is still exponential in the length of the solution. Although the proof of the result
is beyond the scope of this book, it has been shown that exponential growth will occur unless
the error in the heuristic function grows no faster than the logarithm of the actual path cost.
In mathematical notation, the condition for subexponential growth is that

|h(n)− h∗(n)| ≤ O(log h∗(n)) ,

where h∗(n) is the true cost of getting from n to the goal. For almost all heuristics in practical
use, the error is at least proportional to the path cost, and the resulting exponential growth
eventually overtakes any computer. For this reason, it is often impractical to insist on finding
an optimal solution. One can use variants of A∗ that find suboptimal solutions quickly, or one
can sometimes design heuristics that are more accurate, but not strictly admissible. In any
case, the use of a good heuristic still provides enormous savings compared to the use of an
uninformed search. In Section 4.2, we will look at the question of designing good heuristics.

Computation time is not, however, A∗’s main drawback. Because it keeps all generated
nodes in memory (as do all GRAPH-SEARCH algorithms), A∗ usually runs out of space long
before it runs out of time. For this reason, A∗ is not practical for many large-scale prob-
lems. Recently developed algorithms have overcome the space problem without sacrificing
optimality or completeness, at a small cost in execution time. These are discussed next.

Memory-bounded heuristic search

The simplest way to reduce memory requirements for A∗ is to adapt the idea of iterative deep-
ening to the heuristic search context, resulting in the iterative-deepening A∗ (IDA∗) algorithm.
The main difference between IDA∗ and standard iterative deepening is that the cutoff used
is the f -cost (g + h) rather than the depth; at each iteration, the cutoff value is the small-
est f -cost of any node that exceeded the cutoff on the previous iteration. IDA∗ is practical
for many problems with unit step costs and avoids the substantial overhead associated with
keeping a sorted queue of nodes. Unfortunately, it suffers from the same difficulties with real-
valued costs as does the iterative version of uniform-cost search described in Exercise 3.11.
This section briefly examines two more recent memory-bounded algorithms, called RBFS
and MA∗.

Recursive best-first search (RBFS) is a simple recursive algorithm that attempts toRECURSIVE
BEST-FIRST SEARCH

mimic the operation of standard best-first search, but using only linear space. The algorithm is
shown in Figure 4.5. Its structure is similar to that of a recursive depth-first search, but rather
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function RECURSIVE-BEST-FIRST-SEARCH(problem) returns a solution, or failure
RBFS(problem , MAKE-NODE(INITIAL-STATE[problem]),∞)

function RBFS(problem ,node, f limit) returns a solution, or failure and a new f -cost limit
if GOAL-TEST[problem](state) then return node

successors← EXPAND(node ,problem)
if successors is empty then return failure ,∞
for each s in successors do

f [s]←max(g(s) + h(s), f [node])
repeat

best← the lowest f -value node in successors

if f [best ] > f limit then return failure , f [best]
alternative← the second-lowest f -value among successors

result , f [best]←RBFS(problem , best , min( f limit , alternative))
if result 6= failure then return result

Figure 4.5 The algorithm for recursive best-first search.

than continuing indefinitely down the current path, it keeps track of the f -value of the best
alternative path available from any ancestor of the current node. If the current node exceeds
this limit, the recursion unwinds back to the alternative path. As the recursion unwinds, RBFS
replaces the f -value of each node along the path with the best f -value of its children. In this
way, RBFS remembers the f -value of the best leaf in the forgotten subtree and can therefore
decide whether it’s worth reexpanding the subtree at some later time. Figure 4.6 shows how
RBFS reaches Bucharest.

RBFS is somewhat more efficient than IDA∗, but still suffers from excessive node re-
generation. In the example in Figure 4.6, RBFS first follows the path via Rimnicu Vilcea,
then “changes its mind” and tries Fagaras, and then changes its mind back again. These mind
changes occur because every time the current best path is extended, there is a good chance
that its f -value will increase—h is usually less optimistic for nodes closer to the goal. When
this happens, particularly in large search spaces, the second-best path might become the best
path, so the search has to backtrack to follow it. Each mind change corresponds to an iteration
of IDA∗, and could require many reexpansions of forgotten nodes to recreate the best path and
extend it one more node.

Like A∗, RBFS is an optimal algorithm if the heuristic function h(n) is admissible. Its
space complexity is O(bd), but its time complexity is rather difficult to characterize: it de-
pends both on the accuracy of the heuristic function and on how often the best path changes as
nodes are expanded. Both IDA∗ and RBFS are subject to the potentially exponential increase
in complexity associated with searching on graphs (see Section 3.5), because they cannot
check for repeated states other than those on the current path. Thus, they may explore the
same state many times.

IDA∗ and RBFS suffer from using too little memory. Between iterations, IDA∗ retains
only a single number: the current f -cost limit. RBFS retains more information in memory,
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Figure 4.6 Stages in an RBFS search for the shortest route to Bucharest. The f -limit
value for each recursive call is shown on top of each current node. (a) The path via Rimnicu
Vilcea is followed until the current best leaf (Pitesti) has a value that is worse than the best
alternative path (Fagaras). (b) The recursion unwinds and the best leaf value of the forgotten
subtree (417) is backed up to Rimnicu Vilcea; then Fagaras is expanded, revealing a best
leaf value of 450. (c) The recursion unwinds and the best leaf value of the forgotten subtree
(450) is backed up to Fagaras; then Rimnicu Vilcea is expanded. This time, because the best
alternative path (through Timisoara) costs at least 447, the expansion continues to Bucharest.

but it uses only O(bd) memory: even if more memory were avalable, RBFS has no way to
make use of it.

It seems sensible, therefore, to use all available memory. Two algorithms that do this
are MA∗ (memory-bounded A∗) and SMA∗ (simplified MA∗). We will describe SMA∗, whichMA*

SMA*
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is—well—simpler. SMA∗ proceeds just like A∗, expanding the best leaf until memory is full.
At this point, it cannot add a new node to the search tree without dropping an old one. SMA∗

always drops the worst leaf node—the one with the highest f -value. Like RBFS, SMA∗

then backs up the value of the forgotten node to its parent. In this way, the ancestor of a
forgotten subtree knows the quality of the best path in that subtree. With this information,
SMA∗ regenerates the subtree only when all other paths have been shown to look worse than
the path it has forgotten. Another way of saying this is that, if all the descendants of a node n
are forgotten, then we will not know which way to go from n, but we will still have an idea
of how worthwhile it is to go anywhere from n.

The complete algorithm is too complicated to reproduce here,5 but there is one subtlety
worth mentioning. We said that SMA∗ expands the best leaf and deletes the worst leaf. What
if all the leaf nodes have the same f -value? Then the algorithm might select the same node
for deletion and expansion. SMA∗ solves this problem by expanding the newest best leaf and
deleting the oldest worst leaf. These can be the same node only if there is only one leaf; in that
case, the current search tree must be a single path from root to leaf that fills all of memory.
If the leaf is not a goal node, then even if it is on an optimal solution path, that solution is
not reachable with the available memory. Therefore, the node can be discarded exactly as if
it had no successors.

SMA∗ is complete if there is any reachable solution—that is, if d, the depth of the
shallowest goal node, is less than the memory size (expressed in nodes). It is optimal if any
optimal solution is reachable; otherwise it returns the best reachable solution. In practical
terms, SMA∗ might well be the best general-purpose algorithm for finding optimal solutions,
particularly when the state space is a graph, step costs are not uniform, and node generation
is expensive compared to the additional overhead of maintaining the open and closed lists.

On very hard problems, however, it will often be the case that SMA∗ is forced to switch
back and forth continually between a set of candidate solution paths, only a small subset of
which can fit in memory. (This resembles the problem of thrashing in disk paging systems.)THRASHING

Then the extra time required for repeated regeneration of the same nodes means that problems
that would be practically solvable by A∗, given unlimited memory, become intractable for
SMA∗. That is to say, memory limitations can make a problem intractable from the point of
view of computation time. Although there is no theory to explain the tradeoff between time
and memory, it seems that this is an inescapable problem. The only way out is to drop the
optimality requirement.

Learning to search better

We have presented several fixed strategies—breadth-first, greedy best-first, and so on—that
have been designed by computer scientists. Could an agent learn how to search better? The
answer is yes, and the method rests on an important concept called the metalevel state space.METALEVEL STATE

SPACE

Each state in a metalevel state space captures the internal (computational) state of a program
that is searching in an object-level state space such as Romania. For example, the internalOBJECT-LEVEL STATE

SPACE

state of the A∗ algorithm consists of the current search tree. Each action in the metalevel state

5 A rough sketch appeared in the first edition of this book.
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space is a computation step that alters the internal state; for example, each computation step
in A∗ expands a leaf node and adds its successors to the tree. Thus, Figure 4.3, which shows
a sequence of larger and larger search trees, can be seen as depicting a path in the metalevel
state space where each state on the path is an object-level search tree.

Now, the path in Figure 4.3 has five steps, including one step, the expansion of Fagaras,
that is not especially helpful. For harder problems, there will be many such missteps, and a
metalevel learning algorithm can learn from these experiences to avoid exploring unpromis-METALEVEL

LEARNING

ing subtrees. The techniques used for this kind of learning are described in Chapter 21. The
goal of learning is to minimize the total cost of problem solving, trading off computational
expense and path cost.

4.2 HEURISTIC FUNCTIONS

In this section, we will look at heuristics for the 8-puzzle, in order to shed light on the nature
of heuristics in general.

The 8-puzzle was one of the earliest heuristic search problems. As mentioned in Sec-
tion 3.2, the object of the puzzle is to slide the tiles horizontally or vertically into the empty
space until the configuration matches the goal configuration (Figure 4.7).
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Figure 4.7 A typical instance of the 8-puzzle. The solution is 26 steps long.

The average solution cost for a randomly generated 8-puzzle instance is about 22 steps.
The branching factor is about 3. (When the empty tile is in the middle, there are four possible
moves; when it is in a corner there are two; and when it is along an edge there are three.) This
means that an exhaustive search to depth 22 would look at about 322 ≈ 3.1× 1010 states. By
keeping track of repeated states, we could cut this down by a factor of about 170,000, because
there are only 9!/2 = 181, 440 distinct states that are reachable. (See Exercise 3.4.) This is
a manageable number, but the corresponding number for the 15-puzzle is roughly 1013, so
the next order of business is to find a good heuristic function. If we want to find the shortest
solutions by using A∗, we need a heuristic function that never overestimates the number of
steps to the goal. There is a long history of such heuristics for the 15-puzzle; here are two
commonly-used candidates:
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• h1 = the number of misplaced tiles. For Figure 4.7, all of the eight tiles are out of
position, so the start state would have h1 = 8. h1 is an admissible heuristic, because it
is clear that any tile that is out of place must be moved at least once.

• h2 = the sum of the distances of the tiles from their goal positions. Because tiles
cannot move along diagonals, the distance we will count is the sum of the horizontal
and vertical distances. This is sometimes called the city block distance or Manhattan
distance. h2 is also admissible, because all any move can do is move one tile one stepMANHATTAN

DISTANCE

closer to the goal. Tiles 1 to 8 in the start state give a Manhattan distance of

h2 = 3 + 1 + 2 + 2 + 2 + 3 + 3 + 2 = 18 .

As we would hope, neither of these overestimates the true solution cost, which is 26.

The effect of heuristic accuracy on performance

One way to characterize the quality of a heuristic is the effective branching factor b∗. If theEFFECTIVE
BRANCHING FACTOR

total number of nodes generated by A∗ for a particular problem is N , and the solution depth
is d, then b∗ is the branching factor that a uniform tree of depth d would have to have in order
to contain N + 1 nodes. Thus,

N + 1 = 1 + b∗ + (b∗)2 + · · ·+ (b∗)d .

For example, if A∗ finds a solution at depth 5 using 52 nodes, then the effective branching
factor is 1.92. The effective branching factor can vary across problem instances, but usually
it is fairly constant for sufficiently hard problems. Therefore, experimental measurements of
b∗ on a small set of problems can provide a good guide to the heuristic’s overall usefulness.
A well-designed heuristic would have a value of b∗ close to 1, allowing fairly large problems
to be solved.

To test the heuristic functions h1 and h2, we generated 1200 random problems with
solution lengths from 2 to 24 (100 for each even number) and solved them with iterative
deepening search and with A∗ tree search using both h1 and h2. Figure 4.8 gives the average
number of nodes expanded by each strategy and the effective branching factor. The results
suggest that h2 is better than h1, and is far better than using iterative deepening search. On our
solutions with length 14, A∗ with h2 is 30,000 times more efficient than uninformed iterative
deepening search.

One might ask whether h2 is always better than h1. The answer is yes. It is easy to see
from the definitions of the two heuristics that, for any node n, h2(n) ≥ h1(n). We thus say
that h2 dominates h1. Domination translates directly into efficiency: A∗ using h2 will neverDOMINATION

expand more nodes than A∗ using h1 (except possibly for some nodes with f(n)=C∗). The
argument is simple. Recall the observation on page 100 that every node with f(n) < C∗ will
surely be expanded. This is the same as saying that every node with h(n) < C∗ − g(n) will
surely be expanded. But because h2 is at least as big as h1 for all nodes, every node that is
surely expanded by A∗ search with h2 will also surely be expanded with h1, and h1 might
also cause other nodes to be expanded as well. Hence, it is always better to use a heuristic
function with higher values, provided it does not overestimate and that the computation time
for the heuristic is not too large.



Section 4.2. Heuristic Functions 107

Search Cost Effective Branching Factor

d IDS A∗(h1) A∗(h2) IDS A∗(h1) A∗(h2)

2 10 6 6 2.45 1.79 1.79
4 112 13 12 2.87 1.48 1.45
6 680 20 18 2.73 1.34 1.30
8 6384 39 25 2.80 1.33 1.24

10 47127 93 39 2.79 1.38 1.22
12 3644035 227 73 2.78 1.42 1.24
14 – 539 113 – 1.44 1.23
16 – 1301 211 – 1.45 1.25
18 – 3056 363 – 1.46 1.26
20 – 7276 676 – 1.47 1.27
22 – 18094 1219 – 1.48 1.28
24 – 39135 1641 – 1.48 1.26

Figure 4.8 Comparison of the search costs and effective branching factors for the
ITERATIVE-DEEPENING-SEARCH and A∗ algorithms with h1, h2. Data are averaged over
100 instances of the 8-puzzle, for various solution lengths.

Inventing admissible heuristic functions

We have seen that both h1 (misplaced tiles) and h2 (Manhattan distance) are fairly good
heuristics for the 8-puzzle and that h2 is better. How might one have come up with h2? Is it
possible for a computer to invent such a heuristic mechanically?

h1 and h2 are estimates of the remaining path length for the 8-puzzle, but they are
also perfectly accurate path lengths for simplified versions of the puzzle. If the rules of the
puzzle were changed so that a tile could move anywhere, instead of just to the adjacent empty
square, then h1 would give the exact number of steps in the shortest solution. Similarly, if
a tile could move one square in any direction, even onto an occupied square, then h2 would
give the exact number of steps in the shortest solution. A problem with fewer restrictions on
the actions is called a relaxed problem. The cost of an optimal solution to a relaxed problemRELAXED PROBLEM

is an admissible heuristic for the original problem. The heuristic is admissible because
the optimal solution in the original problem is, by definition, also a solution in the relaxed
problem and therefore must be at least as expensive as the optimal solution in the relaxed
problem. Because the derived heuristic is an exact cost for the relaxed problem, it must obey
the triangle inequality and is therefore consistent (see page 99).

If a problem definition is written down in a formal language, it is possible to construct
relaxed problems automatically.6 For example, if the 8-puzzle actions are described as

A tile can move from square A to square B if
A is horizontally or vertically adjacent to B and B is blank,

6 In Chapters 8 and 11, we will describe formal languages suitable for this task; with formal descriptions that
can be manipulated, the construction of relaxed problems can be automated. For now, we will use English.
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we can generate three relaxed problems by removing one or both of the conditions:

(a) A tile can move from square A to square B if A is adjacent to B.
(b) A tile can move from square A to square B if B is blank.
(c) A tile can move from square A to square B.

From (a), we can derive h2 (Manhattan distance). The reasoning is that h2 would be the
proper score if we moved each tile in turn to its destination. The heuristic derived from (b) is
discussed in Exercise 4.9. From (c), we can derive h1 (misplaced tiles), because it would be
the proper score if tiles could move to their intended destination in one step. Notice that it is
crucial that the relaxed problems generated by this technique can be solved essentially without
search, because the relaxed rules allow the problem to be decomposed into eight independent
subproblems. If the relaxed problem is hard to solve, then the values of the corresponding
heuristic will be expensive to obtain.7

A program called ABSOLVER can generate heuristics automatically from problem def-
initions, using the “relaxed problem” method and various other techniques (Prieditis, 1993).
ABSOLVER generated a new heuristic for the 8-puzzle better than any preexisting heuristic
and found the first useful heuristic for the famous Rubik’s cube puzzle.

One problem with generating new heuristic functions is that one often fails to get one
“clearly best” heuristic. If a collection of admissible heuristics h1 . . . hm is available for a
problem, and none of them dominates any of the others, which should we choose? As it turns
out, we need not make a choice. We can have the best of all worlds, by defining

h(n) = max{h1(n), . . . , hm(n)} .

This composite heuristic uses whichever function is most accurate on the node in question.
Because the component heuristics are admissible, h is admissible; it is also easy to prove that
h is consistent. Furthermore, h dominates all of its component heuristics.

Admissible heuristics can also be derived from the solution cost of a subproblem ofSUBPROBLEM

a given problem. For example, Figure 4.9 shows a subproblem of the 8-puzzle instance
in Figure 4.7. The subproblem involves getting tiles 1, 2, 3, 4 into their correct positions.
Clearly, the cost of the optimal solution of this subproblem is a lower bound on the cost of
the complete problem. It turns out to be substantially more accurate than Manhattan distance
in some cases.

The idea behind pattern databases is to store these exact solution costs for every pos-PATTERN DATABASES

sible subproblem instance—in our example, every possible configuration of the four tiles and
the blank. (Notice that the locations of the other four tiles are irrelevant for the purposes of
solving the subproblem, but moves of those tiles do count towards the cost.) Then, we com-
pute an admissible heuristic hDB for each complete state encountered during a search simply
by looking up the corresponding subproblem configuration in the database. The database
itself is constructed by searching backwards from the goal state and recording the cost of
each new pattern encountered; the expense of this search is amortized over many subsequent
problem instances.

7 Note that a perfect heuristic can be obtained simply by allowing h to run a full breadth-first search “on the
sly.” Thus, there is a tradeoff between accuracy and computation time for heuristic functions.
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Figure 4.9 A subproblem of the 8-puzzle instance given in Figure 4.7. The task is to get
tiles 1, 2, 3, and 4 into their correct positions, without worrying about what happens to the
other tiles.

The choice of 1-2-3-4 is fairly arbitrary; we could also construct databases for 5-6-7-8,
and for 2-4-6-8, and so on. Each database yields an admissible heuristic, and these heuristics
can be combined, as explained earlier, by taking the maximum value. A combined heuristic of
this kind is much more accurate than the Manhattan distance; the number of nodes generated
when solving random 15-puzzles can be reduced by a factor of 1000.

One might wonder whether the heuristics obtained from the 1-2-3-4 database and the
5-6-7-8 could be added, since the two subproblems seem not to overlap. Would this still give
an admissible heuristic? The answer is no, because the solutions of the 1-2-3-4 subproblem
and the 5-6-7-8 subproblem for a given state will almost certainly share some moves—it is
unlikely that 1-2-3-4 can be moved into place without touching 5-6-7-8, and vice versa. But
what if we don’t count those moves? That is, we record not the total cost of solving the
1-2-3-4 subproblem, but just the number of moves involving 1-2-3-4. Then it is easy to see
that the sum of the two costs is still a lower bound on the cost of solving the entire problem.
This is the idea behind disjoint pattern databases. Using such databases, it is possible toDISJOINT PATTERN

DATABASES

solve random 15-puzzles in a few milliseconds—the number of nodes generated is reduced
by a factor of 10,000 compared with using Manhattan distance. For 24-puzzles, a speedup of
roughly a million can be obtained.

Disjoint pattern databases work for sliding-tile puzzles because the problem can be
divided up in such a way that each move affects only one subproblem—because only one tile
is moved at a time. For a problem such as Rubik’s cube, this kind of subdivision cannot be
done because each move affects 8 or 9 of the 26 cubies. Currently, it is not clear how to define
disjoint databases for such problems.

Learning heuristics from experience

A heuristic function h(n) is supposed to estimate the cost of a solution beginning from the
state at node n. How could an agent construct such a function? One solution was given in the
preceding section—namely, to devise relaxed problems for which an optimal solution can be
found easily. Another solution is to learn from experience. “Experience” here means solving
lots of 8-puzzles, for instance. Each optimal solution to an 8-puzzle problem provides ex-
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amples from which h(n) can be learned. Each example consists of a state from the solution
path and the actual cost of the solution from that point. From these examples, an inductive
learning algorithm can be used to construct a function h(n) that can (with luck) predict solu-
tion costs for other states that arise during search. Techniques for doing just this using neural
nets, decision trees, and other methods are demonstrated in Chapter 18. (The reinforcement
learning methods described in Chapter 21 are also applicable.)

Inductive learning methods work best when supplied with features of a state that areFEATURES

relevant to its evaluation, rather than with just the raw state description. For example, the
feature “number of misplaced tiles” might be helpful in predicting the actual distance of a
state from the goal. Let’s call this feature x1(n). We could take 100 randomly generated
8-puzzle configurations and gather statistics on their actual solution costs. We might find that
when x1(n) is 5, the average solution cost is around 14, and so on. Given these data, the
value of x1 can be used to predict h(n). Of course, we can use several features. A second
feature x2(n) might be “number of pairs of adjacent tiles that are also adjacent in the goal
state.” How should x1(n) and x2(n) be combined to predict h(n)? A common approach is
to use a linear combination:

h(n) = c1x1(n) + c2x2(n) .

The constants c1 and c2 are adjusted to give the best fit to the actual data on solution costs.
Presumably, c1 should be positive and c2 should be negative.

4.3 LOCAL SEARCH ALGORITHMS AND OPTIMIZATION PROBLEMS

The search algorithms that we have seen so far are designed to explore search spaces sys-
tematically. This systematicity is achieved by keeping one or more paths in memory and by
recording which alternatives have been explored at each point along the path and which have
not. When a goal is found, the path to that goal also constitutes a solution to the problem.

In many problems, however, the path to the goal is irrelevant. For example, in the 8-
queens problem (see page 66), what matters is the final configuration of queens, not the order
in which they are added. This class of problems includes many important applications such as
integrated-circuit design, factory-floor layout, job-shop scheduling, automatic programming,
telecommunications network optimization, vehicle routing, and portfolio management.

If the path to the goal does not matter, we might consider a different class of algo-
rithms, ones that do not worry about paths at all. Local search algorithms operate usingLOCAL SEARCH

a single current state (rather than multiple paths) and generally move only to neighborsCURRENT STATE

of that state. Typically, the paths followed by the search are not retained. Although local
search algorithms are not systematic, they have two key advantages: (1) they use very little
memory—usually a constant amount; and (2) they can often find reasonable solutions in large
or infinite (continuous) state spaces for which systematic algorithms are unsuitable.

In addition to finding goals, local search algorithms are useful for solving pure op-
timization problems, in which the aim is to find the best state according to an objectiveOPTIMIZATION

PROBLEMS

function. Many optimization problems do not fit the “standard” search model introduced inOBJECTIVE
FUNCTION
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Chapter 3. For example, nature provides an objective function—reproductive fitness—that
Darwinian evolution could be seen as attempting to optimize, but there is no “goal test” and
no “path cost” for this problem.

To understand local search, we will find it very useful to consider the state space land-
scape (as in Figure 4.10). A landscape has both “location” (defined by the state) and “eleva-STATE SPACE

LANDSCAPE

tion” (defined by the value of the heuristic cost function or objective function). If elevation
corresponds to cost, then the aim is to find the lowest valley—a global minimum; if eleva-GLOBAL MINIMUM

tion corresponds to an objective function, then the aim is to find the highest peak—a global
maximum. (You can convert from one to the other just by inserting a minus sign.) LocalGLOBAL MAXIMUM

search algorithms explore this landscape. A complete local search algorithm always finds a
goal if one exists; an optimal algorithm always finds a global minimum/maximum.

current
state

objective function

state space

global maximum

local maximum

“flat” local maximum

shoulder

Figure 4.10 A one-dimensional state space landscape in which elevation corresponds to
the objective function. The aim is to find the global maximum. Hill-climbing search modifies
the current state to try to improve it, as shown by the arrow. The various topographic features
are defined in the text.

Hill-climbing search

The hill-climbing search algorithm is shown in Figure 4.11. It is simply a loop that continu-HILL-CLIMBING

ally moves in the direction of increasing value—that is, uphill. It terminates when it reaches a
“peak” where no neighbor has a higher value. The algorithm does not maintain a search tree,
so the current node data structure need only record the state and its objective function value.
Hill-climbing does not look ahead beyond the immediate neighbors of the current state. This
resembles trying to find the top of Mount Everest in a thick fog while suffering from amnesia.

To illustrate hill-climbing, we will use the 8-queens problem introduced on page 66.
Local-search algorithms typically use a complete-state formulation, where each state has
8 queens on the board, one per column. The successor function returns all possible states
generated by moving a single queen to another square in the same column (so each state has
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function HILL-CLIMBING(problem) returns a state that is a local maximum
inputs: problem , a problem
local variables: current , a node

neighbor , a node

current←MAKE-NODE(INITIAL-STATE[problem])
loop do

neighbor← a highest-valued successor of current

if VALUE[neighbor] ≤ VALUE[current] then return STATE[current ]
current←neighbor

Figure 4.11 The hill-climbing search algorithm (steepest ascent version), which is the
most basic local search technique. At each step the current node is replaced by the best
neighbor; in this version, that means the neighbor with the highest VALUE, but if a heuristic
cost estimate h is used, we would find the neighbor with the lowest h.
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Figure 4.12 (a) An 8-queens state with heuristic cost estimate h =17, showing the value
of h for each possible successor obtained by moving a queen within its column. The best
moves are marked. (b) A local minimum in the 8-queens state space; the state has h =1 but
every successor has a higher cost.

8× 7= 56 successors). The heuristic cost function h is the number of pairs of queens that
are attacking each other, either directly or indirectly. The global minimum of this function
is zero, which occurs only at perfect solutions. Figure 4.12(a) shows a state with h= 17.
The figure also shows the values of all its successors, with the best successors having h= 12.
Hill-climbing algorithms typically choose randomly among the set of best successors, if there
is more than one.
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Hill climbing is sometimes called greedy local search because it grabs a good neighborGREEDY LOCAL
SEARCH

state without thinking ahead about where to go next. Although greed is considered one of the
seven deadly sins, it turns out that greedy algorithms often perform quite well. Hill climbing
often makes very rapid progress towards a solution, because it is usually quite easy to improve
a bad state. For example, from the state in Figure 4.12(a), it takes just five steps to reach the
state in Figure 4.12(b), which has h= 1 and is very nearly a solution. Unfortunately, hill
climbing often gets stuck for the following reasons:

♦ Local maxima: a local maximum is a peak that is higher than each of its neighboring
states, but lower than the global maximum. Hill-climbing algorithms that reach the
vicinity of a local maximum will be drawn upwards towards the peak, but will then be
stuck with nowhere else to go. Figure 4.10 illustrates the problem schematically. More
concretely, the state in Figure 4.12(b) is in fact a local maximum (i.e., a local minimum
for the cost h); every move of a single queen makes the situation worse.

♦ Ridges: a ridge is shown in Figure 4.13. Ridges result in a sequence of local maxima
that is very difficult for greedy algorithms to navigate.

♦ Plateaux: a plateau is an area of the state space landscape where the evaluation function
is flat. It can be a flat local maximum, from which no uphill exit exists, or a shoulder,SHOULDER

from which it is possible to make progress. (See Figure 4.10.) A hill-climbing search
might be unable to find its way off the plateau.

In each case, the algorithm reaches a point at which no progress is being made. Starting from
a randomly generated 8-queens state, steepest-ascent hill climbing gets stuck 86% of the time,
solving only 14% of problem instances. It works quickly, taking just 4 steps on average when
it succeeds and 3 when it gets stuck—not bad for a state space with 88 ≈ 17 million states.

The algorithm in Figure 4.11 halts if it reaches a plateau where the best successor has
the same value as the current state. Might it not be a good idea to keep going—to allow a
sideways move in the hope that the plateau is really a shoulder, as shown in Figure 4.10? TheSIDEWAYS MOVE

answer is usually yes, but we must take care. If we always allow sideways moves when there
are no uphill moves, an infinite loop will occur whenever the algorithm reaches a flat local
maximum that is not a shoulder. One common solution is to put a limit on the number of con-
secutive sideways moves allowed. For example, we could allow up to, say, 100 consecutive
sideways moves in the 8-queens problem. This raises the percentage of problem instances
solved by hill-climbing from 14% to 94%. Success comes at a cost: the algorithm averages
roughly 21 steps for each successful instance and 64 for each failure.

Many variants of hill-climbing have been invented. Stochastic hill climbing chooses atSTOCHASTIC HILL
CLIMBING

random from among the uphill moves; the probability of selection can vary with the steepness
of the uphill move. This usually converges more slowly than steepest ascent, but in some
state landscapes it finds better solutions. First-choice hill climbing implements stochasticFIRST-CHOICE HILL

CLIMBING

hill climbing by generating successors randomly until one is generated that is better than the
current state. This is a good strategy when a state has many (e.g., thousands) of successors.
Exercise 4.16 asks you to investigate.

The hill-climbing algorithms described so far are incomplete—they often fail to find
a goal when one exists because they can get stuck on local maxima. Random-restart hill
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Figure 4.13 Illustration of why ridges cause difficulties for hill-climbing. The grid of
states (dark circles) is superimposed on a ridge rising from left to right, creating a sequence
of local maxima that are not directly connected to each other. From each local maximum, all
the available actions point downhill.

climbing adopts the well known adage, “If at first you don’t succeed, try, try again.” ItRANDOM-RESTART
HILL CLIMBING

conducts a series of hill-climbing searches from randomly generated initial states,8 stopping
when a goal is found. It is complete with probability approaching 1, for the trivial reason that
it will eventually generate a goal state as the initial state. If each hill-climbing search has a
probability p of success, then the expected number of restarts required is 1/p. For 8-queens
instances with no sideways moves allowed, p ≈ 0.14, so we need roughly 7 iterations to find
a goal (6 failures and 1 success). The expected number of steps is the cost of one successful
iteration plus (1−p)/p times the cost of failure, or roughly 22 steps. When we allow sideways
moves, 1/0.94 ≈ 1.06 iterations are needed on average and (1× 21)+(0.06/0.94)× 64 ≈ 25
steps. For 8-queens, then, random-restart hill climbing is very effective indeed. Even for three
million queens, the approach can find solutions in under a minute.9

The success of hill climbing depends very much on the shape of the state-space land-
scape: if there are few local maxima and plateaux, random-restart hill climbing will find a
good solution very quickly. On the other hand, many real problems have a landscape that
looks more like a family of porcupines on a flat floor, with miniature porcupines living on the
tip of each porcupine needle, ad infinitum. NP-hard problems typically have an exponential
number of local maxima to get stuck on. Despite this, a reasonably good local maximum can
often be found after a small number of restarts.

8 Generating a random state from an implicitly specified state space can be a hard problem in itself.
9 Luby et al. (1993) prove that it is best, in some cases, to restart a randomized search algorithm after a particular,
fixed amount of time and that this can be much more efficient than letting each search continue indefinitely.
Disallowing or limiting the number of sideways moves is an example of this.
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Simulated annealing search

A hill-climbing algorithm that never makes “downhill” moves towards states with lower value
(or higher cost) is guaranteed to be incomplete, because it can get stuck on a local maximum.
In contrast, a purely random walk—that is, moving to a successor chosen uniformly at ran-
dom from the set of successors—is complete, but extremely inefficient. Therefore, it seems
reasonable to try to combine hill climbing with a random walk in some way that yields both
efficiency and completeness. Simulated annealing is such an algorithm. In metallurgy, an-SIMULATED

ANNEALING

nealing is the process used to temper or harden metals and glass by heating them to a high
temperature and then gradually cooling them, thus allowing the material to coalesce into a
low-energy crystalline state. To understand simulated annealing, let’s switch our point of
view from hill climbing to gradient descent (i.e., minimizing cost) and imagine the task ofGRADIENT DESCENT

getting a ping-pong ball into the deepest crevice in a bumpy surface. If we just let the ball
roll, it will come to rest at a local minimum. If we shake the surface, we can bounce the ball
out of the local minimum. The trick is to shake just hard enough to bounce the ball out of
local minima, but not hard enough to dislodge it from the global minimum. The simulated-
annealing solution is to start by shaking hard (i.e., at a high temperature) and then gradually
reduce the intensity of the shaking (i.e., lower the temperature).

The innermost loop of the simulated-annealing algorithm (Figure 4.14) is quite similar
to hill climbing. Instead of picking the best move, however, it picks a random move. If the
move improves the situation, it is always accepted. Otherwise, the algorithm accepts the move
with some probability less than 1. The probability decreases exponentially with the “badness”
of the move—the amount ∆E by which the evaluation is worsened. The probability also
decreases as the “temperature” T goes down: “bad” moves are more likely to be allowed at
the start when temperature is high, and they become more unlikely as T decreases. One can
prove that if the schedule lowers T slowly enough, the algorithm will find a global optimum
with probability approaching 1.

Simulated annealing was first used extensively to solve VLSI layout problems in the
early 1980s. It has been applied widely to factory scheduling and other large-scale optimiza-
tion tasks. In Exercise 4.16, you are asked to compare its performance to that of random-
restart hill climbing on the n-queens puzzle.

Local beam search

Keeping just one node in memory might seem to be an extreme reaction to the problem of
memory limitations. The local beam search algorithm10 keeps track of k states rather thanLOCAL BEAM

SEARCH

just one. It begins with k randomly generated states. At each step, all the successors of all k
states are generated. If any one is a goal, the algorithm halts. Otherwise, it selects the k best
successors from the complete list and repeats.

At first sight, a local beam search with k states might seem to be nothing more than
running k random restarts in parallel instead of in sequence. In fact, the two algorithms
are quite different. In a random-restart search, each search process runs independently of

10 Local beam search is an adaptation of beam search, which is a path-based algorithm.
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function SIMULATED-ANNEALING(problem , schedule) returns a solution state
inputs: problem , a problem

schedule , a mapping from time to “temperature”
local variables: current , a node

next , a node
T , a “temperature” controlling the probability of downward steps

current←MAKE-NODE(INITIAL-STATE[problem])
for t← 1 to∞ do

T ← schedule[t]
if T = 0 then return current

next← a randomly selected successor of current

∆E←VALUE[next ] – VALUE[current ]
if ∆E > 0 then current← next

else current← next only with probability e∆E/T

Figure 4.14 The simulated annealing search algorithm, a version of stochastic hill climb-
ing where some downhill moves are allowed. Downhill moves are accepted readily early in
the annealing schedule and then less often as time goes on. The schedule input determines
the value of T as a function of time.

the others. In a local beam search, useful information is passed among the k parallel search
threads. For example, if one state generates several good successors and the other k−1 states
all generate bad successors, then the effect is that the first state says to the others, “Come over
here, the grass is greener!” The algorithm quickly abandons unfruitful searches and moves
its resources to where the most progress is being made.

In its simplest form, local beam search can suffer from a lack of diversity among the
k states—they can quickly become concentrated in a small region of the state space, making
the search little more than an expensive version of hill climbing. A variant called stochastic
beam search, analogous to stochastic hill climbing, helps to alleviate this problem. InsteadSTOCHASTIC BEAM

SEARCH

of choosing the best k from the the pool of candidate successors, stochastic beam search
chooses k successors at random, with the probability of choosing a given successor being
an increasing function of its value. Stochastic beam search bears some resemblance to the
process of natural selection, whereby the “successors” (offspring) of a “state” (organism)
populate the next generation according to its “value” (fitness).

Genetic algorithms

A genetic algorithm (or GA) is a variant of stochastic beam search in which successor statesGENETIC
ALGORITHM

are generated by combining two parent states, rather than by modifying a single state. The
analogy to natural selection is the same as in stochastic beam search, except now we are
dealing with sexual rather than asexual reproduction.

Like beam search, GAs begin with a set of k randomly generated states, called the
population. Each state, or individual, is represented as a string over a finite alphabet—mostPOPULATION

INDIVIDUAL
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(a)

Initial Population

(b)

Fitness Function

(c)

Selection

(d)

Crossover

(e)

Mutation

24

23

20

11

29%

31%

26%

14%

32752411

24748552

32752411

24415124

32748552

24752411

32752124

24415411

32252124

24752411

32748152

24415417

24748552

32752411

24415124

32543213

Figure 4.15 The genetic algorithm. The initial population in (a) is ranked by the fitness
function in (b), resulting in pairs for mating in (c). They produce offspring in (d), which are
subject to mutation in (e).

+ =

Figure 4.16 The 8-queens states corresponding to the first two parents in Figure 4.15(c)
and the first offspring in Figure 4.15(d). The shaded columns are lost in the crossover step
and the unshaded columns are retained.

commonly, a string of 0s and 1s. For example, an 8-queens state must specify the positions of
8 queens, each in a column of 8 squares, and so requires 8× log2 8= 24 bits. Alternatively,
the state could be represented as 8 digits, each in the range from 1 to 8. (We will see later
that the two encodings behave differently.) Figure 4.15(a) shows a population of four 8-digit
strings representing 8-queens states.

The production of the next generation of states is shown in Figure 4.15(b)–(e). In (b),
each state is rated by the evaluation function or (in GA terminology) the fitness function.FITNESS FUNCTION

A fitness function should return higher values for better states, so, for the 8-queens problem
we use the number of nonattacking pairs of queens, which has a value of 28 for a solution.
The values of the four states are 24, 23, 20, and 11. In this particular variant of the genetic
algorithm, the probability of being chosen for reproducing is directly proportional to the
fitness score, and the percentages are shown next to the raw scores.

In (c), a random choice of two pairs is selected for reproduction, in accordance with the
probabilities in (b). Notice that one individual is selected twice and one not at all.11 For each

11 There are many variants of this selection rule. The method of culling, in which all individuals below a given
threshold are discarded, can be shown to converge faster than the random version (Baum et al., 1995).
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pair to be mated, a crossover point is randomly chosen from the positions in the string. InCROSSOVER

Figure 4.15 the crossover points are after the third digit in the first pair and after the fifth digit
in the second pair.12

In (d), the offspring themselves are created by crossing over the parent strings at the
crossover point. For example, the first child of the first pair gets the first three digits from the
first parent and the remaining digits from the second parent, whereas the second child gets
the first three digits from the second parent and the rest from the first parent. The 8-queens
states involved in this reproduction step are shown in Figure 4.16. The example illustrates
the fact that, when two parent states are quite different, the crossover operation can produce
a state that is a long way from either parent state. It is often the case that the population is
quite diverse early on in the process, so crossover (like simulated annealing) frequently takes
large steps in the state space early in the search process and smaller steps later on when most
individuals are quite similar.

Finally, in (e), each location is subject to random mutation with a small independentMUTATION

probability. One digit was mutated in the first, third, and fourth offspring. In the 8-queens
problem, this corresponds to choosing a queen at random and moving it to a random square
in its column. Figure 4.17 describes an algorithm that implements all these steps.

Like stochastic beam search, genetic algorithms combine an uphill tendency with ran-
dom exploration and exchange of information among parallel search threads. The primary
advantage, if any, of genetic algorithms comes from the crossover operation. Yet it can be
shown mathematically that, if the positions of the genetic code is permuted initially in a ran-
dom order, crossover conveys no advantage. Intuitively, the advantage comes from the ability
of crossover to combine large blocks of letters that have evolved independently to perform
useful functions, thus raising the level of granularity at which the search operates. For ex-
ample, it could be that putting the first three queens in positions 2, 4, and 6 (where they do
not attack each other) constitutes a useful block that can be combined with other blocks to
construct a solution.

The theory of genetic algorithms explains how this works using the idea of a schema,SCHEMA

which is a substring in which some of the positions can be left unspecified. For example,
the schema 246***** describes all 8-queens states in which the first three queens are in
positions 2, 4, and 6 respectively. Strings that match the schema (such as 24613578) are
called instances of the schema. It can be shown that, if the average fitness of the instances of
a schema is above the mean, then the number of instances of the schema within the population
will grow over time. Clearly, this effect is unlikely to be significant if adjacent bits are totally
unrelated to each other, because then there will be few contiguous blocks that provide a
consistent benefit. Genetic algorithms work best when schemas correspond to meaningful
components of a solution. For example, if the string is a representation of an antenna, then
the schemas may represent components of the antenna, such as reflectors and deflectors. A
good component is likely to be good in a variety of different designs. This suggests that
successful use of genetic algorithms requires careful engineering of the representation.

12 It is here that the encoding matters. If a 24-bit encoding is used instead of 8 digits, then the crossover point
has a 2/3 chance of being in the middle of a digit, which results in an essentially arbitrary mutation of that digit.
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function GENETIC-ALGORITHM(population, FITNESS-FN) returns an individual
inputs: population, a set of individuals

FITNESS-FN, a function that measures the fitness of an individual

repeat
new population← empty set
loop for i from 1 to SIZE(population) do

x←RANDOM-SELECTION(population , FITNESS-FN)
y←RANDOM-SELECTION(population, FITNESS-FN)
child←REPRODUCE(x , y)
if (small random probability) then child←MUTATE(child )
add child to new population

population← new population

until some individual is fit enough, or enough time has elapsed
return the best individual in population , according to FITNESS-FN

function REPRODUCE(x , y) returns an individual
inputs: x , y , parent individuals

n← LENGTH(x )
c← random number from 1 to n

return APPEND(SUBSTRING(x , 1, c), SUBSTRING(y , c + 1,n))

Figure 4.17 A genetic algorithm. The algorithm is the same as the one diagrammed in
Figure 4.15, with one variation: in this more popular version, each mating of two parents
produces only one offspring, not two.

In practice, genetic algorithms have had a widespread impact on optimization problems,
such as circuit layout and job-shop scheduling. At present, it is not clear whether the appeal
of genetic algorithms arises from their performance or from their æsthetically pleasing origins
in the theory of evolution. Much work remains to be done to identify the conditions under
which genetic algorithms perform well.

4.4 LOCAL SEARCH IN CONTINUOUS SPACES

In Chapter 2, we explained the distinction between discrete and continuous environments,
pointing out that most real-world environments are continuous. Yet none of the algorithms
we have described can handle continuous state spaces—the successor function would in most
cases return infinitely many states! This section provides a very brief introduction to some
local search techniques for finding optimal solutions in continuous spaces. The literature
on this topic is vast; many of the basic techniques originated in the 17th century, after the
development of calculus by Newton and Leibniz.13 We will find uses for these techniques at

13 A basic knowledge of multivariate calculus and vector arithmetic is useful when one is reading this section.
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EVOLUTION AND SEARCH

The theory of evolution was developed in Charles Darwin’s On the Origin of
Species by Means of Natural Selection (1859). The central idea is simple: varia-
tions (known as mutations) occur in reproduction and will be preserved in succes-
sive generations approximately in proportion to their effect on reproductive fitness.

Darwin’s theory was developed with no knowledge of how the traits of organ-
isms can be inherited and modified. The probabilistic laws governing these pro-
cesses were first identified by Gregor Mendel (1866), a monk who experimented
with sweet peas using what he called artificial fertilization. Much later, Watson and
Crick (1953) identified the structure of the DNA molecule and its alphabet, AGTC
(adenine, guanine, thymine, cytosine). In the standard model, variation occurs both
by point mutations in the letter sequence and by “crossover” (in which the DNA of
an offspring is generated by combining long sections of DNA from each parent).

The analogy to local search algorithms has already been described; the princi-
pal difference between stochastic beam search and evolution is the use of sexual re-
production, wherein successors are generated from multiple organisms rather than
just one. The actual mechanisms of evolution are, however, far richer than most
genetic algorithms allow. For example, mutations can involve reversals, duplica-
tions, and movement of large chunks of DNA; some viruses borrow DNA from one
organism and insert it in another; and there are transposable genes that do nothing
but copy themselves many thousands of times within the genome. There are even
genes that poison cells from potential mates that do not carry the gene, thereby
increasing their chances of replication. Most important is the fact that the genes
themselves encode the mechanisms whereby the genome is reproduced and trans-
lated into an organism. In genetic algorithms, those mechanisms are a separate
program that is not represented within the strings being manipulated.

Darwinian evolution might well seem to be an inefficient mechanism, having
generated blindly some 1045 or so organisms without improving its search heuris-
tics one iota. Fifty years before Darwin, however, the otherwise great French natu-
ralist Jean Lamarck (1809) proposed a theory of evolution whereby traits acquired
by adaptation during an organism’s lifetime would be passed on to its offspring.
Such a process would be effective, but does not seem to occur in nature. Much
later, James Baldwin (1896) proposed a superficially similar theory: that behavior
learned during an organism’s lifetime could accelerate the rate of evolution. Unlike
Lamarck’s, Baldwin’s theory is entirely consistent with Darwinian evolution, be-
cause it relies on selection pressures operating on individuals that have found local
optima among the set of possible behaviors allowed by their genetic makeup. Mod-
ern computer simulations confirm that the “Baldwin effect” is real, provided that
“ordinary” evolution can create organisms whose internal performance measure is
somehow correlated with actual fitness.
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several places in the book, including the chapters on learning, vision, and robotics. In short,
anything that deals with the real world.

Let us begin with an example. Suppose we want to place three new airports anywhere
in Romania, such that the sum of squared distances from each city on the map (Figure 3.2)
to its nearest airport is minimized. Then the state space is defined by the coordinates of
the airports: (x1, y1), (x2, y2), and (x3, y3). This is a six-dimensional space; we also say
that states are defined by six variables. (In general, states are defined by an n-dimensional
vector of variables, x.) Moving around in this space corresponds to moving one or more of
the airports on the map. The objective function f(x1, y1, x2, y2, x3, y3) is relatively easy to
compute for any particular state once we compute the closest cities, but rather tricky to write
down in general.

One way to avoid continuous problems is simply to [discretization]discretize the neigh-
borhood of each state. For example, we can move only one airport at a time in either the
x or y direction by a fixed amount ±δ. With 6 variables, this gives 12 successors for each
state. We can then apply any of the local search algorithms described previously. One can
also apply stochastic hill climbing and simulated annealing directly, without discretizing the
space. These algorithms choose successors randomly, which can be done by generating ran-
dom vectors of length δ.

There are many methods that attempt to use the gradient of the landscape to find aGRADIENT

maximum. The gradient of the objective function is a vector∇f that gives the magnitude and
direction of the steepest slope. For our problem, we have

∇f =

(

∂f
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∂y1
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)

.

In some cases, we can find a maximum by solving the equation∇f =0. (This could be done,
for example, if we were placing just one airport; the solution is the arithmetic mean of all the
cities’ coordinates.) In many cases, however, this equation cannot be solved in closed form.
For example, with three airports, the expression for the gradient depends on what cities are
closest to each airport in the current state. This means we can compute the gradient locally
but not globally. Even so, we can still perform steepest-ascent hill climbing by updating the
current state via the formula

x← x + α∇f(x) ,

where α is a small constant. In other cases, the objective function might not be available
in a differentiable form at all—for example, the value of a particular set of airport locations
may be determined by running some large-scale economic simulation package. In those
cases, a so-called empirical gradient can be determined by evaluating the response to smallEMPIRICAL

GRADIENT

increments and decrements in each coordinate. Empirical gradient search is the same as
steepest-ascent hill climbing in a discretized version of the state space.

Hidden beneath the phrase “α is a small constant” lies a huge variety of methods for
adjusting α. The basic problem is that, if α is too small, too many steps are needed; if α
is too large, the search could overshoot the maximum. The technique of line search tries toLINE SEARCH

overcome this dilemma by extending the current gradient direction—usually by repeatedly
doubling α—until f starts to decrease again. The point at which this occurs becomes the new
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current state. There are several schools of thought about how the new direction should be
chosen at this point.

For many problems, the most effective algorithm is the venerable Newton–RaphsonNEWTON–RAPHSON

method (Newton, 1671; Raphson, 1690). This is a general technique for finding roots of
functions—that is, solving equations of the form g(x)=0. It works by computing a new
estimate for the root x according to Newton’s formula

x← x− g(x)/g′(x) .

To find a maximum or minimum of f , we need to find x such that the gradient is zero (i.e.,
∇f(x)= 0). Thus g(x) in Newton’s formula becomes ∇f(x), and the update equation can
be written in matrix–vector form as

x← x−H−1

f (x)∇f(x) ,

where Hf (x) is the Hessian matrix of second derivatives, whose elements Hij are givenHESSIAN

by ∂2f/∂xi∂xj . Since the Hessian has n2 entries, Newton–Raphson becomes expensive in
high-dimensional spaces, and many approximations have been developed.

Local search methods suffer from local maxima, ridges, and plateaux in continuous
state spaces just as much as in discrete spaces. Random restarts and simulated annealing can
be used and are often helpful. High-dimensional continuous spaces are, however, big places
in which it is easy to get lost.

A final topic with which a passing acquaintance is useful is constrained optimization.CONSTRAINED
OPTIMIZATION

An optimization problem is constrained if solutions must satisfy some hard constraints on the
values of each variable. For example, in our airport-siting problem, we might constrain sites
to be inside Romania and on dry land (rather than in the middle of lakes). The difficulty of
constrained optimization problems depends on the nature of the constraints and the objec-
tive function. The best-known category is that of linear programming problems, in whichLINEAR

PROGRAMMING

constraints must be linear inequalities forming a convex region and the objective function is
also linear. Linear programming problems can be solved in time polynomial in the number
of variables. Problems with different types of constraints and objective functions have also
been studied—quadratic programming, second-order conic programming, and so on.

4.5 ONLINE SEARCH AGENTS AND UNKNOWN ENVIRONMENTS

So far we have concentrated on agents that use offline search algorithms. They compute aOFFLINE SEARCH

complete solution before setting foot in the real world (see Figure 3.1), and then execute the
solution without recourse to their percepts. In contrast, an online search14 agent operatesONLINE SEARCH

by interleaving computation and action: first it takes an action, then it observes the environ-
ment and computes the next action. Online search is a good idea in dynamic or semidynamic
domains—domains where there is a penalty for sitting around and computing too long. On-
line search is an even better idea for stochastic domains. In general, an offline search would

14 The term “online” is commonly used in computer science to refer to algorithms that must process input data
as they are received, rather than waiting for the entire input data set to become available.
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have to come up with an exponentially large contingency plan that considers all possible hap-
penings, while an online search need only consider what actually does happen. For example,
a chess playing agent is well-advised to make its first move long before it has figured out the
complete course of the game.

Online search is a necessary idea for an exploration problem, where the states andEXPLORATION
PROBLEM

actions are unknown to the agent. An agent in this state of ignorance must use its actions as
experiments to determine what to do next, and hence must interleave computation and action.

The canonical example of online search is a robot that is placed in a new building and
must explore it to build a map that it can use for getting from A to B. Methods for escaping
from labyrinths—required knowledge for aspiring heroes of antiquity—are also examples of
online search algorithms. Spatial exploration is not the only form of exploration, however.
Consider a newborn baby: it has many possible actions, but knows the outcomes of none of
them, and it has experienced only a few of the possible states that it can reach. The baby’s
gradual discovery of how the world works is, in part, an online search process.

Online search problems

An online search problem can be solved only by an agent executing actions, rather than by a
purely computational process. We will assume that the agent knows just the following:

• ACTIONS(s), which returns a list of actions allowed in state s;
• The step-cost function c(s, a, s′)—note that this cannot be used until the agent knows

that s′ is the outcome; and
• GOAL-TEST(s).

Note in particular that the agent cannot access the successors of a state except by actually
trying all the actions in that state. For example, in the maze problem shown in Figure 4.18,
the agent does not know that going Up from (1,1) leads to (1,2); nor, having done that, does
it know that going Down will take it back to (1,1). This degree of ignorance can be reduced
in some applications—for example, a robot explorer might know how its movement actions
work and be ignorant only of the locations of obstacles.

We will assume that the agent can always recognize a state that it has visited before, and
we will assume that the actions are deterministic. (These last two assumptions are relaxed in
Chapter 17.) Finally, the agent might have access to an admissible heuristic function h(s) that
estimates the distance from the current state to a goal state. For example, in Figure 4.18, the
agent might know the location of the goal and be able to use the Manhattan distance heuristic.

Typically, the agent’s objective is to reach a goal state while minimizing cost. (Another
possible objective is simply to explore the entire environment.) The cost is the total path cost
of the path that the agent actually travels. It is common to compare this cost with the path
cost of the path the agent would follow if it knew the search space in advance—that is, the
actual shortest path (or shortest complete exploration). In the language of online algorithms,
this is called the competitive ratio; we would like it to be as small as possible.COMPETITIVE RATIO

Although this sounds like a reasonable request, it is easy to see that the best achievable
competitive ratio is infinite in some cases. For example, if some actions are irreversible, the
online search might accidentally reach a dead-end state from which no goal state is reachable.
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Figure 4.18 A simple maze problem. The agent starts at S and must reach G, but knows
nothing of the environment.
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Figure 4.19 (a) Two state spaces that might lead an online search agent into a dead end.
Any given agent will fail in at least one of these spaces. (b) A two-dimensional environment
that can cause an online search agent to follow an arbitrarily inefficient route to the goal.
Whichever choice the agent makes, the adversary blocks that route with another long, thin
wall, so that the path followed is much longer than the best possible path.

Perhaps you find the term “accidentally” unconvincing—after all, there might be an algorithm
that happens not to take the dead-end path as it explores. Our claim, to be more precise, is that
no algorithm can avoid dead ends in all state spaces. Consider the two dead-end state spaces
in Figure 4.19(a). To an online search algorithm that has visited states S and A, the two state
spaces look identical, so it must make the same decision in both. Therefore, it will fail in
one of them. This is an example of an adversary argument—we can imagine an adversaryADVERSARY

ARGUMENT

that constructs the state space while the agent explores it and can put the goals and dead ends
wherever it likes.
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Dead ends are a real difficulty for robot exploration—staircases, ramps, cliffs, and all
kinds of natural terrain present opportunities for irreversible actions. To make progress, we
will simply assume that the state space is safely explorable—that is, some goal state is reach-SAFELY EXPLORABLE

able from every reachable state. State spaces with reversible actions, such as mazes and
8-puzzles, can be viewed as undirected graphs and are clearly safely explorable.

Even in safely explorable environments, no bounded competitive ratio can be guaran-
teed if there are paths of unbounded cost. This is easy to show in environments with irre-
versible actions, but in fact it remains true for the reversible case as well, as Figure 4.19(b)
shows. For this reason, it is common to describe the performance of online search algorithms
in terms of the size of the entire state space rather than just the depth of the shallowest goal.

Online search agents

After each action, an online agent receives a percept telling it what state it has reached; from
this information, it can augment its map of the environment. The current map is used to
decide where to go next. This interleaving of planning and action means that online search
algorithms are quite different from the offline search algorithms we have seen previously.
For example, offline algorithms such as A∗ have the ability to expand a node in one part
of the space and then immediately expand a node in another part of the space, because node
expansion involves simulated rather than real actions. An online algorithm, on the other hand,
can expand only a node that it physically occupies. To avoid traveling all the way across the
tree to expand the next node, it seems better to expand nodes in a local order. Depth-first
search has exactly this property, because (except when backtracking) the next node expanded
is a child of the previous node expanded.

An online depth-first search agent is shown in Figure 4.20. This agent stores its map
in a table, result [a, s], that records the state resulting from executing action a in state s.
Whenever an action from the current state has not been explored, the agent tries that action.
The difficulty comes when the agent has tried all the actions in a state. In offline depth-first
search, the state is simply dropped from the queue; in an online search, the agent has to
backtrack physically. In depth-first search, this means going back to the state from which the
agent entered the current state most recently. That is achieved by keeping a table that lists,
for each state, the predecessor states to which the agent has not yet backtracked. If the agent
has run out of states to which it can backtrack, then its search is complete.

We recommend that the reader trace through the progress of ONLINE-DFS-AGENT

when applied to the maze given in Figure 4.18. It is fairly easy to see that the agent will, in
the worst case, end up traversing every link in the state space exactly twice. For exploration,
this is optimal; for finding a goal, on the other hand, the agent’s competitive ratio could be
arbitrarily bad if it goes off on a long excursion when there is a goal right next to the initial
state. An online variant of iterative deepening solves this problem; for an environment that is
a uniform tree, the competitive ratio of such an agent is a small constant.

Because of its method of backtracking, ONLINE-DFS-AGENT works only in state
spaces where the actions are reversible. There are slightly more complex algorithms that
work in general state spaces, but no such algorithm has a bounded competitive ratio.
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function ONLINE-DFS-AGENT(s ′) returns an action
inputs: s ′, a percept that identifies the current state
static: result , a table, indexed by action and state, initially empty

unexplored , a table that lists, for each visited state, the actions not yet tried
unbacktracked , a table that lists, for each visited state, the backtracks not yet tried
s , a , the previous state and action, initially null

if GOAL-TEST(s ′) then return stop

if s ′ is a new state then unexplored [s ′]←ACTIONS(s ′)
if s is not null then do

result[a , s]← s ′

add s to the front of unbacktracked [s ′]
if unexplored [s ′] is empty then

if unbacktracked [s ′] is empty then return stop

else a← an action b such that result [b, s ′] = POP(unbacktracked [s ′])
else a← POP(unexplored [s ′])
s← s ′

return a

Figure 4.20 An online search agent that uses depth-first exploration. The agent is appli-
cable only in bidirected search spaces.

Online local search

Like depth-first search, hill-climbing search has the property of locality in its node expan-
sions. In fact, because it keeps just one current state in memory, hill-climbing search is
already an online search algorithm! Unfortunately, it is not very useful in its simplest form
because it leaves the agent sitting at local maxima with nowhere to go. Moreover, random
restarts cannot be used, because the agent cannot transport itself to a new state.

Instead of random restarts, one might consider using a random walk to explore theRANDOM WALK

environment. A random walk simply selects at random one of the available actions from the
current state; preference can be given to actions that have not yet been tried. It is easy to
prove that a random walk will eventually find a goal or complete its exploration, provided
that the space is finite.15 On the other hand, the process can be very slow. Figure 4.21 shows
an environment in which a random walk will take exponentially many steps to find the goal,
because, at each step, backward progress is twice as likely as forward progress. The example
is contrived, of course, but there are many real-world state spaces whose topology causes
these kinds of “traps” for random walks.

Augmenting hill climbing with memory rather than randomness turns out to be a more
effective approach. The basic idea is to store a “current best estimate” H(s) of the cost to
reach the goal from each state that has been visited. H(s) starts out being just the heuristic

15 The infinite case is much more tricky. Random walks are complete on infinite one-dimensional and two
dimensional grids, but not on three-dimensional grids! In the latter case, the probability that the walk ever returns
to the starting point is only about 0.3405. (See Hughes, 1995, for a general introduction.)
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S G

Figure 4.21 An environment in which a random walk will take exponentially many steps
to find the goal.

estimate h(s) and is updated as the agent gains experience in the state space. Figure 4.22
shows a simple example in a one-dimensional state space. In (a), the agent seems to be stuck
in a flat local minimum at the shaded state. Rather than staying where it is, the agent should
follow what seems to be the best path to the goal based on the current cost estimates for its
neighbors. The estimated cost to reach the goal through a neighbor s′ is the cost to get to
s′ plus the estimated cost to get to a goal from there—that is, c(s, a, s′) + H(s′). In the
example, there are two actions with estimated costs 1 + 9 and 1 + 2, so it seems best to move
right. Now, it is clear that the cost estimate of 2 for the shaded state was overly optimistic.
Since the best move cost 1 and led to a state that is at least 2 steps from a goal, the shaded
state must be at least 3 steps from a goal, so its H should be updated accordingly, as shown
in Figure 4.22(b). Continuing this process, the agent will move back and forth twice more,
updating H each time and “flattening out” the local minimum until it escapes to the right.

An agent implementing this scheme, which is called learning real-time A∗ (LRTA∗), isLRTA*

shown in Figure 4.23. Like ONLINE-DFS-AGENT, it builds a map of the environment using
the result table. It updates the cost estimate for the state it has just left and then chooses the
“apparently best” move according to its current cost estimates. One important detail is that
actions that have not yet been tried in a state s are always assumed to lead immediately to the
goal with the least possible cost, namely h(s). This optimism under uncertainty encouragesOPTIMISM UNDER

UNCERTAINTY

the agent to explore new, possibly promising paths.
An LRTA∗ agent is guaranteed to find a goal in any finite, safely explorable environment.

Unlike A∗, however, it is not complete for infinite state spaces—there are cases where it can be
led infinitely astray. It can explore an environment of n states in O(n2) steps in the worst case,
but often does much better. The LRTA∗ agent is just one of a large family of online agents that
can be defined by specifying the action selection rule and the update rule in different ways.
We will discuss this family, which was developed originally for stochastic environments, in
Chapter 21.

Learning in online search

The initial ignorance of online search agents provides several opportunities for learning. First,
the agents learn a “map” of the environment—more precisely, the outcome of each action in
each state—simply by recording each of their experiences. (Notice that the assumption of
deterministic environments means that one experience is enough for each action.) Second,
the local search agents acquire more accurate estimates of the value of each state by using
local updating rules, as in LRTA∗. In Chapter 21 we will see that these updates eventually
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Figure 4.22 Five iterations of LRTA∗ on a one-dimensional state space. Each state is
labeled with H(s), the current cost estimate to reach a goal, and each arc is labeled with its
step cost. The shaded state marks the location of the agent, and the updated values at each
iteration are circled.

function LRTA*-AGENT(s ′) returns an action
inputs: s ′, a percept that identifies the current state
static: result , a table, indexed by action and state, initially empty

H , a table of cost estimates indexed by state, initially empty
s , a , the previous state and action, initially null

if GOAL-TEST(s ′) then return stop

if s ′ is a new state (not in H ) then H [s ′]←h(s ′)
unless s is null

result[a , s]← s ′

H [s]← min
b∈ ACTIONS(s)

LRTA*-COST(s , b, result[b, s],H )

a← an action b in ACTIONS(s ′) that minimizes LRTA*-COST(s ′, b, result[b, s ′],H )
s← s ′

return a

function LRTA*-COST(s ,a , s ′,H ) returns a cost estimate
if s ′ is undefined then return h(s)
else return c(s, a, s′) + H[s′]

Figure 4.23 LRTA*-AGENT selects an action according to the values of neighboring
states, which are updated as the agent moves about the state space.
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converge to exact values for every state, provided that the agent explores the state space in the
right way. Once exact values are known, optimal decisions can be taken simply by moving to
the highest-valued successor—that is, pure hill climbing is then an optimal strategy.

If you followed our suggestion to trace the behavior of ONLINE-DFS-AGENT in the
environment of Figure 4.18, you will have noticed that the agent is not very bright. For
example, after it has seen that the Up action goes from (1,1) to (1,2), the agent still has no
idea that the Down action goes back to (1,1), or that the Up action also goes from (2,1) to
(2,2), from (2,2) to (2,3), and so on. In general, we would like the agent to learn that Up

increases the y-coordinate unless there is a wall in the way, that Down reduces it, and so on.
For this to happen, we need two things. First, we need a formal and explicitly manipulable
representation for these kinds of general rules; so far, we have hidden the information inside
the black box called the successor function. Part III is devoted to this issue. Second, we need
algorithms that can construct suitable general rules from the specific observations made by
the agent. These are covered in Chapter 18.

4.6 SUMMARY

This chapter has examined the application of heuristics to reduce search costs. We have
looked at a number of algorithms that use heuristics and found that optimality comes at a stiff
price in terms of search cost, even with good heuristics.

• Best-first search is just GRAPH-SEARCH where the minimum-cost unexpanded nodes
(according to some measure) are selected for expansion. Best-first algorithms typically
use a heuristic function h(n) that estimates the cost of a solution from n.

• Greedy best-first search expands nodes with minimal h(n). It is not optimal, but is
often efficient.

• A∗ search expands nodes with minimal f(n) = g(n) + h(n). A∗ is complete and
optimal, provided that we guarantee that h(n) is admissible (for TREE-SEARCH) or
consistent (for GRAPH-SEARCH). The space complexity of A∗ is still prohibitive.

• The performance of heuristic search algorithms depends on the quality of the heuris-
tic function. Good heuristics can sometimes be constructed by relaxing the problem
definition, by precomputing solution costs for subproblems in a pattern database, or by
learning from experience with the problem class.

• RBFS and SMA∗ are robust, optimal search algorithms that use limited amounts of
memory; given enough time, they can solve problems that A∗ cannot solve because it
runs out of memory.

• Local search methods such as hill climbing operate on complete-state formulations,
keeping only a small number of nodes in memory. Several stochastic algorithms have
been developed, including simulated annealing, which returns optimal solutions when
given an appropriate cooling schedule. Many local search methods can also be used to
solve problems in continuous spaces.
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• A genetic algorithm is a stochastic hill-climbing search in which a large population of
states is maintained. New states are generated by mutation and by crossover, which
combines of pairs of states from the population.
• Exploration problems arise when the agent has no idea about the states and actions of

its environment. For safely explorable environments, online search agents can build a
map and find a goal if one exists. Updating heuristic estimates from experience provides
an effective method to escape from local minima.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

The use of heuristic information in problem solving appears in an early paper by Simon
and Newell (1958), but the phrase “heuristic search” and the use of heuristic functions that
estimate the distance to the goal came somewhat later (Newell and Ernst, 1965; Lin, 1965).
Doran and Michie (1966) conducted extensive experimental studies of heuristic search as
applied to a number of problems, especially the 8-puzzle and the 15-puzzle. Although Doran
and Michie carried out theoretical analyses of path length and “penetrance” (the ratio of path
length to the total number of nodes examined so far) in heuristic search, they appear to have
ignored the information provided by current path length. The A∗ algorithm, incorporating the
current path length into heuristic search, was developed by Hart, Nilsson, and Raphael (1968),
with some later corrections (Hart et al., 1972). Dechter and Pearl (1985) demonstrated the
optimal efficiency of A∗.

The original A∗ paper introduced the consistency condition on heuristic functions. The
monotone condition was introduced by Pohl (1977) as a simpler replacement, but Pearl (1984)
showed that the two were equivalent. A number of algorithms predating A∗ used the equiva-
lent of open and closed lists; these include breadth-first, depth-first, and uniform-cost search
(Bellman, 1957; Dijkstra, 1959). Bellman’s work in particular showed the importance of
additive path costs in simplifying optimization algorithms.

Pohl (1970, 1977) pioneered the study of the relationship between the error in heuris-
tic functions and the time complexity of A∗. The proof that A∗ runs in linear time if the
error in the heuristic function is bounded by a constant can be found in Pohl (1977) and
in Gaschnig (1979). Pearl (1984) strengthened this result to allow a logarithmic growth in
the error. The “effective branching factor” measure of the efficiency of heuristic search was
proposed by Nilsson (1971).

There are many variations on the A∗ algorithm. Pohl (1973) proposed the use of dynamic
weighting, which uses a weighted sum fw(n)= wgg(n) + whh(n) of the current path length
and the heuristic function as an evaluation function, rather than the simple sum f(n)= g(n)+
h(n) used in A∗. The weights wg and wh are adjusted dynamically as the search progresses.
Pohl’s algorithm can be shown to be ε-admissible—that is, guaranteed to find solutions within
a factor 1 + ε of the optimal solution—where ε is a parameter supplied to the algorithm. The
same property is exhibited by the A∗

ε algorithm (Pearl, 1984), which can select any node from
the fringe provided its f -cost is within a factor 1 + ε of the lowest-f -cost fringe node. The
selection can be done so as to minimize search cost.
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A∗ and other state-space search algorithms are closely related to the branch-and-bound
techniques that are widely used in operations research (Lawler and Wood, 1966). The
relationships between state-space search and branch-and-bound have been investigated in
depth (Kumar and Kanal, 1983; Nau et al., 1984; Kumar et al., 1988). Martelli and Monta-
nari (1978) demonstrate a connection between dynamic programming (see Chapter 17) and
certain types of state-space search. Kumar and Kanal (1988) attempt a “grand unification” of
heuristic search, dynamic programming, and branch-and-bound techniques under the name
of CDP—the “composite decision process.”

Because computers in the late 1950s and early 1960s had at most a few thousand words
of main memory, memory-bounded heuristic search was an early research topic. The Graph
Traverser (Doran and Michie, 1966), one of the earliest search programs, commits to an
operator after searching best first up to the memory limit. IDA∗ (Korf, 1985a, 1985b) was the
first widely used optimal, memory-bounded, heuristic search algorithm, and a large number
of variants have been developed. An analysis of the efficiency of IDA∗ and of its difficulties
with real-valued heuristics appears in Patrick et al. (1992).

RBFS (Korf, 1991, 1993) is actually somewhat more complicated than the algorithm
shown in Figure 4.5, which is closer to an independently developed algorithm called iterative
expansion, or IE (Russell, 1992). RBFS uses a lower bound as well as the upper bound; theITERATIVE

EXPANSION

two algorithms behave identically with admissible heuristics, but RBFS expands nodes in
best-first order even with an inadmissible heuristic. The idea of keeping track of the best
alternative path appeared earlier in Bratko’s (1986) elegant Prolog implementation of A∗ and
in the DTA∗ algorithm (Russell and Wefald, 1991). The latter work also discusses metalevel
state spaces and metalevel learning.

The MA∗ algorithm appeared in Chakrabarti et al. (1989). SMA∗, or Simplified MA∗,
emerged from an attempt to implement MA∗ as a comparison algorithm for IE (Russell, 1992).
Kaindl and Khorsand (1994) have applied SMA∗ to produce a bidirectional search algorithm
that is substantially faster than previous algorithms. Korf and Zhang (2000) describe a divide-
and-conquer approach, and Zhou and Hansen (2002) introduce memory-bounded A∗ graph
search. Korf (1995) surveys memory-bounded search techniques.

The idea that admissible heuristics can be derived by problem relaxation appears in the
seminal paper by Held and Karp (1970), who used the the minimum-spanning-tree heuristic
to solve the TSP. (See Exercise 4.8.)

The automation of the relaxation process was implemented successfully by Priedi-
tis (1993), building on earlier work with Mostow (Mostow and Prieditis, 1989). The use
of pattern databases to derive admissible heuristics is due to Gasser (1995) and Culberson
and Schaeffer (1998); disjoint pattern databases are described by Korf and Felner (2002).
The probabilistic interpretation of heuristics was investigated in depth by Pearl (1984) and
Hansson and Mayer (1989).

By far the most comprehensive source on heuristics and heuristic search algorithms
is Pearl’s (1984) Heuristics text. This book provides especially good coverage of the wide
variety of offshoots and variations of A∗, including rigorous proofs of their formal properties.
Kanal and Kumar (1988) present an anthology of important articles on heuristic search. New
results on search algorithms appear regularly in the journal Artificial Intelligence.
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Local-search techniques have a long history in mathematics and computer science. In-
deed, the Newton–Raphson method (Newton, 1671; Raphson, 1690) can be seen as a very
efficient local-search method for continuous spaces in which gradient information is avail-
able. Brent (1973) is a classic reference for optimization algorithms that do not require such
information. Beam search, which we have presented as a local-search algorithm, originated
as a bounded-width variant of dynamic programming for speech recognition in the HARPY

system (Lowerre, 1976). A related algorithm is analyzed in depth by Pearl (1984, Ch. 5).
The topic of local search has been reinvigorated in recent years by surprisingly good

results for large constraint satisfaction problems such as n-queens (Minton et al., 1992) and
logical reasoning (Selman et al., 1992) and by the incorporation of randomness, multiple
simultaneous searches, and other improvements. This renaissance of what Christos Papadi-
mitriou has called “New Age” algorithms has also sparked increased interest among theoret-
ical computer scientists (Koutsoupias and Papadimitriou, 1992; Aldous and Vazirani, 1994).
In the field of operations research, a variant of hill climbing called tabu search has gainedTABU SEARCH

popularity (Glover, 1989; Glover and Laguna, 1997). Drawing on models of limited short-
term memory in humans, this algorithm maintains a tabu list of k previously visited states that
cannot be revisited; as well as improving efficiency when searching graphs, this can allow the
algorithm to escape from some local minima. Another useful improvement on hill climb-
ing is the STAGE algorithm (Boyan and Moore, 1998). The idea is to use the local maxima
found by random-restart hill climbing to get an idea of the overall shape of the landscape.
The algorithm fits a smooth surface to the set of local maxima and then calculates the global
maximum of that surface analytically. This becomes the new restart point. The algorithm
has been shown to work in practice on hard problems. (Gomes et al., 1998) showed that
the run time distributions of systematic backtracking algorithms often have a heavy-tailed
distribution, which means that the probability of a very long run time is more than would beHEAVY-TAILED

DISTRIBUTION

predicted if the run times were normally distributed. This provides a theoretical justification
for random restarts.

Simulated annealing was first described by Kirkpatrick et al. (1983), who borrowed
directly from the Metropolis algorithm (which is used to simulate complex systems in
physics (Metropolis et al., 1953) and was supposedly invented at a Los Alamos dinner party).
Simulated annealing is now a field in itself, with hundreds of papers published every year.

Finding optimal solutions in continuous spaces is the subject matter of several fields,
including optimization theory, optimal control theory, and the calculus of variations.
Suitable (and practical) entry points are provided by Press et al. (2002) and Bishop (1995).
Linear programming (LP) was one of the first applications of computers; the simplex algo-
rithm (Wood and Dantzig, 1949; Dantzig, 1949) is still used despite worst-case exponential
complexity. Karmarkar (1984) developed a practical polynomial-time algorithm for LP.

Work by Sewall Wright (1931) on the concept of a fitness landscape was an impor-
tant precursor to the development of genetic algorithms. In the 1950s, several statisticians,
including Box (1957) and Friedman (1959), used evolutionary techniques for optimization
problems, but it wasn’t until Rechenberg (1965, 1973) introduced evolution strategies toEVOLUTION

STRATEGIES

solve optimization problems for airfoils that the approach gained popularity. In the 1960s
and 1970s, John Holland (1975) championed genetic algorithms, both as a useful tool and
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as a method to expand our understanding of adaptation, biological or otherwise (Holland,
1995). The artificial life movement (Langton, 1995) takes this idea one step further, view-ARTIFICIAL LIFE

ing the products of genetic algorithms as organisms rather than solutions to problems. Work
in this field by Hinton and Nowlan (1987) and Ackley and Littman (1991) has done much
to clarify the implications of the Baldwin effect. For general background on evolution, we
strongly recommend Smith and Szathmáry (1999).

Most comparisons of genetic algorithms to other approaches (especially stochastic hill-
climbing) have found that the genetic algorithms are slower to converge (O’Reilly and Op-
pacher, 1994; Mitchell et al., 1996; Juels and Wattenberg, 1996; Baluja, 1997). Such findings
are not universally popular within the GA community, but recent attempts within that com-
munity to understand population-based search as an approximate form of Bayesian learning
(see Chapter 20) might help to close the gap between the field and its critics (Pelikan et al.,
1999). The theory of quadratic dynamical systems may also explain the performance of
GAs (Rabani et al., 1998). See Lohn et al. (2001) for an example of GAs applied to antenna
design, and Larrañaga et al. (1999) for an application to the traveling salesperson problem.

The field of genetic programming is closely related to genetic algorithms. The princi-GENETIC
PROGRAMMING

pal difference is that the representations that are mutated and combined are programs rather
than bit strings. The programs are represented in the form of expression trees; the expressions
can be in a standard language such as Lisp or can be specially designed to represent circuits,
robot controllers, and so on. Crossover involves splicing together subtrees rather than sub-
strings. This form of mutation guarantees that the offspring are well-formed expressions,
which would not be the case if programs were manipulated as strings.

Recent interest in genetic programming was spurred by John Koza’s work (Koza, 1992,
1994), but it goes back at least to early experiments with machine code by Friedberg (1958)
and with finite-state automata by Fogel et al. (1966). As with genetic algorithms, there is
debate about the effectiveness of the technique. Koza et al. (1999) describe a variety of
experiments on the automated design of circuit devices using genetic programming.

The journals Evolutionary Computation and IEEE Transactions on Evolutionary Com-
putation cover genetic algorithms and genetic programming; articles are also found in Com-
plex Systems, Adaptive Behavior, and Artificial Life. The main conferences are the Inter-
national Conference on Genetic Algorithms and the Conference on Genetic Programming,
recently merged to form the Genetic and Evolutionary Computation Conference. The texts
by Melanie Mitchell (1996) and David Fogel (2000) give good overviews of the field.

Algorithms for exploring unknown state spaces have been of interest for many centuries.
Depth-first search in a maze can be implemented by keeping one’s left hand on the wall; loops
can be avoided by marking each junction. Depth-first search fails with irreversible actions; the
more general problem of exploring of Eulerian graphs (i.e., graphs in which each node hasEULERIAN GRAPHS

equal numbers of incoming and outgoing edges) was solved by an algorithm due to Hierholzer
(1873). The first thorough algorithmic study of the exploration problem for arbitrary graphs
was carried out by Deng and Papadimitriou (1990), who developed a completely general
algorithm, but showed that no bounded competitive ratio is possible for exploring a general
graph. Papadimitriou and Yannakakis (1991) examined the question of finding paths to a goal
in geometric path-planning environments (where all actions are reversible). They showed that
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a small competitive ratio is achievable with square obstacles, but with general rectangular
obstacles no bounded ratio can be achieved. (See Figure 4.19.)

The LRTA∗ algorithm was developed by Korf (1990) as part of an investigation into
real-time search for environments in which the agent must act after searching for only aREAL-TIME SEARCH

fixed amount of time (a much more common situation in two-player games). LRTA∗ is in
fact a special case of reinforcement learning algorithms for stochastic environments (Barto
et al., 1995). Its policy of optimism under uncertainty—always head for the closest unvisited
state—can result in an exploration pattern that is less efficient in the uninformed case than
simple depth-first search (Koenig, 2000). Dasgupta et al. (1994) show that online iterative
deepening search is optimally efficient for finding a goal in a uniform tree with no heuristic
information. Several informed variants on the LRTA∗ theme have been developed with dif-
ferent methods for searching and updating within the known portion of the graph (Pemberton
and Korf, 1992). As yet, there is no good understanding of how to find goals with optimal
efficiency when using heuristic information.

The topic of parallel search algorithms was not covered in the chapter, partly because itPARALLEL SEARCH

requires a lengthy discussion of parallel computer architectures. Parallel search is becoming
an important topic in both AI and theoretical computer science. A brief introduction to the
AI literature can be found in Mahanti and Daniels (1993).

EXERCISES

4.1 Trace the operation of A∗ search applied to the problem of getting to Bucharest from
Lugoj using the straight-line distance heuristic. That is, show the sequence of nodes that the
algorithm will consider and the f , g, and h score for each node.

4.2 The heuristic path algorithm is a best-first search in which the objective function is
f(n) = (2 − w)g(n) + wh(n). For what values of w is this algorithm guaranteed to be
optimal? What kind of search does this perform when w = 0? When w = 1? When
w = 2?

4.3 Prove each of the following statements:

a. Breadth-first search is a special case of uniform-cost search.

b. Breadth-first search, depth-first search, and uniform-cost search are special cases of
best-first search.

c. Uniform-cost search is a special case of A∗ search.

4.4 Devise a state space in which A∗ using GRAPH-SEARCH returns a suboptimal solution
with an h(n) function that is admissible but inconsistent.

4.5 We saw on page 96 that the straight-line distance heuristic leads greedy best-first search
astray on the problem of going from Iasi to Fagaras. However, the heuristic is perfect on the
opposite problem: going from Fagaras to Iasi. Are there problems for which the heuristic is
misleading in both directions?
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4.6 Invent a heuristic function for the 8-puzzle that sometimes overestimates, and show how
it can lead to a suboptimal solution on a particular problem. (You can use a computer to help
if you want.) Prove that, if h never overestimates by more than c, A∗ using h returns a solution
whose cost exceeds that of the optimal solution by no more than c.

4.7 Prove that if a heuristic is consistent, it must be admissible. Construct an admissible
heuristic that is not consistent.

4.8 The traveling salesperson problem (TSP) can be solved via the minimum spanning tree
(MST) heuristic, which is used to estimate the cost of completing a tour, given that a partial
tour has already been constructed. The MST cost of a set of cities is the smallest sum of the
link costs of any tree that connects all the cities.

a. Show how this heuristic can be derived from a relaxed version of the TSP.

b. Show that the MST heuristic dominates straight-line distance.

c. Write a problem generator for instances of the TSP where cities are represented by
random points in the unit square.

d. Find an efficient algorithm in the literature for constructing the MST, and use it with an
admissible search algorithm to solve instances of the TSP.

4.9 On page 108, we defined the relaxation of the 8-puzzle in which a tile can move from
square A to square B if B is blank. The exact solution of this problem defines Gaschnig’s
heuristic (Gaschnig, 1979). Explain why Gaschnig’s heuristic is at least as accurate as h1

(misplaced tiles), and show cases where it is more accurate than both h1 and h2 (Manhattan
distance). Can you suggest a way to calculate Gaschnig’s heuristic efficiently?

4.10 We gave two simple heuristics for the 8-puzzle: Manhattan distance and misplaced
tiles. Several heuristics in the literature purport to improve on this—see, for example, Nils-
son (1971), Mostow and Prieditis (1989), and Hansson et al. (1992). Test these claims by
implementing the heuristics and comparing the performance of the resulting algorithms.

4.11 Give the name of the algorithm that results from each of the following special cases:

a. Local beam search with k = 1.

b. Local beam search with k =∞.

c. Simulated annealing with T = 0 at all times.

d. Genetic algorithm with population size N = 1.

4.12 Sometimes there is no good evaluation function for a problem, but there is a good
comparison method: a way to tell whether one node is better than another, without assigning
numerical values to either. Show that this is enough to do a best-first search. Is there an
analog of A∗?

4.13 Relate the time complexity of LRTA∗ to its space complexity.

4.14 Suppose that an agent is in a 3× 3 maze environment like the one shown in Fig-
ure 4.18. The agent knows that its initial location is (1,1), that the goal is at (3,3), and that the
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four actions Up, Down , Left , Right have their usual effects unless blocked by a wall. The
agent does not know where the internal walls are. In any given state, the agent perceives the
set of legal actions; it can also tell whether the state is one it has visited before or a new state.

a. Explain how this online search problem can be viewed as an offline search in belief state
space, where the initial belief state includes all possible environment configurations.
How large is the initial belief state? How large is the space of belief states?

b. How many distinct percepts are possible in the initial state?

c. Describe the first few branches of a contingency plan for this problem. How large
(roughly) is the complete plan?

Notice that this contingency plan is a solution for every possible environment fitting the given
description. Therefore, interleaving of search and execution is not strictly necessary even in
unknown environments.

4.15 In this exercise, we will explore the use of local search methods to solve TSPs of the
type defined in Exercise 4.8.

a. Devise a hill-climbing approach to solve TSPs. Compare the results with optimal solu-
tions obtained via the A∗ algorithm with the MST heuristic (Exercise 4.8).

b. Devise a genetic algorithm approach to the traveling salesperson problem. Compare
results to the other approaches. You may want to consult Larrañaga et al. (1999) for
some suggestions for representations.

4.16 Generate a large number of 8-puzzle and 8-queens instances and solve them (where
possible) by hill climbing (steepest-ascent and first-choice variants), hill climbing with ran-
dom restart, and simulated annealing. Measure the search cost and percentage of solved
problems and graph these against the optimal solution cost. Comment on your results.

4.17 In this exercise, we will examine hill climbing in the context of robot navigation, using
the environment in Figure 3.22 as an example.

a. Repeat Exercise 3.16 using hill climbing. Does your agent ever get stuck in a local
minimum? Is it possible for it to get stuck with convex obstacles?

b. Construct a nonconvex polygonal environment in which the agent gets stuck.

c. Modify the hill-climbing algorithm so that, instead of doing a depth-1 search to decide
where to go next, it does a depth-k search. It should find the best k-step path and do
one step along it, and then repeat the process.

d. Is there some k for which the new algorithm is guaranteed to escape from local minima?

e. Explain how LRTA∗ enables the agent to escape from local minima in this case.

4.18 Compare the performance of A∗ and RBFS on a set of randomly generated problems
in the 8-puzzle (with Manhattan distance) and TSP (with MST—see Exercise 4.8) domains.
Discuss your results. What happens to the performance of RBFS when a small random num-
ber is added to the heuristic values in the 8-puzzle domain?


