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ABSTRACT

Intrinsic motivation and reward shaping guide reinforcement learning (RL) agents
by adding pseudo-rewards, which can lead to useful emergent behaviors. How-
ever, they can also encourage counterproductive exploits, e.g., fixation with noisy
TV screens. Here we provide a theoretical model which anticipates these behav-
iors, and provides broad criteria under which adverse effects can be bounded. We
characterize all pseudo-rewards as reward shaping in Bayes-Adaptive Markov De-
cision Processes (BAMDPs), which formulates the problem of learning in MDPs
as an MDP over the agent’s knowledge. Optimal exploration maximizes BAMDP
state value, which we decompose into the value of the information gathered and
the prior value of the physical state. Psuedo-rewards guide RL agents by re-
warding behavior that increases these value components, while they hinder ex-
ploration when they align poorly with the actual value. We extend potential-based
shaping theory (Ng et al., 1999) to prove BAMDP Potential-based shaping Func-
tions (BAMPFs) are immune to reward-hacking (convergence to behaviors maxi-
mizing composite rewards to the detriment of real rewards) in meta-RL, and show
empirically how a BAMPF helps a meta-RL agent learn optimal RL algorithms for
a Bernoulli Bandit domain. We finally prove that BAMPFs with bounded mono-
tone increasing potentials also resist reward-hacking in the regular RL setting. We
show that it is straightforward to retrofit or design new pseudo-reward terms in this
form, and provide an empirical demonstration in the Mountain Car environment.

1 INTRODUCTION

A common approach to guiding RL agents in sparse reward settings is to add pseudo-rewards to
the true rewards. A wide range of pseudo-rewards have been used successfully in complex environ-
ments (Pathak et al., 2017; Berseth et al., 2019; Hafner et al., 2023); more domain-agnostic terms
are typically known as intrinsic motivation (IM) while reward shaping is often more task-specific
(Schmidhuber, 1991; Dorigo & Colombetti, 1994; Barto et al., 2004). However, designing them
is challenging, and they can affect performance in counter-intuitive ways leading to degenerate be-
haviors (Taiga et al., 2021; Clark & Amodei, 2016). For instance, rewarding accurate prediction of
the next percept may cause an agent to sit forever in front of a blank wall (Rhinehart et al., 2021),
while favoring states where the next percept is hard to predict causes an agent to get stuck watching
a “noisy TV” that randomly flips channels, rather than encouraging exploration as one might expect
(Burda et al., 2018).

Avoiding these behaviors requires understanding their root causes. We approach this by analyz-
ing pseudo-rewards within a theoretical framework for how a rational RL agent should behave—
the Bayes-Adaptive MDP (BAMDP) (Bellman & Kalaba, 1959; Martin, 1967), a generalization of
Bayesian bandits (Gittins, 1979). In a BAMDP, the agent starts out not knowing what MDP it is
operating in and learns more through experience. BAMDP states consist of the cumulative infor-
mation gathered, i.e., the entire history ht of MDP states, actions, and rewards observed up to and
including the current state of the MDP. An RL algorithm can be viewed as a policy mapping the
BAMDP state to an action that updates it (Duff, 2002), and optimal RL algorithms maximize the
expected BAMDP return, i.e., the expected return while exploring and learning.
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(a) ϕ(s) = −∥s − g∥1,
i.e., the goal proximity.

(b) ϕ(h) = |{s ∈ h}|, i.e., the count of all unique states visited so far. Over
training, the agent must get further from s0 to reach new states and increase ϕ(h).

Figure 1: Example potential-based reward shaping functions γϕ′ − ϕ for potentials over the MDP
state (PBSF, 1a), and BAMDP state (BAMPF, 1b). Start and goal MDP states s0, g are marked white
and green; other states are colored by the pseudo-reward for transitioning there directly from s0 at
the start of the episode. Each episode ends and s is reset to s0 every 50 steps, γ = 0.99.

Within this framework, we can understand both reward shaping and IM as BAMDP reward shaping,
i.e., functions over BAMDP states, that guide exploration by incentivizing behavior that leads to
more valuable BAMDP states. We decompose BAMDP state value into the value of the total infor-
mation collected (VOI) and the value of the current MDP state under the prior, which we call the
value of opportunity (VOO). This yields a new, principled typology of pseudo-reward terms based on
the different types of BAMDP value that they signal. Many IM terms, e.g., prediction error (Pathak
et al., 2017) or information gain (Houthooft et al., 2016), can be understood as incentivizing ex-
ploration by adding rewards to behavior that increases VOI. Other pseudo-rewards attempt to steer
exploration by compensating for incorrect implicit VOO priors resulting from the initialization of
RL algorithms. For example, goal proximity reward shaping (Colombetti et al., 1996) compensates
for overly pessimistic VOO priors for states near the goal, while surprise minimization IM (Berseth
et al., 2019) and joint angle violation penalties (Ji et al., 2023) compensate for overoptimistic VOO
estimates for risky states. We can furthermore understand how pseudo-rewards mislead exploration
as resulting from aligning poorly with actual value—e.g., watching a noisy TV yields high prediction
error but no valuable information.

Next, we prove conditions under which pseudo-rewards cannot be “hacked” (where RL agents con-
verge to final behaviors that maximize composite rewards to the detriment of the real rewards) in
both RL and meta-RL settings. Potential-Based reward Shaping Functions (PBSFs) take the form
γϕ(s′) − ϕ(s), where potential ϕ encourages going to higher value states by encoding their desir-
ability, e.g., Fig. 1a. PBSFs on the BAMDP state (BAMPFs), e.g., Fig. 1b, may encode desirability
of both the physical state and the total information gathered. Since they may depend on the entire
training history, it is easy to convert most pseudo-rewards to BAMPFs. We extend results from Ng
et al. (1999) to prove that BAMPFs always preserve the optimality of RL algorithms. Thus, we can
use BAMPFs to guide meta-RL without it converging on RL agents that are optimal for the modified
rewards but not the underlying domain. We empirically validate this by using a BAMPF to guide a
meta-RL agent to learn an optimal RL strategy for a Bernoulli bandits domain. Next, we return to
the regular RL setting and prove that BAMPFs based on potential functions that are bounded and
monotone increasing will also preserve the optimal MDP policy at convergence, i.e., no RL algo-
rithm can find a reward-hacking MDP policy maximizing shaped return but not real return. It is still
straightforward to convert many pseudo-rewards into this form, which we illustrate with a case-study
converting Curiosity (Pathak et al., 2017) to combat the Noisy TV problem. We finally demonstrate
the practical utility of our framework in a larger-scale RL experiment. We use the BAMDP value
decomposition to inform the design of an effective potential function for the continuous Mountain
Car environment (Brockman et al., 2016), and show that the resulting BAMPF improves exploration
while avoiding reward-hacking.

2 BACKGROUND

2.1 MARKOV DECISION PROCESSES

Markov decision processes (MDPs) are defined by tuple M = (S,A, R, T, T0, γ) with S a set of
states, A a set of actions, T (s′|s, a) and R(r|s, a, s′) transition and reward probability functions with
expected reward R(s, a, s′), T0(s0) an initial state distribution, and γ a discount factor (when it is
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not critical, we write R without s′ for brevity). MDP policies map from current states to distributions
over next actions: π(a|s). The return is defined as the discounted sum of rewards G =

∑∞
t=0 γ

trt+1,
and an optimal policy π∗ maximizes the expected return.

2.2 INTRINSIC MOTIVATION AND REWARD SHAPING

Intrinsic motivation (IM) and Reward Shaping are methods for guiding RL algorithms by adding
pseudo-rewards to the original reward at each step. IM functions F (ht) can depend on the en-
tire history ht = s0a0r1s1...at−1rtst (the sequence of all transitions observed so far), thus
IM can depend on RL algorithms’ internal states, and in general the composite reward function
R(st, at, st+1) + F (ht+1) is not a valid MDP reward function. Reward shaping functions are
restricted to the form F (s, a, s′), resulting in shaped MDPs with reward function R′(s, a, s′) =
R(s, a, s′) + F (s, a, s′). Optimal policies for a shaped MDP, i.e., maximizing composite return,
are generally not optimal for the original MDP. Potential-based shaping functions (PBSFs) take the
form F (s, a, s′) = γϕ(s′)− ϕ(s) and preserve optimal policies in all MDPs (Ng et al., 1999).

2.3 FORMULATION OF RL PROBLEMS AS BAMDPS

We formulate RL problems as BAMDPs, for which RL algorithms are policies. We use overlines,
e.g., M̄ , to denote the BAMDP version of any object. Our conventions are inspired by Zintgraf et al.
(2019) and Guez et al. (2012).

RL algorithms learn to maximize return in an MDP by repeatedly updating an internal state (e.g.,
a Q-function estimate) while selecting actions and receiving observations. We denote them by
π̄ : S × H → A, where H is the set of histories ht that are realizable, i.e., occur with non-zero
probability for some action sequence (Abel et al., 2024). RL algorithms typically maintain a lossy
memory of ht, but it is a sufficient statistic for internal state, encapsulating all information π̄ might
use to choose actions. We measure the performance of π̄ in MDP M by its expected return while
learning: JM (π̄) = EM,π̄[

∑∞
t=0 γ

tR(st, at)].1 A Bayes-optimal RL algorithm maximizes expected
performance in MDPs sampled from prior p(M), i.e., J (π̄) = Ep(M)[JM (π̄)] (Singh et al., 2009).
The prior represents the domain, i.e., the distribution of MDPs that the agent will encounter (e.g.,
MiniGrid mazes (Chevalier-Boisvert et al., 2023) or Atari games). For clarity of exposition, we
assume all MDPs possible under p(M) share the same S,A, γ, so only R, T, T0 are initially uncer-
tain.2 We use p(M |ht) to denote the posterior after updating p(M) on the evidence in history ht,
i.e., p(M |ht) ∝ p(ht|M)p(M).

A BAMDP is thus defined by tuple M̄ = (S̄,A, R̄, T̄ , T̄0, γ) where:

• S̄ = S ×H, i.e., an information-augmented state space, so each state s̄t = ⟨st, ht⟩.
• A and γ are shared with the underlying MDPs, although internally π̄ may sample its actions

from an MDP policy πt that it learnt, i.e., π̄(a|s̄t) = πt(a|st).
• R̄(s̄t, a) = Ep(M |ht)[R(st, a)], the expected reward under the current posterior.

• T̄ (s̄t+1|s̄t, at) = Ep(M |ht)[T (st+1|st, at)R(rt+1|st, at)1[ht+1 = htatrt+1st+1]]

• T̄0(⟨s0, h0⟩) = Ep(M)[T0(s)]1[h0 = s0].

We illustrate the basic concepts of BAMDPs using the caterpillar domain shown in Fig. 2. Here,
p(M) represents how butterflies usually lay eggs on the best food source in the area, but 10% of the
time a more rewarding source is nearby; upon hatching on the weed, the caterpillar does not know
which MDP it is in and must decide whether exploring the neighboring bush is worth the energy and
opportunity cost. The bush’s reward varying across possible MDPs manifests as stochastic BAMDP
dynamics at the transition where the caterpillar first observes it (e.g., taking the highlighted eat
action). After observing the reward, p(M |ht) collapses to the underlying MDP and all dynamics
become deterministic (e.g., at the transitions with red highlighted arrows).

1We can convert settings with episodic environments or train/test regimes to this form by augmenting the
state space, e.g., by adding within-episode step indices or train/test indicators.

2This formulation can be extended to POMDPs and for distributions over S,A, γ without any conceptual
changes—the agent receives observations ot, and expectations are taken over additional variables as needed.
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Figure 2: The caterpillar domain formulated as a BAMDP. Left: prior p(M) is a categorical distri-
bution over MDPs M1 and M2; in both, all transitions are deterministic, with the curved and straight
arrows corresponding to eat and go actions respectively. The caterpillar hatches at state sw, and must
decide whether to eat for guaranteed reward 21, or incur −5 reward to go to sb. Right: truncated
BAMDP transition diagram, arrows are labeled with rewards (and transition probabilities if p < 1).
The stochastic transitions (from the highlighted eat action) are due to the uncertainty over the MDP;
all future transitions (the highlighted arrows) become deterministic once its identity is revealed.

The expected return of an RL algorithm in a BAMDP is equal to its expected return while learning
in the initially unknown MDP M ∼ p(M):

Eπ̄[Ḡ] = ET̄0,T̄

[ ∞∑
t=0

γtR̄(s̄t, π̄(s̄t))

]
= Ep(M)

[
EM

[∑∞

t=0
γtR(st, π̄(s̄t))

]]
= Ep(M) [JM (π̄)] = J (π̄).

Thus, an optimal policy for the BAMDP, π̄∗ maximizing Eπ̄[Ḡ], is a Bayes-optimal RL algorithm
with respect to prior p(M), i.e., it explores optimally for that domain.3 Since Eπ̄[Ḡ] is calculated
through future information states, π̄∗ must plan through its own learning. E.g., in Fig. 2 with large
enough γ, π̄∗ would deem sb worth exploring because it can stay there if it finds food, otherwise it
will learn that sb is empty and use this knowledge to return to sw and never leave again.

3 PSEUDO-REWARDS CORRECT BAMDP VALUE MISESTIMATION

We first use our framework to explain how IM and reward shaping can incentivize effective explo-
ration by signalling the value of BAMDP states.

3.1 THE RELATIONSHIP BETWEEN VALUE MISESTIMATION AND REGRET

RL algorithms typically act, implicitly or explicitly, to maximize a value prediction estimated from
the history, which we denote by ˆ̄Q(s̄t, a). Applying the performance difference lemma (Kakade &
Langford, 2002) at the BAMDP level shows how algorithmic regret is directly related to how these
estimates differ from the Bayes-Optimal value over their trajectory:
Lemma 3.1. The Bayesian regret (Ghavamzadeh et al., 2015) of algorithms acting on estimate
ˆ̄Q(s̄t, a) can be expressed as:

Eπ̄∗ [Ḡ]− Eπ̄[Ḡ] = Eπ̄

[∑
t
γt

(
V̄ ∗(s̄t)− Q̄∗

(
s̄t, argmaxa

ˆ̄Q(s̄t, a)
))]

, (1)

Thus, if we can add pseudo-rewards that nudge the value estimates of RL agents ˆ̄Q such that they
select actions with higher BAMDP value Q̄∗, they will explore more optimally.

3Note that, since Bayes-optimal RL algorithms explore only when expected to increase return, they don’t
always explore enough to converge on exactly optimal MDP policies π∗. E.g., in the caterpillar domain, if γ is
small enough then immediate reward dominates Eπ̄[Ḡ], so π̄∗ eats at sw rather than risking delaying rewards
by checking sb (see Appendix I.1 for full calculations).
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3.2 BAMDP VALUE DECOMPOSITION

We can now understand the role of pseudo-rewards as directly incentivizing RL agents to go to
more valuable BAMDP states. IM terms that reward novel observations or diverse actions encode
the value of the information in the BAMDP state ht; these are popular because commonly used
RL algorithms do not inherently account for the value of information (see Appendix C). RL agents
can also misestimate the value of physical states due to incorrect initial beliefs; many other pseudo-
rewards compensate for this type of misestimated value, typically when there is significant prior
knowledge about how to maximize rewards, e.g., it is advantageous for a ball-dribbling robot to be
closer to the ball (Ji et al., 2023). This is helpful to express as a pseudo-reward because it can be
difficult to program such prior knowledge into non-tabular (e.g., deep RL) algorithms before they
begin learning. We decompose the BAMDP value function into these two values, which we call the
Value of Information and Value of Opportunity, respectively.
Definition 3.1 (Value of Information). The Value of Information (VOI) from state s̄t is the increase
in π̄∗’s expected return from st due to the information in ht compared to its initial beliefs:

V̄ ∗
I (⟨st, ht⟩) = V̄ ∗(⟨st, ht⟩)− V̄ ∗(⟨st, h0⟩). (2)

E.g, ht after watching TV may contain more information than h0, but V̄ ∗
I would be zero if that

information can’t help π̄∗ get higher return. Meanwhile, exploring a new section of a maze, even if
it had no rewards, lets π̄∗ focus its search on a smaller remaining area, so V̄ ∗

I would be positive.
Definition 3.2 (Value of Opportunity). The Value of Opportunity (VOO) to π̄ from state s̄t is the
expected optimal value of state st without having learnt anything, i.e.:

V̄ ∗
O(⟨st, ht⟩) = V̄ ∗(⟨st, h0⟩). (3)

E.g., if there is guaranteed reward at a known goal state sg , then s that are fewer steps from it have
higher VOO. Conversely, if walking near an icy cliff edge always has a high chance of injury, then
s there have lower VOO.
Lemma 3.2 (BAMDP Value Decomposition). The optimal BAMDP value can be decomposed into
the Value of Information and the Value of Opportunity:

V̄ ∗(⟨st, ht⟩) = V̄ ∗
I (⟨st, ht⟩) + V̄ ∗

O(⟨st, ht⟩). (4)

We can now categorize IM and reward shaping terms by which of these components they signal (see
Table 1). We can also understand the failure of pseudo-rewards to effectively guide RL algorithms as
a result of them aligning poorly with the true BAMDP value. For example, negative surprise (Berseth
et al., 2019) signals the prior knowledge that unpredictable parts of the environment have lower V̄ ∗

O.
This is well-aligned for environments with dangerous dynamics, but fails in safe environments where
unpredictability correlates poorly with negative outcomes, causing agents to stare at a wall rather
than exploring (Rhinehart et al., 2021). Meanwhile, entropy bonuses (Szepesvári, 2010; Mnih,
2016; Haarnoja et al., 2017) signal that more V̄ ∗

I can be gained by trying a wider spread of actions.
This breaks down if the scale of the pseudo-rewards is too high, because overly random behavior
is unlikely to reach interesting novel states. Thus, the bonuses must be carefully balanced with the
scale and frequency of the extrinsic rewards (Hafner et al., 2023). See Appendix B for more in-depth
discussion of these and more examples.

4 PRESERVING OPTIMALITY WITH BAMDP POTENTIAL-BASED SHAPING

Section 3 provides principles for designing pseudo-rewards to guide effective exploration towards
states of increasing BAMDP value. Another important desideratum for pseudo-rewards is that they
do not prevent RL agents from converging on good behaviors once exploration is complete. As
our algorithms become more powerful, they may get better at finding “reward-hacking” behaviors
that maximize shaped rewards to the detriment of the underlying rewards we care about. This
can be avoided by using pseudo-rewards that preserve optimality, i.e., guarantee that any behavior
maximizing shaped rewards also maximizes underlying rewards. Using our framework, we define a
form of pseudo-reward which makes it easy to retrofit pseudo-reward functions, or design new terms,
which preserve optimality: BAMDP Potential-based shaping Functions (BAMPFs). We prove that
the use of BAMPFS can avoid reward-hacking in both RL (i.e., optimizing over MDP policies) and
meta-RL (i.e., optimizing over RL algorithms) settings.
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Table 1: Typology of IM and reward shaping terms based on the value components (Value of Infor-
mation V̄ ∗

I and Value of Opportunity V̄ ∗
O) they signal. Attractive signals increase with measures of

underestimated value, and repulsive signals decrease with metrics warning of overestimated value.

No V̄ ∗
O Signal Repulsive V̄ ∗

O Signal Attractive V̄ ∗
O Signal

Attractive
V̄ ∗
I Signal

• Prediction error (58; 10)
• Count-based (6; 10)
• Entropy bonus (77; 53)
• Skill discovery (70; 81)
• Info gain (36; 71)

• Empowerment
(43; 30)

• Information Capture
(61)

• Optimism bonus
(74; 60)

• Subtask unlocking (34)

No V̄ ∗
I

Signal
• Surprise minimization

(8)
• Information cost (22)
• Joint angle violation

penalty (39)

• Goal proximity (56; 28)
• Subgoal reaching

(59; 75)
• Ball possession (39)

4.1 DEFINITION OF BAMDP POTENTIAL-BASED SHAPING FUNCTIONS

Classic potential-based shaping guides RL agents toward more valuable MDP states by encoding
their desirability with the potential function ϕ(s) (e.g., Fig. 1a where ϕ(s) is the proximity to the goal
state). A BAMDP Potential-Based Shaping Function (BAMPF) can guide RL agents by encoding the
desirability of BAMDP states ϕ(s̄) (or equivalently, ϕ(h)). This allows them to signal not only the
MDP state value (i.e., VOO), but also the value of the information accumulated (VOI), encouraging
exploration to gather valuable experiences.

Definition 4.1. (BAMPF) Let any S̄,A, γ be given. Function F is a BAMDP Potential-Based
Shaping Function if there exists a real-valued function ϕ such that for all ht ∈ H − {h0},

F (ht) = γϕ(ht)− ϕ(ht−1), (5)

where ht−1 is the first t− 1 timesteps of ht. See Fig. 1b for an example of a simple BAMPF based
on the size of the set of MDP states visited in h.

E.g., Information Gain (Houthooft et al., 2016) expressed as the decrease in entropy of the agent’s
belief of the MDP dynamics p̂(T ), i.e., H(p̂(T |ht−1)) −H(p̂(T |ht)), can be viewed as a BAMPF
for γ = 1 with ϕ(h) = −H(p̂(T |h)), i.e., the certainty of the posterior belief after updating on h,
encouraging exploration towards states where the agent knows more about the environment. Due to
the expressivity of ϕ, it is straightforward to convert virtually any IM or reward shaping function to
a BAMPF: take whatever measure of the desirability of the information and/or MDP state that it is
based on, and use that measure as ϕ.

4.2 BAMPFS PRESERVE OPTIMALITY IN META-RL

We first consider the use of BAMPFs for guiding meta-RL systems to discover better RL algorithms
more efficiently, without misleading them to converge on suboptimal reward-hacking behaviors. In
this setting, the meta-learner generates RL algorithms π̄θ, updating θ to maximize π̄θ’s expected
performance in MDPs sampled from p(M), with the goal of eventually meta-learning a Bayes-
Optimal π̄∗. Pseudo-rewards can be added to shape the returns the meta-RL agent observes, guiding
it to generate better π̄θ. E.g., entropy bonuses could encourage generation of π̄θ that explore a wider
range of actions. But if the pseudo-reward doesn’t preserve optimality, it could cause the meta-
learner to converge on a π̄θ that explores badly with respect to the true task distribution. We extend
PBSF theory to prove BAMPFs preserve optimality in BAMDPs, i.e., in meta-RL problems.

4.2.1 BAMDP POTENTIAL-BASED SHAPING THEOREM

We model the effect of pseudo-reward function F (ht) as producing shaped BAMDP M̄ ′ with shaped
reward R̄′(s̄t, a, s̄t+1) = R̄(s̄t, a) + F (ht+1), while S̄ and T̄ are unchanged, i.e., ht still only con-
tains the underlying rewards. This reflects the fact that F (ht) is fully known from the start, so it
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(a) Average regret of the learnt RL agents as they are
updated through meta-learning.

(b) Average number of arms the learnt agents try in
each MDP throughout meta-learning.

Figure 3: The effect of reward shaping on A2C meta-learning an RNN-based RL agent for Bernoulli
Bandits with two arms, reward probabilities (0.1, 0.9) and a budget of 10 pulls. The mean and stan-
dard error of 10 seeds are plotted for each condition. Without shaping, the meta-learner gradually
learns to generate RL agents that try fewer arms on average, avoiding over-exploration (grey curve
in 3b). The 1st Winner Pulls BAMPF (green) sets ϕ to the pull count of the first arm that yielded a
reward, helping A2C learn to exploit and achieve lower regret more quickly, while still converging to
the optimal strategy. However, when this pull count is used directly as a pseudo-reward (1st Winner
Pulls, purple), it causes the meta-learner to converge on an agent that over-exploits.

should not be treated as information or influence the posterior. The RL algorithm observes the under-
lying rewards in ht, while only the meta-learner receives the pseudo-rewards in this setting. An opti-
mal algorithm for M̄ ′ maximizes the expected shaped return from R̄′, i.e., π̄∗′ = argmaxπ̄ Eπ̄[Ḡ

′].

We now state our main theorem that BAMPFs always preserve Bayes-Optimality.

Theorem 4.2 (BAMDP Potential-Based Shaping Theorem). For a pseudo-reward function to guar-
antee that the optimal algorithm for any shaped BAMDP is optimal for the original BAMDP, i.e.,
Bayes-optimal for the underlying RL problem, it is necessary and sufficient for it to be a potential-
based shaping function on the BAMDP state.

Proof Sketch. For sufficiency, we show that the ϕ form a telescoping sum, reducing to a constant.
For necessity, we construct a BAMDP such that when F − (γϕ′ − ϕ) is nonzero, different actions
maximize the shaped and extrinsic returns. The proof follows Ng et al. (1999) but rewards impact
the BAMDP state, making it more complex than for regular MDPs; see A.1 for full proofs.

Thus, if the meta-learner converges to an RL algorithm π̄∗′ that learns optimally for the BAMPF-
shaped rewards, this algorithm will also always explore optimally with respect to the true reward
distribution. Meanwhile, if we use a pseudo-reward function that is not a BAMPF, there will be
settings where π̄∗′ explores sub-optimally. We extend this result to prove that BAMPFS also preserve
approximate optimality of RL algorithms in Appendix A.2.

4.2.2 EXPERIMENT: SHAPING META-RL ON BERNOULLI BANDITS

We demonstrate this result in the Bernoulli Bandit meta-RL problem introduced by Wang et al.
(2016). Every MDP in p(M) has two arms, one with reward probability 0.1 and the other 0.9
(randomly assigned), and a budget of 10 pulls. At each step an RNN-based RL agent observes
the last arm that was pulled, its payout, and how many pulls it has left, and chooses which arm to
pull next. After 10 pulls, the episode ends and a new MDP is sampled from p(M). The meta-RL
algorithm, A2C (Mnih, 2016), continually updates the RNN agent to maximize expected return in its
10-step lifetime, i.e., to find the RL strategy that optimally balances exploration and exploitation with
respect to p(M). Fig. 3b shows how without shaping (the grey curve), the meta-learner gradually
learns to generate RL agents that try fewer arms on average, i.e., avoiding over-exploration. This
shows that the meta-learner initially over-estimates the VOI of trying more arms, so we could add
a BAMPF to correct its prior. The 1st Winner Pulls BAMPF sets ϕ(h) to the total pull count of
the first arm that produced a reward, decreasing the relative perceived VOI of exploring the other
arm. Fig. 3b (green curve) shows it helps A2C learn more exploitative RL agents more quickly, and
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Fig. 3a shows that these agents achieve lower regret more quickly, while it doesn’t prevent eventual
convergence to an optimal agent. In contrast, when this pull count is used directly as a pseudo-
reward (purple curve), it causes the meta-learner to converge on an agent that exploits too heavily
and never achieves the optimal regret, because whenever the p = 0.1 arm is by chance the first
winner, the shaped return is maximized by continuing to pull it, regardless of its future payouts. See
Appendix G for full experimental details.

4.3 PRESERVING OPTIMALITY IN RL WITH BAMPFS

Now we turn our attention to the common RL setting, where an RL algorithm learns an MDP policy
to maximize return. A certain natural type of BAMPF also resists hacking at the MDP level. These
are BAMPFS based on ϕ that are bounded monotone increasing functions over time, i.e., ϕ(ht1) ≤
ϕ(ht2) for all realizable histories at training steps t1 < t2 (so ht1 is a prefix of ht2 ).
Theorem 4.3. If the pseudo-rewards added to an MDP can be expressed as a BAMPF with a
bounded potential that is monotone increasing over time, it will eventually preserve approximate
optimality in the MDP, i.e.,

∀ϵ > 0 ∃H : ∀t > H : Eπ∗′
t
[G] > Eπ∗ [G]− ϵ, (6)

where t is the training step, Eπ[G] denotes expected unshaped return of an MDP policy π, π∗′

t is a
policy maximizing the shaped return at step t, and π∗ is an optimal policy for the underlying MDP.

Proof Sketch. The BAMPF rewards form a telescoping sum over any MDP episode, leaving a single
policy-dependent term: ϕ at the final step of the episode. Because ϕ is bounded and monotone, there
must be a final step in training H where it increases by at least ϵ, after which the artificial advantage
it can give the chosen policy is less than ϵ. Therefore the optimal policy in the shaped MDP must be
less than ϵ worse than the optimal policy in the true MDP. See Appendix A.3 for the full proof.

This class of BAMPF naturally includes intrinsic motivation terms that signal the total value of
information gathered so far, e.g., count-based rewards (Bellemare et al., 2016) or information
gain (Houthooft et al., 2016), and they are simple and intuitive to design. For example, take a
single-state MDP with 100 levers only one of which yields a reward when pulled. A bounded mono-
tone ϕ could be the number of unique levers tried so far, encoding the VOI from having explored
more levers. Fig. 4a shows how, when applied to DQN, the BAMPF reward converges to a constant
as more levers are tried. Fig. 4b shows how this BAMPF causes the agent to try more levers on
average than without pseudo-rewards (which relies purely on ϵ−greedy exploration). And yet, it
doesn’t prevent DQN from converging to the optimal policy, i.e., pulling the correct lever at every
step (Fig. 4c). Meanwhile, an entropy bonus (the entropy of the last 10 lever pulls, which isn’t a
BAMPF) makes the agent oscillate between pulling the correct lever to get the extrinsic reward, and
pulling other levers to increase the entropy bonus, which achieves higher shaped rewards but lower
true rewards than pulling the correct lever at every step.

4.3.1 EXPERIMENT: SHAPING RL IN MOUNTAIN CAR

We now demonstrate the benefits of BAMPFs in a more realistic setting: with PPO (Schulman
et al., 2017) in the Mountain Car environment (Brockman et al., 2016) which has a continuous state
comprising the car’s position and velocity. The reward is -1 at each timestep; each episode lasts
200 steps or ends early if the car reaches the goal. The car starts in a valley, and to reach the goal
(the flagpole in Fig. 5a) it must build momentum by first moving up the opposite slope. Thus,
displacement from the lowest point in the valley is an intuitive shaping reward to signal the VOO
of being further uphill in either direction. We find this helps PPO reach greater displacements early
in training (red curve in Fig. 5c), but eventually results in reward-hacking policies that collect more
pseudo-rewards by avoiding the goal (Figures 5b and 9). Converting this to classic potential-based
shaping by setting ϕ(s) to the displacement, we find it preserves optimality but doesn’t help learning
(blue curve in Fig. 5b), possibly because the further uphill the car gets, the more negative PBS
rewards it soon receives when it rolls back. We can understand these failures as a result of the fact
that displacement is too weak a signal for the true VOO in Mountain Car. Instead, we could signal
VOI by rewarding the maximum displacement so far, which doesn’t penalize temporary decreases
in displacement. This depends on more than the current state, so it isn’t a valid MDP potential
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(a) Psuedo-reward values over time. (b) Levers tried over time. (c) Correct lever pull fraction over time.

Figure 4: The effect of a bounded monotone BAMPF and entropy bonus pseudo-rewards on DQN in
a 1-state MDP, where 1 in 100 total levers gives reward 10 when pulled. None refers to DQN without
any pseudo-rewards. The BAMPF potential is the count of unique levers tried, and the Entropy
reward is 10x the entropy of the last 10 lever pulls. The setting is non-episodic with γ = 0.9. The
mean and standard error of 32 seeds are plotted for each condition. See Appendix F for full details.

(a) Visualization of the
environment.

(b) Episodic extrinsic returns of agents
trained with each pseudo-reward type.

(c) Exponentially smoothed maximum
displacement over training.

Figure 5: The effect of pseudo-rewards on PPO in Mountain Car; the mean and standard error of 10
seeds are plotted for each type of reward shaping. Displacement rewards the current x displacement
of the car, Displacement PBS is potential-based shaping with the current displacement as the MDP
state potential ϕ(s), and Max Displacement BAMPF uses the exponentially smoothed maximum
displacement over training (5c) as the BAMDP state potential ϕ(h). With Displacement the agent
learns a reward-hacking policy that avoids the goal to collect more pseudo-rewards (see Fig. 9),
while the BAMPF helps PPO learn to reach the goal more quickly while preserving optimality (5b).

but it is a valid BAMDP potential ϕ(ht). It is bounded due to the finite width of the environment,
and as the maximum it monotonically increases throughout training. It signals the VOI of the RL
agent learning how to get further uphill; because it sometimes surpasses its maximum displacement
by chance before learning how to consistently get that far, we apply exponential smoothing. Fig. 5c
(green curve) shows the resulting BAMPF gets the agent to explore further more quickly, and Fig. 5b
shows it learns to reach the goal and maximize true rewards sooner while avoiding reward-hacking.
See Appendix H for full experimental details.

4.3.2 CONVERTING PSEUDO-REWARDS TO RESIST REWARD-HACKING IN RL

Although virtually any pseudo-reward can be cast as a BAMPF, the monotonicity condition doesn’t
naturally include non-cumulative functions of just the latest behavior, e.g., prediction error (the pre-
dictability of the latest observations) or entropy bonuses (the entropy of the latest policy) which can
fluctuate up or down. However, these terms would still preserve optimality if they could be converted
to the sum of a bounded monotone increasing BAMPF and a classic PBSF. E.g., Curiosity (Pathak
et al., 2017) rewards the error of a learnt dynamics model in predicting the latest observations, to
encourage continually seeking novel experiences while improving the dynamics model. The non-
monotone component that encourages visiting novel states could be captured by a PBSF with ϕ(s)
equal to the error of a fixed model’s prediction of features of s, similar to RND (Burda et al., 2018).
The value of improving the dynamics model can be captured by a BAMPF with ϕ(h) equal to the
maximum accuracy so far of the dynamics model on a fixed set of transitions. To prevent stagnation,
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the fixed model and transition set could be refreshed regularly between batch updates– as long as
they can’t change within an episode, optimality will be preserved. This form of Curiosity would
not be susceptible to the Noisy TV Problem, since the dynamics model’s accuracy ϕ(h) could not
increase indefinitely while watching TV, and even if the fixed model’s error ϕ(s) were higher at the
TV, Ng et al. (1999)’s result guarantees that a policy can’t maximize total shaped return by staying
there. See Appendix D for a more detailed exposition and numerical demonstration.

5 RELATED WORK

Theory of Intrinsic Motivation Oudeyer & Kaplan (2007) categorize IM as knowledge-based,
competence-based or morphological, and evaluate them by their exploration (leading to exploratory
and investigative behavior) and organization (leading to structured and organized behavior) poten-
tials, which are similar to the effects of signalling V̄O and V̄I . Singh et al. (2009) propose an
evolutionary framework for rewards as maximizing expected fitness over a distribution of environ-
ments, concluding that optimal reward depends on regularities across the distribution and properties
of the learning agent. Aubret et al. (2023) propose an information-theoretic taxonomy of IM, but this
only captures IM terms signalling value of information; they don’t consider the prior environment
distribution and so cannot explain how pseudo-rewards should be designed for a given domain.

Extensions of Potential-Based Reward Shaping Devlin & Kudenko (2012) and Forbes et al.
(2024) extend PBS theory to potential functions that vary over time, including functions of the
history, showing that they also preserve the optimal MDP policy. However, Devlin & Kudenko
(2012)’s proof omits the episodic setting, and Forbes et al. (2024) modify the potential at the last
step of each episode to cancel out all prior pseudo-rewards. This is inappropriate for potentials mea-
suring the value of information, since observations from an episode do not lose all value once the
episode ends. Eck et al. (2016) extend PBSFs to POMDP planning, defining potential functions over
POMDP belief states and categorizing them as Domain-dependent and Domain-independent, which
share similarities to V̄O and V̄I . Kim et al. (2015) propose BAMDP potential-based shaping specifi-
cally for a model-based Bayesian RL method, although they do not prove that the PBS theorem still
holds for BAMDPs (which is non-trivial, because rewards influence the BAMDP state) and do not
consider the broader implications for developing pseudo-rewards for any RL algorithm.

See Appendix E for an extended discussion of related work.

6 DISCUSSION

By formulating RL problems as BAMDPs, we formalize how intrinsic motivation and reward shap-
ing help exploration by signalling the value of BAMDP states, which we decompose into the value
of information and the value of opportunity. This allows us to characterize the roles of existing
pseudo-rewards, explains when they impede exploration as misalignment with these values, and
provides principles for designing new terms to guide learning in any given domain. This framework
also gives us tools to tackle reward-hacking, i.e., to avoid incentivizing RL agents to converge on
suboptimal final behaviors. We extend potential-based shaping theory to propose BAMPFs, a form
of pseudo-reward that can avoid reward-hacking both in the typical RL setting, by preserving the
optimality of the learnt MDP policies, and in meta-RL, by preserving the optimality of the learnt RL
algorithms. Although it is a manual process, it is straightforward to design and convert many exist-
ing pseudo-rewards into this form, as we illustrate with a case-study converting a prediction error
IM term to avert the Noisy TV problem. Our experiments in the Mountain Car RL environment and
Bernoulli Bandits meta-RL domain demonstrate the utility of our framework for designing practical
pseudo-reward functions which both improve learning efficiency and avoid reward-hacking.
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Vladimir Mikulik, Grégoire Delétang, Tom McGrath, Tim Genewein, Miljan Martic, Shane Legg,
and Pedro Ortega. Meta-trained agents implement Bayes-optimal agents. Advances in Neural
Information Processing Systems, 33:18691–18703, 2020.

Volodymyr Mnih. Asynchronous methods for deep reinforcement learning. arXiv preprint
arXiv:1602.01783, 2016.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

Shakir Mohamed and Danilo Jimenez Rezende. Variational information maximisation for intrinsi-
cally motivated reinforcement learning. Advances in Neural Information Processing Systems, 28,
2015.

13

http://github.com/RobertTLange/gymnax
https://github.com/RobertTLange/gymnax-blines
https://github.com/RobertTLange/gymnax-blines


Published as a conference paper at ICLR 2025

Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transformations:
Theory and application to reward shaping. In Icml, volume 99, pp. 278–287. Citeseer, 1999.

Pierre-Yves Oudeyer and Frederic Kaplan. What is intrinsic motivation? A typology of computa-
tional approaches. Frontiers in neurorobotics, 1:108, 2007.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International Conference on Machine Learning, pp. 2778–2787.
PMLR, 2017.

Sujoy Paul, Jeroen Vanbaar, and Amit Roy-Chowdhury. Learning from trajectories via subgoal
discovery. Advances in Neural Information Processing Systems, 32, 2019.

Jian Qian, Ronan Fruit, Matteo Pirotta, and Alessandro Lazaric. Exploration bonus for regret min-
imization in discrete and continuous average reward MDPs. Advances in Neural Information
Processing Systems, 32, 2019.

Nicholas Rhinehart, Jenny Wang, Glen Berseth, John Co-Reyes, Danijar Hafner, Chelsea Finn, and
Sergey Levine. Information is power: Intrinsic control via information capture. Advances in
Neural Information Processing Systems, 34:10745–10758, 2021.

Stuart Russell and Eric Wefald. On optimal game-tree search using rational meta-reasoning. In
IJCAI, pp. 334–340. Citeseer, 1989.

Stuart Russell and Eric Wefald. Principles of metareasoning. Artificial intelligence, 49(1-3):361–
395, 1991.

Ilya O Ryzhov and Warren B Powell. The value of information in multi-armed bandits with expo-
nentially distributed rewards. Procedia Computer Science, 4:1363–1372, 2011.

Christoph Salge, Cornelius Glackin, and Daniel Polani. Changing the environment based on em-
powerment as intrinsic motivation. Entropy, 16(5):2789–2819, 2014a.

Christoph Salge, Cornelius Glackin, and Daniel Polani. Empowerment–an introduction. Guided
Self-Organization: Inception, pp. 67–114, 2014b.

Jürgen Schmidhuber. A possibility for implementing curiosity and boredom in model-building neu-
ral controllers. In Proc. of the International Conference on Simulation of Adaptive Behavior:
From Animals to Animats, pp. 222–227, 1991.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter Abbeel, Danijar Hafner, and Deepak Pathak.
Planning to explore via self-supervised world models. In International Conference on Machine
Learning, pp. 8583–8592. PMLR, 2020.

Archit Sharma, Shixiang Gu, Sergey Levine, Vikash Kumar, and Karol Hausman. Dynamics-aware
unsupervised discovery of skills. arXiv preprint arXiv:1907.01657, 2019.
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A POTENTIAL-BASED SHAPING PROOFS

A.1 MAIN THEOREM

Theorem 4.2 (BAMDP Potential-Based Shaping Theorem). For a pseudo-reward function to guar-
antee that the optimal algorithm for any shaped BAMDP is optimal for the original BAMDP, i.e.,
Bayes-optimal for the underlying RL problem, it is necessary and sufficient for it to be a potential-
based shaping function on the BAMDP state.

Proof. (Sufficiency) Denote the original BAMDP M̄ = (S̄,A, R̄, T̄ , T̄0, γ) with optimal algorithm
π̄∗, and the shaped BAMDP as M̄ ′ = (S̄,A, R̄′, T̄ , T̄0, γ), i.e., it is identical to M̄ except for its
shaped reward function R̄′(s̄t, a, s̄t+1) = R̄(s̄t, a) + F (s̄t+1) = R̄(s̄t, a) + γϕ(ht+1)− ϕ(ht). So
we model the pseudo-rewards as being added to the RL algorithm’s reward signal internally, rather
than entering through the history in the BAMDP state s̄t. We denote the optimal algorithm for M̄ ′

by π̄∗′.
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Figure 6: All edges have probability 1, and only action a is applicable from s2 and sa.

Abbreviating ϕ(ht) to ϕt, we can now express the expected return of an algorithm in M̄ ′ in terms of
the underlying return it would achieve in M̄ :

(7)

Eπ̄[Ḡ′] = ET̄ ,T̄0,π̄

[∑
t

γtR̄′ (s̄t, at, s̄t+1)

]

= ET̄ ,T̄0,π̄

[∑
t

γt
(
R̄ (s̄t, at) + γϕt+1 − ϕt

)]

= ET̄ ,T̄0,π̄

[ ∞∑
t=0

γtR̄(s̄t, at)

]
+ ET̄ ,T̄0,π̄

[
−ϕ0 +

∞∑
t=1

γt(ϕt − ϕt)

]
= Eπ̄[Ḡ]− ϕ0

Plugging this into the definitions of the Bayes-optimal algorithms for M̄ ′ and M̄ :

(8)

π̄∗′ ∈ argmax
π̄

Eπ̄[Ḡ
′]

= argmax
π̄

Eπ̄[Ḡ]− ϕ0

= argmax
π̄

Eπ̄[Ḡ] = π̄∗

We now prove that if pseudo-reward function F (h) is not a BAMPF, then there exists BAMDP
reward and transition functions such that no Bayes-optimal algorithm for the shaped BAMDP is
Bayes-optimal in the original BAMDP.

Proof. (Necessity) Our proof follows Ng et al. (1999)’s proof of necessity, but is more complex
because the BAMDP state contains the entire history. Assume F is not a BAMPF. We need to
show that we can construct T̄ , R̄ such that no optimal algorithm in shaped BAMDP M̄ ′ is also
optimal in M̄ . Define ϕ(h) = −

∑∞
t=0 γ

tF (h(a0sa)t+1) for all h with sa ∈ S, a ∈ A, where
a0sa denotes the trajectory segment from taking action a, receiving reward 0 and transitioning
to state sa, (a0sa)t+1 denotes the trajectory formed by repeating this segment t + 1 times, and
h(a0sa)t+1 is the history formed by concatenating h with (a0sa)t+1. By assumption of F not being
a BAMPF, there exists a valid transition between two BAMDP states ⟨s1, h1⟩, ⟨s2, h1a

′r′s2⟩ ∈ S̄
via some action a′ ∈ A yielding reward r′ such that γϕ(h1a

′r′s2)− ϕ(h1) ̸= F (h1a
′r′s2). Define

∆ = F (h1a
′r′s2)−γϕ(h1a

′r′s2)+ϕ(h1). We now construct M̄ with no uncertainty over R, T , i.e.,
p(M) is concentrated on a single MDP M , illustrated in Fig. 6. In this M , we have T (sa|s1, a) =
T (s2|s1, a′) = 1.0, and from s2 and sa the only applicable action a leads to sa with probability
1. The initial MDP state is s1, so for s1, h1 to be realizable in this environment h1 is the length 1
sequence s1. Let R(s1, a) = r′ +∆/2, R(s1, a

′) = r′, R(·, ·) = 0 elsewhere. Then we have
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Q̄∗(⟨s1, h1⟩, a) = r′ +∆/2

Q̄∗(⟨s1, h1⟩, a′) = r′

Q̄∗′(⟨s1, h1⟩, a) = r′ +∆/2 +

∞∑
t=0

γtF (h1(a0sa)t+1)

= r′ +∆/2− ϕ(h1)

= r′ +∆/2 + F (h1a
′r′s2)− γϕ(h1a

′r′s2)−∆

= r′ + F (h1a
′r′s2)− γϕ(h1a

′r′s2)−∆/2

Q̄∗′(⟨s1, h1⟩, a′) = r′ + F (h1a
′r′s2) + γ

∞∑
t=0

γtF (h1a
′r′s2(a0sa)t+1)

= r′ + F (h1a
′r′s2)− γϕ(h1a

′r′s2).

Hence

π̄∗(⟨s1, h1⟩) =
{
a if ∆/2 > 0

a′ otherwise
π̄∗′(⟨s1, h1⟩) =

{
a′ if ∆/2 > 0

a otherwise
(9)

A.2 NEAR-OPTIMAL ALGORITHMS ARE NEARLY INVARIANT TO BAMPFS

We now extend our results to approximately optimal algorithms, first providing an overview of the
results and proof sketches before diving into the full proofs.

A.2.1 APPROXIMATE OPTIMALITY COROLLARIES

Corollary A.1. With BAMPF shaping, a near-optimal algorithm π̄ϵ for M̄ ′ will also be near-optimal
when applied to M̄ , i.e.,

Eπ̄∗′ [Ḡ′]− Eϵ
π̄[Ḡ

′] < ϵ ⇐⇒ Eπ̄∗ [Ḡ]− Eϵ
π̄[Ḡ] < ϵ. (10)

Proof Sketch. Because BAMPF shaping shifts BAMDP returns by a constant, lower shaped return
Eπ̄[Ḡ′] corresponds directly to Eπ̄[Ḡ] decreasing by the same amount. See A.2.2 for the full proof.

Another form of approximate optimality is the maximization of return over a finite horizon k. We
can also upper-bound the regret as a function of k.

Definition A.1 (k-step optimal). We define an RL algorithm as k-step optimal for a BAMDP if it
maximizes the expected k-step return:

π̄∗
k ∈ argmax

π̄
ET̄0,T̄

[∑k

t=0
γtR̄(s̄t, π̄(s̄t))

]
. (11)

Corollary A.2. If F is a BAMPF with potential function of maximum magnitude ϕmax, and the
extrinsic reward has maximum magnitude Rmax, then the k-step optimal algorithm for the shaped
BAMDP, π̄∗′

k , has regret bounded by 2γk(ϕmax +Rmax
γ

1−γ ) in the underlying BAMDP, i.e.,

Eπ̄∗ [Ḡ]− Eπ̄∗′
k
[Ḡ] ≤ 2γk

(
ϕmax +Rmax

γ

1− γ

)
. (12)

Proof Sketch. The telescoping ϕ summed over horizon k leaves a trailing term of γkϕk from the last
step, which allows us to bound π̄∗′

k ’s k-step regret compared to π̄∗
k in terms of ϕmax. The regret of

π̄∗
k compared to the fully Bayes-optimal algorithm π̄∗ is bounded by the worst-case regret after step

k, giving us a bound in terms of Rmax. See A.2.2 for the full proof.

17



Published as a conference paper at ICLR 2025

A.2.2 FULL PROOFS

The result in Equation 7 tells us that a near-optimal algorithm for M̄ ′ will also be near-optimal in
M̄ because the return is just shifted by a constant.

Corollary A.1. With BAMPF shaping, a near-optimal algorithm π̄ϵ for M̄ ′ will also be near-optimal
when applied to M̄ , i.e.,

Eπ̄∗′ [Ḡ′]− Eϵ
π̄[Ḡ

′] < ϵ ⇐⇒ Eπ̄∗ [Ḡ]− Eϵ
π̄[Ḡ] < ϵ. (10)

Proof.

(13)Eπ̄∗′ [Ḡ′]− Eπ̄[Ḡ′] = Eπ̄∗′ [Ḡ]− ϕ0 − (Eπ̄[Ḡ]− ϕ0)

= Eπ̄∗′ [Ḡ]− Eπ̄[Ḡ]

= Eπ̄∗ [Ḡ]− Eπ̄[Ḡ]

Now to prove Corollary A.2 we first introduce the following Lemma:

Lemma A.1. If F is a BAMPF with potential function of maximum magnitude ϕmax, then the k-step
optimal algorithm for the shaped BAMDP, π̄∗′

k , has k-step regret bounded by 2γkϕmax in the true
BAMDP:

max
s,h

|ϕ(h)|= ϕmax =⇒ Eπ̄∗
k
[Ḡk]− Eπ̄∗′

k
[Ḡk] ≤ 2γkϕmax (14)

Proof. First, observe that when PBSF rewards are summed over a finite horizon, all but the potentials
of the first and last timesteps cancel out:

(15)
k∑

t =0

γt(γϕt+1 − ϕt) = −ϕ0 +

k−1∑
t=1

γt(ϕt − ϕt) + γkϕk

= γkϕk − ϕ0

Thus, following the same steps as Equation 7 we can express the k-step return of an algorithm in the
shaped BAMDP as:

Eπ̄[Ḡ′
k] = Eπ̄[Ḡk] + ET̄ ,π̄[γ

kϕk]− ϕ0. (16)

And so the k-step optimal algorithm in the shaped BAMDP can be expressed as:

π̄∗′
k = argmax

π̄
Eπ̄[Ḡ′

k] = argmax
π̄

Eπ̄[Ḡk] + ET̄ ,π̄[γ
kϕk] (17)

Evaluating this expression at π̄∗′
k and applying the bound on the potential function, we get:

(18)
Eπ̄∗′

k
[Ḡk] + ET̄ ,π̄∗′

k
[γkϕk] = max

π̄
Eπ̄[Ḡk] + ET̄ ,π̄[γ

kϕk]

≥ max
π̄

Eπ̄[Ḡk]− γkϕmax

= Eπ̄∗
k
[Ḡk]− γkϕmax

Rearranging the above inequality and applying the bound once more we get:

(19)Eπ̄∗
k
[Ḡk]− Eπ̄∗′

k
[Ḡk] ≤ γkϕmax + ET̄ ,π̄∗′

k
[γkϕk]

≤ 2γkϕmax.

18



Published as a conference paper at ICLR 2025

Corollary A.2. If F is a BAMPF with potential function of maximum magnitude ϕmax, and the
extrinsic reward has maximum magnitude Rmax, then the k-step optimal algorithm for the shaped
BAMDP, π̄∗′

k , has regret bounded by 2γk(ϕmax +Rmax
γ

1−γ ) in the underlying BAMDP, i.e.,

Eπ̄∗ [Ḡ]− Eπ̄∗′
k
[Ḡ] ≤ 2γk

(
ϕmax +Rmax

γ

1− γ

)
. (12)

Proof. Since magnitude of the reward is bounded by Rmax, we can upper bound the expected return
of π̄∗ by the optimal k-step return Eπ̄∗

k
[Ḡk] plus the maximum return from step k + 1 onwards:

(20)Eπ̄∗ [Ḡ] ≤ Eπ̄∗
k
[Ḡk] + γk+1 1

1− γ
Rmax

≤ Eπ̄∗′
k
[Ḡk] + 2γkϕmax + γk+1 1

1− γ
Rmax,

where we applied Lemma A.1 to substitute Eπ̄∗
k
[Ḡk] at the second line. Meanwhile, the full expected

return of π̄∗′
k can be lower bounded by its k-step return plus the minimum return from step k + 1

onwards:

(21)Eπ̄∗′
k
[Ḡ] ≥ Eπ̄∗′

k
[Ḡk]− γk+1 1

1− γ
Rmax

≥ Eπ̄∗ [Ḡ]− 2γkϕmax − 2γk+1 1

1− γ
Rmax,

where we substituted the Eπ̄∗′
k
[Ḡk] in the first line using the result in Equation 20.

Remark. For RL algorithms that have a minimum resolution at which they distinguish returns,
BAMPF shaping ceases to affect their behavior once they are optimal over a long enough hori-
zon. More precisely, we call an RL Algorithm that does not distinguish returns less than d apart
d-insensitive. For k high enough that 2γkϕmax < d, all k-step optimal d-insensitive algorithms in a
BAMPF-shaped BAMDP are behaviorally equivalent to their counterparts in the original BAMDP.

A.3 BOUNDED MONOTONE INCREASING POTENTIALS PRESERVE MDP OPTIMALITY

Theorem 4.3. If the pseudo-rewards added to an MDP can be expressed as a BAMPF with a
bounded potential that is monotone increasing over time, it will eventually preserve approximate
optimality in the MDP, i.e.,

∀ϵ > 0 ∃H : ∀t > H : Eπ∗′
t
[G] > Eπ∗ [G]− ϵ, (6)

where t is the training step, Eπ[G] denotes expected unshaped return of an MDP policy π, π∗′

t is a
policy maximizing the shaped return at step t, and π∗ is an optimal policy for the underlying MDP.

Proof. We first introduce a lemma to bound the maximum increase in the potential function:

Lemma A.2. If ϕ is bounded and monotone, then for any RL algorithm π̄ and finite δ > 0 we have
some point in time H at which ϕ has changed by δ or more for the last time, and thus all future
values of ϕ(ht) must be within δ of each other, i.e.:

∀π̄, δ > 0,∆t ≥ 0 ∃H : |ϕ(ht+∆t)− ϕ(ht)|< δ ∀t > H. (22)

Proof. Because the sequence of ϕ(ht) is bounded and monotone, the Monotone Convergence The-
orem tells us that it is convergent. For all convergent sequences St,

∀δ > 0 ∃H : |S∞ − St|< δ ∀t > H, (23)

where S∞ is the infimum or supremum of the sequence. Finally, because the sequence is monotone
we have |St+∆t − St|≤ |S∞ − St|, therefore |St+∆t − St|< δ.
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We will use this lemma to bound the artificial advantage any policy output by the RL algorithm
can get due to shaping, and thus show that any policy chosen to maximize shaped return is still
near-optimal for the real return.

We proceed by expressing the expected return of policy πt output by π̄ and shaped by the BAMPF
at training step t, Eπt [G

′
t] (i.e., the expected discounted sum of both pseudo-rewards and extrinsic

rewards that πt achieves in one episode; G′
t also varies with t because the BAMPF varies over time),

in terms of the unshaped return Eπt
[G] (i.e., the discounted sum of extrinsic rewards that the same

policy πt achieves in one episode) and the episode length N :

(24)Eπt [G
′
t] = Eπt [G+ γϕ(ht+1)− ϕ(ht) + γ2ϕ(ht+2)− γϕ(ht+1)...+ γNϕ(ht+N )]

= Eπt [G]− ϕ(ht) + γNEπt [ϕ(ht+N )]

We use this to express the difference in shaped return between MDP policy πt that was output by
the RL algorithm at step t, and any other MDP policy π, if we rolled them out at training step t, in
terms of the difference in their unshaped returns:

(25)∀π : Eπt
[G′

t]− Eπ[G
′
t]

= Eπt
[G]− ϕ(ht) + γNEπt

[ϕ(ht+N )]− Eπ[G] + ϕ(ht)− γNEπ[ϕ(ht+N )]

= Eπt
[G]− Eπ[G] + γN (Eπt

[ϕ(ht+N )]− Eπ[ϕ(ht+N )]).

If one side of Equation 25 is nonnegative, the other side must also be nonnegative, thus:

Eπt
[G′

t] ≥ Eπ[G
′
t] ⇐⇒ Eπt

[G] ≥ Eπ[G]− γN (Eπt
[ϕ(ht+N )]− Eπ[ϕ(ht+N )]) (26)

Because πt was output by the RL algorithm, ϕ(ht+N ) is part of its sequence of ϕ that has al-
ready converged. So Lemma A.2 gives us Eπt [ϕ(ht+N )] < ϕ(ht) + ϵ. Meanwhile, because ϕ is
a monotone increasing function of time, we have Eπ[ϕ(ht+N )] ≥ ϕ(ht) for all π. Applying these
inequalities to the lower bound in 26, we can bound how much worse πt can be than any other policy
π if πt achieves higher shaped return:

(27)Eπt
[G′

t] ≥ Eπ[G
′
t] ⇐⇒ Eπt

[G] ≥ Eπ[G]− γN (Eπt
[ϕ(ht+N )]− Eπ[ϕ(ht+N )])

> Eπ[G]− γN (ϕ(ht) + ϵ− ϕ(ht))

≥ Eπ[G]− ϵ,

where at the final line we used the fact that γ ≤ 1. Thus, if the RL algorithm arrives at π∗′

t that
maximizes return shaped by a bounded monotone increasing BAMPF at time t > H , then π∗′

t must
also approximately maximize return in the underlying MDP, i.e.,

∀π : Eπ∗′
t
[G′

t] ≥ Eπ[G
′
t] =⇒ ∀π : Eπ∗′

t
[G] > Eπ[G]− ϵ. (28)

We finally plug in the actual optimal policy for the original MDP π∗ in the right hand side to get our
approximate-optimality-preserving result:

Eπ∗′
t
[G] > Eπ∗ [G]− ϵ. (29)

Remark. This proof relies on all episodes being the same length. To handle MDPs with variable
episode lengths, when an episode ends early all remaining BAMPF rewards that would have been
added from the rest of the episode should be added at the terminating step. See Appendix H for an
example.
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B EXAMPLES OF PSEUDO-REWARD VALUE SIGNALLING

B.1 PURE VOO SIGNAL

These pseudo-rewards help when V̄ ∗
O has a large influence on Q̄∗ but the RL algorithm’s (implicit

or explicit) value estimate is misaligned with it. This often happens when there is significant prior
information of the relative values of reaching states in M , which the algorithm is not initialized with,
thus the pseudo-reward is often quite task or domain-specific. E.g., RL agents may underestimate
value near the goal before first discovering the goal reward, or overestimate it near the icy cliff edge
before first experiencing a fall. Attractive or repulsive V̄ ∗

O signal can correct RL algorithms that
under or overestimate VOO, respectively.

B.1.1 ATTRACTIVE VOO SIGNAL

These terms help where the RL agent underestimates the value of getting to certain states, by re-
warding it for reaching them. A common example is goal proximity-based reward shaping (Ng et al.,
1999; Ghosh et al., 2018; Lee et al., 2021; Ma et al., 2022); which rewards each step of progress
towards a goal in problems where the true reward is only at the goal itself. The goal location varies
across MDPs in p(M) but is fully observable from the initial state, therefore going towards it yields
no information and thus does not increase V̄ ∗

I , but is Bayes-optimal because it maximizes V̄ ∗
O. An

RL algorithm that is not initialized with this prior information would not prioritize going towards
the goal over any other state, and would have to discover the sparse reward there through blind trial
and error. Shaping rewards compensate for this, incentivizing behavior that approaches the goal.

Another common example with the same underlying mechanism is rewarding points scored in
points-based-victory games like Pong. But if winning is not purely points-based, this is not nec-
essarily good signal for V̄ ∗

O; e.g., Clark & Amodei (2016) found an agent learned to crash itself to
maximize points, when the true goal was to place first in the race.

B.1.2 REPULSIVE VOO SIGNAL

Psuedo-rewards based on repulsive V̄ ∗
O signal help when the agent would take suboptimal actions

because it overestimates the Value of Opportunity, again due to missing domain knowledge, by
penalizing behavior going to states with lower V̄ ∗

O. Examples are negative surprise or information-
cost-based IM (Berseth et al., 2019; Eysenbach et al., 2021) which give negative rewards based on
the unpredictability of the states and transitions experienced. This is beneficial, assuming:

1. Unpredictable situations are undesirable in that domain, e.g. for driverless cars where it is
dangerous to drive near other erratic vehicles, or robotic surgery, where it is dangerous to
use unreliable surgical techniques with highly variable outcomes.

2. The RL algorithm does not apriori expect danger in unpredictable states and thus overesti-
mates the V̄O of exploring them; it could learn to avoid them by getting into accidents and
receiving negative task rewards, but that would be very costly in the real world.

These rewards help RL algorithms by decreasing their estimates of the value of going to these
dangerous states, better aligning them with their true value Q̄∗, so they return to safety before getting
into accidents.

More formally, negative surprise works under the assumption that on the distribution of trajectories
the agent actually experiences, surprise almost always correlates well with negative outcomes. An
example where this assumption wouldn’t hold is if Times Square were a popular and safe destination
for the driverless taxi, but the unpredictability of all the adverts were included in the surprise penalty.
This measure of surprise correlates poorly with negative outcomes in trajectories through Times
Square, so it would increase regret by making the agent unnecessarily reroute around it. In this
problem, the signal for V̄ ∗

O must be more specific–only penalizing surprise with respect to things
that could cause accidents, such as the positions of other vehicles.
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B.2 ATTRACTIVE VOI SIGNAL

Many intrinsic motivation terms are intended to reward behavior that gains valuable experience,
reaching states with more valuable information in ht. These are helpful for RL algorithms which
don’t account for the utility of gathering information (e.g., see section C), in problems containing
information of significant value that is not immediately rewarding to collect. Note that different
types of information are valuable in different types of problems, i.e., for different p(M), and this
determines which form of IM provides the most helpful signal for V̄ ∗

I .

• Prediction Error-based IM (Schmidhuber, 1991; Pathak et al., 2017) rewards experiences
that are predicted poorly by models trained on ht. This helps when unpredictability given
ht is good signal for the value of the information gained from the observation- thus, for
IM based on dynamics models there must be minimal stochasticity (stochastic transitions
are always unpredictable but yield no information) and in general most information must
be task-relevant (so the information gained has value).

• Count-based IM (Bellemare et al., 2016; Burda et al., 2018; Lobel et al., 2023) provide a
reward bonus for visiting states that have been visited less frequently, or in the case of large
continuous state spaces pseudo-counts are used to group similar states into the same bucket.
For example, Burda et al. (2018) observed dynamics prediction error failing in the ‘noisy
TV’ problem, where a TV that changes channels randomly maximizes the intrinsic reward
despite providing no information. This motivated their design of RND, which only predicts
features of the current state as an estimate for how many times that state, or similar states,
had already been visited. However, these types of IM can be counterproductive when the
novelty of a state is a poor signal for how valuable it is to explore it, e.g. an “infinite TV
problem” where the TV has infinite unique channels that provide useless information.

• Entropy bonus IM is proportional to the entropy of the MDP policy’s action distribution
(Szepesvári, 2010; Mnih, 2016; Haarnoja et al., 2017). This increases the estimated return
of more stochastic π, so it can be understood as adding in the value of exploring a wider
range of actions. This helps when RL algorithms get stuck in local maxima, but breaks
down if the scale of the intrinsic rewards is too high, because overly random behavior is
unlikely to reach interesting states, or could even be dangerous, e.g., if the increase in
entropy when the robot overextends its joints outweighed the negative extrinsic rewards
from the damage that does, it could encourage the robot to destroy itself. Therefore it must
be carefully balanced with the scale and frequency of the extrinsic rewards (Hafner et al.,
2023).

• Mutual Information-based skill discovery (Sharma et al., 2019; Warde-Farley et al., 2018;
Eysenbach et al., 2018) rewards the agent based on the mutual information between the
skills (temporally correlated sequences of actions) it learns and the resulting states. The
higher this mutual information, the more diverse and controllable the skill set. It’s a good
signal for V̄ ∗

I in RL problems where this is a good measure for how useful the set of skills
is for maximizing return, which also depends on the choice of representation used for the
skills and states.

• Information Gain is a measure of the amount of information gained about the environment
(Lindley, 1956). Info gain-based IM has led to successful exploration in RL (Sekar et al.,
2020; Houthooft et al., 2016; Shyam et al., 2019); it is a good signal for V̄ ∗

I in problems
where all information about the MDP is useful for maximizing return. But it could be a
distraction in environments with many irrelevant dynamics to learn about, since the quantity
of information gained would not always align with the value of that information.

B.3 COMPOSITE SIGNAL

Finally, we analyze more complex pseudo-rewards that signal a combination of both V̄ ∗
I and V̄ ∗

O.

B.3.1 ATTRACTIVE VOI, REPULSIVE VOO

The Empowerment of an agent is typically measured as the mutual information I(s′; a|s) between
its actions and their effect on the environment (Klyubin et al., 2005; Salge et al., 2014a; Gregor
et al., 2016). In prior work, this was generally understood as motivating agents to move to the states
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of “maximum influence” (Salge et al., 2014b; Mohamed & Jimenez Rezende, 2015), e.g., the center
of the room, or the junction of intersecting hallways. However, this does not always explain the full
story. Mohamed & Jimenez Rezende (2015) found that in problems with predators chasing or lava
flowing toward the agent, Empowerment motivates it to barricade itself from the lava or avoid the
predators- even when this requires holing up in a tiny corner of the room. We can understand this
by decomposing Empowerment into the sum of attractive V̄I and repulsive V̄O signals:

I(s′; a|s) = H(a|s)−H(a|s, s′), (30)

where we can view H(a|s) as adding attractive signal for V̄ ∗
I , similar to Entropy Regularization,

encouraging the exploration of different actions such as the barricade-placing action. Meanwhile
−H(a|s, s′) adds repulsive signal for V̄ ∗

O, similar to Negative Surprise, signalling that states where
the agent is caught or engulfed (which results in the agent’s actions ceasing to have any predictable
effect on the environment) have low value, and thus should be avoided. Empowerment intrinsic
motivation has mostly been tested in small finite environments, but this decomposition suggests its
potential for lifelong learning in open-ended worlds, where it can encourage the exploration of a
wide range of possibilities while staying out of danger.

Similar to Empowerment is Information Capture (Rhinehart et al., 2021), where the intrinsic re-
ward is based on the expected entropy of the belief distribution (encouraging exploration) minus the
entropy of the latent state visitation distribution (which is low when the agent has ”stabilized” the
environment by controlling it and creating a niche for itself).

B.3.2 ATTRACTIVE VOI AND ATTRACTIVE VOO

Another example of a composite value signal is pseudo-rewards based on the principle of optimism
in the face of uncertainty, e.g. Sorg et al. (2012); Qian et al. (2019). Rather than just rewarding novel
experiences, they aim to reward actions where there is a high upper confidence bound on the possible
value they could lead to. Thus, these types of pseudo-rewards encourage gaining information about
the value of states and actions (signalling VOI), and/or reaching more valuable states (signalling
VOO).

Reward bonuses for completing necessary subtasks for the first time, e.g. the first time successfully
chopping wood as used in Crafter (Hafner, 2021), is one more example of a composite value signal.
It adds both the value of discovering how to complete the subtask (because more wood will be
needed) and the value of being one step closer to the ultimate objective of mining the diamond (one
less woodblock needed to build a pick-axe). This adds the prior knowledge that in all worlds under
p(M), wood is a prerequisite for diamonds, and that it is valuable to learn how to gather new types
of resources.

C CERTAINTY-EQUIVALENT RL ALGORITHMS UNDERESTIMATE THE
VALUE OF INFORMATION

Section 3.2 showed how we can understand many IM terms as encouraging and directing exploration
through encoding the value of the resulting information. This type of IM is so popular because many
commonly used RL algorithms under-estimate the value of information; we now introduce a model
of these algorithms to formalize this within the BAMDP framework. Many RL algorithms, from
policy-based methods like policy gradient (Sutton et al., 1999; Schulman et al., 2017) to value-based
methods like Q-Learning (Watkins, 1989; Mnih et al., 2015), avoid the intractability of belief-space
planning by acting as if beliefs are fixed. We formalize this objective with the Certainty-Equivalent4
RL algorithm π̄c.

Definition C.1 (Certainty-Equivalent RL Algorithm). At each step, the Certainty-Equivalent Algo-
rithm π̄c follows the MDP policy maximizing its estimated expected return under current beliefs:5

π̄c(⟨st, ht⟩) ∈ argmaxπ Ebc(ht)[V
π(st)], (31)

4The idea of certainty equivalent solutions goes back to Simon (1956) and was also described by Duff
(2002) as the best reactive policy with respect to π̄c’s beliefs

5Note that this is focused on exploitation- other than IM, ad-hoc methods such as epsilon-greedy or Boltz-
mann exploration may also be used to encourage exploration (Kaelbling et al., 1996).
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where bc(·) denotes how π̄c interprets its experience, which could be anything from a distribution
over world models maintained by updating a prior, to a point estimate of Q∗ maintained by training a
randomly initialized neural net on batches sampled from ht (Mnih et al., 2015). For ease of notation
we use πt and at interchangeably, since πt is only used at step t to output at.

For example, policy gradient algorithms like Reinforce sample actions from an MDP policy πθ, i.e.,
π̄Reinforce(⟨st, ht⟩) = πθ(st), where πθ is learnt by gradient updates towards maximizing the ex-
pected returns R(τ) of the trajectories τ that it generates, i.e. J(θ) = Eτ∼πθ

[R(τ)]. The algorithm
estimates J(θ) from environment interactions so far, i.e. ht, so Ĵ(θ) = Ebc(ht)[Eτ∼πθ

[R(τ)]] where
bc(ht) is concentrated on a point estimate of J(θ). If, as a model, we assume that policy gradient
were to maximize J(θ) between each interaction, then we find that it matches the behavior of π̄c:

argmaxθ Ĵ(θ) = argmaxθ Ebc(ht)[Eτ∼πθ
[R(τ)]] = argmaxπ Ebc(ht)[V

π(s)]. (32)

The Certainty-Equivalent algorithm effectively estimates the Q value as:

ˆ̄Q(s̄t, a) = maxπ Ebc(ht)[R(st, a) + γV π(st+1)]. (33)

Comparing this to the optimal value Q̄∗(s̄t, a) = Ep(M |ht)[R(st, a) + γV̄ ∗(⟨st+1, ht+1⟩)], we see
that, even assuming accurate beliefs bc(ht) = p(M |ht), the Certainty-Equivalent algorithm still
misses value from the ability to learn from the information in h, because with V π(st+1) it assumes
it would still follow the same π from step t+1, when in reality it would have updated it with the latest
observation. E.g., if sb in Fig. 2 was observed to be empty, π̄c would update π to return to sw forever,
resulting in higher return than if it kept following the same π back to sb (see section I.2 for the
calculations). Thus, adding pseudo-rewards signalling VOI can compensate for this underestimation,
causing the algorithm to predict higher value for behavior leading to valuable information.

D CURIOSITY CASE STUDY

D.1 BACKGROUND

The Curiosity intrinsic reward introduced by Pathak et al. (2017) is equal to the following error:

F (ht) =
η

2
||ê(st+1;ht)− e(st+1;ht)||22, (34)

where ê(st+1;ht) is the output of a forward dynamics model, and e(st+1;ht) is a state encoder.

The encoder extracts features of the state that can be influenced by the agent, by minimizing the
error of a learnt inverse dynamics model i that predicts the action from the encoded state transition:

ât = i(e(st;ht), e(st+1;ht);ht). (35)

The forward dynamics model d predicts the encoded next state given the current action and encoded
state:

ê(st+1;ht) = d(e(st;ht), at;ht), (36)
and is continually trained to minimize the error of its prediction (as calculated in Equation 34).
Curiosity uses this error to estimate the novelty of (and hence the added VOI from observing) states
and transitions, assuming the error will decrease for the same observations as d is updated. The
Noisy TV problem occurs when the environment contains a screen that flips to random images
every time a particular action is taken: watching TV doesn’t increase VOI, but d’s error is highest
and never decreases while watching. Thus, an RL algorithm trained with Curiosity is incentivized
to produce a reward-hacking policy that maximizes the total shaped return by watching TV.

Burda et al. (2018) mitigate this issue with Random Network Distillation (RND) by predicting fea-
tures of the current state rather than the next state. This would not get distracted by noisy transitions
such as the TV flipping randomly between a few preset images, but it could get trapped forever in
front of a TV that incremented through an infinite set of novel images. It could also neglect parts of
the environment with novel dynamics, if the transitions are between less novel-looking states.

Curiosity’s encoder and dynamics models are all trained on the history, so it could be converted
to a BAMDP potential-based shaping function by directly using the error as the potential function
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ϕ̄(ht) = ||ê(st+1;ht)− e(st+1;ht)||22. Though this would be fine for meta-RL, it wouldn’t preserve
optimality for RL because it is not monotonic. E.g., in the Noisy TV problem the prediction error
always increases when watching TV and decreases upon looking away, because the prediction error
of the totally random next image on the TV is higher than the error from exploring the rest of the
environment.

D.2 POTENTIAL-BASED SHAPING FUNCTION + BOUNDED MONOTONE BAMPF
CONVERSION

We could try to capture the same type of dynamics prediction-based IM of Curiosity while pre-
serving optimality, by splitting it into a potential-based shaping function plus a bounded monotone
BAMPF. The PBSF can capture the part that is non-monotone: the novelty of the current state, while
the BAMPF encourages observing novel dynamics that improve the dynamics model, by using its
overall accuracy as the potential.

Rewarding Novel States: We could use a PBSF with ϕ(s) equal to the error of a fixed model f̂ ’s
prediction of fixed features f of s (similar to RND), encouraging visiting unfamiliar states:

ϕ(st) = ||f̂(st)− f(st)||22. (37)

Even if this error were higher at the TV, Ng et al. (1999)’s result guarantees that a policy can’t
maximize its total shaped return by staying there.

Rewarding Novel Dynamics: we could signal the total VOI at ht (see Definition 3.1) with the reduc-
tion in prediction error of the forward dynamics model compared to its initial error at h0, which we
call Accuracy for brevity. Setting ϕ(ht) to this would encourage the agent to seek novel transitions
to improve its predictions. We calculate the errors over a fixed set of transitions T , so that Accuracy
is bounded and should generally be expected to monotonically increase:

Acc(ht) :=
1

|T |
∑

(s,a,s′)∈T
||ê(s′;h0)− e(s′;h0)||22−||ê(s′;ht)− e(s′;ht)||22 (38)

To guarantee that it monotonically increases, we can set ϕ̄(h0) = Acc(h0) and make subsequent
ϕ̄(ht) the exponentially smoothed maximum accuracy so far:

ϕ̄(ht+1) = 0.5ϕ̄(ht) + 0.5max
(
ϕ̄(ht), Acc(ht+1)

)
. (39)

Even if TV-watching transitions were in set T , ϕ̄(hh) could not increase indefinitely by any signif-
icant amount while watching TV, so the agent would not be incentivized to watch TV forever. The
total intrinsic reward would simply be the sum of the PBSF and BAMPF:

γ(ϕ(st+1) + ϕ̄(ht+1))− (ϕ(st) + ϕ̄(ht)). (40)

To prevent stagnation, every few batches we could update f̂ (e.g., by training it to minimize its
error over states visited in the new batches), and we could refresh T (e.g., with transitions that the
dynamics model predicted the most poorly in the new batches). What matters for avoiding reward
hacking is that the RL agent’s choice of policy π for the next episode can’t affect f̂ within the episode
(so ϕ(s) remains a function of only the current MDP state), and that T is fixed for enough episodes
for ϕ̄(h) to converge.

D.3 NUMERICAL DEMONSTRATION

We concretely demonstrate the conversion of Curiosity (Pathak et al., 2017) to an optimality-
preserving PBSF + bounded monotone increasing BAMPF with a simple numerical experiment.
We recreate the Noisy TV problem with the MDP shown in Fig. 7, with three available actions: left,
right, and watch TV. The left and right actions deterministically transport the agent into the adjacent
state in that direction (looping back to S0 and S7 when no such state exists). The watch TV action
has no effect in all states except S1 and S2, where it randomly transports the agent to either S1 or
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S2

S3 S4 S5 S6 S7

p=0.5

r=1

p=0.5

p=0.5

Figure 7: A discrete MDP recreating the Noisy TV Problem. Transitions are deterministic and
rewards are 0 except where labeled explicitly. Taking the watch TV action from state S1 or S2
results in a stochastic transition to either state (red arrows).

S2 with equal probability. Thus, randomly flipping between S1 and S2 corresponds to watching a
Noisy TV. The initial state is S0 and the only reward is obtained at S7.

No state feature encoding is needed for this small discrete state space, so we learn a forward dynam-
ics model d(st, at;ht) directly on the states based on all the observed transition counts:

ŝt+1;ht
= d(st, at;ht) := argmax

s′
Nht

(s, a, s′), (41)

where Nht
(s, a, s′) denotes the number of (s, a, s′) transitions observed so far. After observing any

transition only once this model will predict it correctly- except for watching TV at states S1 or S2,
where it will have a 50% chance of being correct no matter how many more observations it makes.

The states are represented as integers between 0 and 7, so we calculate the prediction error by taking
the absolute distance. Thus, our Curiosity intrinsic reward is:

F (ht) =
η

2
|ŝt+1;ht

− st+1|. (42)

Training a tabular ϵ-greedy Q-learning agent (episode length 8, γ = 0.95), we find that with η ≥ 4,
the agent reliably converges on a policy that watches TV rather than collecting the rewards at S7.
Fig. 8a (purple curve) shows it achieves almost no real return, while Fig. 8b shows it achieves high
shaped return, which must be almost entirely from the Curiosity rewards. Fig. 8d shows it estimates
lower value for going right at state S3 (exploring further from S0) than left (back to the TV).

To convert Curiosity into a form that preserves optimality, we split it into a PBSF with ϕ(s) equal
to the error of a fixed model’s prediction of features of s (similar to RND (Burda et al., 2018)) to
encourage visiting more novel states, plus a BAMPF with bounded monotone ϕ̄(h) equal to the
maximum accuracy of the dynamics model on a fixed set of transitions, to encourage observing
more novel dynamics.

For the PBSF component, we again use the identity function as the feature encoding of the state
f(st) = st, and for our fixed prediction model we use the following:

f̂(st) =


f(st), if st = 0

f(st)− 1, if 0 < st < 4

f(st)− 3, otherwise
(43)

and again use the absolute distance for the error, so our PBSF potential is ϕ(st) = |f̂(st)− f(st)|.
Here f̂ represents a model that is already very “familiar” with the initial state S0, somewhat familiar
(but still making an error) with the closest states S1, S2, S3, but equally unfamiliar (i.e., making the
same large error) with all other states.

For the bounded monotone BAMPF component, we used fixed set T of transitions from states
S1-S5, including multiple TV-watching transitions. This represents a possible set of less well-
predicted transitions collected in the intermediate stages of exploration. Again skipping the encoding
and using absolute distance, we calculate Accuracy with d (the same dynamics model used for
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(a) Episodic real return over training.
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(b) Episodic shaped return.

0 25 50 75 100 125 150 175 200
Episode

0.5

1.0

1.5

2.0

2.5

3.0

Sm
oo

th
ed

 M
ax

 P
re

di
ct

io
n 

Ac
cu

ra
cy

Pseudo-Reward Type
Curiosity PBS + BAMPF
BAMPF
PBS
Curiosity
None

(c) Exponentially smoothed maximum prediction
accuracy.
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(d) Estimated Q(S3, right)−Q(S3, left).

Figure 8: Curiosity intrinsic rewards (purple) cause the agent to learn a reward-hacking policy that
maximizes its shaped return by watching TV, at the expense of the true return. Meanwhile, convert-
ing Curiosity into the form of a potential-based shaping function plus a bounded monotone BAMPF
(green) improves exploration without resulting in a suboptimal policy. Each component individually
(yellow and blue) also helps learning and preserves optimality. The mean and standard error over 20
training runs is plotted for each condition.

Curiosity), as:

Acc(ht) :=
1

|T |
∑

(s,a,s′)∈T
|d(s, a;h0)− s′|−|d(s, a;ht)− s′|. (44)

We finally set ϕ̄(h) to the exponentially smoothed maximum accuracy so far following Equation 39;
Fig. 8c shows how it evolves over training. We scale the BAMPF by 5 to get it into the same order
of magnitude as the extrinsic reward function.

Fig. 8a shows how using this converted form of Curiosity (green curve) helped the Q learning agent
discover how to reach the rewards at S7 more quickly, without incentivizing a suboptimal policy.
Each component used individually (blue and yellow curves) also helps learning and preserves opti-
mality, as expected. Fig. 8d shows how they increase the Q learning agent’s estimate of the value
of exploring further (going right) from state S3 long before any real rewards have been received,
whereas without any pseudo-rewards (grey curve) it doesn’t estimate that exploring further has any
more value than going back until it actually starts reliably achieving the real rewards at S7.

Thus, we have converted the problematic curiosity IM term to a pseudo-reward with the same ex-
ploratory benefits, but without the costs of reward-hacking.

E MORE RELATED WORK

Value of Information The classical notion of the value of information originates in decision theory
(Howard, 1966). Early work in metareasoning for tree search considers the utility of the information
resulting from a computation (Russell & Wefald, 1989; 1991). Dearden et al. (1998) first applied
the concept to RL, computing an approximation to the value of information to help select the Bayes-
optimal action. They upper bound the “myopic value of information” for exploring action a by the
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expected Value of Perfect Information, i.e. the expected gain in return due to learning the true value
of the underlying MDP’s Q∗(s, a) given prior beliefs. Chalkiadakis & Boutilier (2003) described
BAMDP Q values as including the value of information—defined as the value of the change in
beliefs quantified by its impact on future decisions—but they do not derive an expression for it.
Ryzhov & Powell (2011) define the value of information of pulling a bandit arm as the expected
resulting increase in the believed mean reward of the best arm, and derive an exact expression for
bandits with exponentially distributed rewards.

Reward Shaping and Meta-RL Meta-Learning has been used to learn intrinsic motivation and
reward shaping functions for RL (Zheng et al., 2018; Zou et al., 2019; Alet et al., 2020; Li et al.,
2021; Zou et al., 2021), but so far few existing works use reward shaping or intrinsic motivation to
guide the meta-learner itself (Zhang et al., 2021) and the preservation of optimal RL algorithms has
not previously been investigated.

Learning Awareness The idea of planning through learning has appeared across RL such as in
Bayesian RL and meta-RL (Thrun & Pratt, 1998; Duan et al., 2016; Finn et al., 2017; Mikulik et al.,
2020; Jackson et al., 2024) and multi-agent RL (Foerster et al., 2017; Cooijmans et al., 2023).

F LEVER BAMPF DETAILS

We used the DQN implementation from Allen et al. (2021), with the default hyperparameters except
n_steps_init=20 and decay_period=100 due to the shorter time horizon used. This agent
uses epsilon-greedy exploration, with ϵ = 1 for the first 20 steps, decaying linearly to 0.05 over the
next 100 steps (according to the schedule 1 − 0.95 ∗min(0.01(t − 20), 1.0)). The None condition
with no pseudo-rewards relied purely on this epsilon-greedy behavior for exploration. In this lifelong
setting, the network is updated at every step with a batch of transitions from the full trajectory so far.
The value of γ used by both DQN and to define the BAMPF was 0.9. The Entropy Bonus intrinsic
reward was calculated as −10H(A) where H(A) is the entropy of the categorical distribution of the
last 10 lever pulls.

G BERNOULLI BANDITS META-RL DETAILS

We run the Bernoulli Bandits environment and A2C implementation in Gymnax (Lange, 2022a),
keeping all the default hyperparameter values except for changing the number of pulls in an episode
to 10. The discount factor used for the BAMPF is 0.8, matching the discount factor used by A2C.

Following Wang et al. (2016), we define the regret of an RL algorithm as
∑T

t=1 µ
∗ − µat

=∑10
t=1 0.9−µat

, where µ∗ is the expected reward of the optimal arm and µat
is the expected reward

of the arm chosen at time t, so always pulling the optimal arm yields regret 0, and only pulling it
half of the time (performance at random chance) has regret 4.

No rescaling was performed on either the BAMPF or the non-BAMPF pseudo-reward functions,
since they were already of the same order of magnitude as the extrinsic rewards.

To handle the finite time horizon, we followed the approach of Grześ (2017) and set ϕ(h10) = 0
at the final (10th) step of each RL algorithm’s trajectory, which ensures that the ϕ still sum to a
constant over the trajectory to preserve optimality, and intuitively represents the fact that the final
BAMDP state has no value, since the agent cannot collect any more rewards from it.

H MOUNTAIN CAR DETAILS

We run Mountain Car implemented in Gymnax (Lange, 2022a) using the PPO implementation
from (Lange, 2022b), keeping all the default hyperparameter settings. The MountainCar environ-
ment itself has discount factor 1 so the reported return is simply the sum of the rewards in each
episode, but the PPO algorithm uses discount factor γ = 0.99 so this was the discount used for both
the potential-based shaping and the BAMPF. To handle the finite episode lengths, we again follow
the approach of Grześ (2017) for the potential-based shaping, setting ϕ(st) = 0 when st is the last
step in an episode, ensuring that it preserves optimality within each episode. For the BAMPF, at
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Figure 9: The (undiscounted) shaped episodic return for PPO trained with each type of pseudo-
reward (mean and standard error of 10 seeds).

the last step in each episode we multiply ϕ(ht) by γ200−te (where te is the within-episode time-
step and the maximum episode length is 200). This corresponds to adding up all the remaining
BAMPF rewards that would have been added between that time-step and the final step if the episode
hadn’t been truncated (where in the remaining steps the history remains frozen at ht since no new
experiences are collected). Our formula for exponential smoothing (α = 0.5) on the maximum
displacement is:

Mt = 0.5max(Mt−1, |−0.5− sxt|) + 0.5Mt−1, (45)
where Mt denotes the exponentially smoothed maximum displacement at training step t, sxt is the
x position of the car at time t and −0.5 is the x position of the lowest point between the two hills.
Note that this is still bounded and monotone increasing after smoothing. Our PPO implementation
runs 16 copies of the environment in parallel; we maintain a separate Mt for each copy (whenever
an episode ends, Mt is carried over to the next episode in that environment copy) and plotted the
mean over the 16 values of Mt in Fig. 5c.

For each form of pseudo-reward, we scale it by a constant to be on the same order of magnitude as
the environment rewards. For the BAMPF and PBS, we scaled it by 10, and for Displacement (non-
PBS version) we scaled it by 4. Note that whether Displacement preserves optimality is sensitive to
this scaling factor, but the BAMPF version preserves optimality no matter the scale.

I CATERPILLAR PROBLEM ANALYSIS

I.1 BAYES-OPTIMAL POLICY VALUES

In section 2.3 we describe the behavior for the Bayes-optimal algorithm: for large enough γ, π̄∗

should check sb first, then stay there forever if it find food, or else return to sw forever. Here we
work through the math with γ = 0.95

From s̄0, the optimal RL algorithm π̄∗ would take the action maximizing expected return under its
knowledge h0. If π̄∗ were to stay and eat at sw, then h1 would contain no more information than
h0, so π̄∗ would make the same choice again and eat forever. In that case, it would get a return of
21
1−γ = 420.

If π̄∗ were instead to first go to sb and try to eat there, its expected return would be:

−5 + γE[Q̄∗(⟨sb, h1⟩, eat)], (46)

where the first term is the energy cost of traveling. Now to calculate the second term we take an
expectation over p(M), i.e., take the weighted sum of the returns of an optimal RL algorithm in the
presence and absence of food at sb:

E[Q̄∗(⟨sb, h1⟩, eat)] = 0.1
150

1− γ
+ 0.9(0− 5γ + γ2 21

1− γ
) = 637, (47)

where the first term is the return if it finds food and thus eats at sb forever, and the second is the
return if it finds no food and then goes back to eat at sw forever. Plugging this into 46, we get a total
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expected return of 600. Since this is greater than 420, the Bayes-optimal RL algorithm π̄∗ would
follow this strategy.

I.2 CERTAINTY-EQUIVALENT ALGORITHM VALUE CALCULATIONS

In section C we describe how the Certainty-Equivalent RL algorithm would act in the caterpillar
MDP example. Here we go through the full calculations.

Algorithm π̄c, assuming it had the correct prior p(M), would estimate the values of following vari-
ous π as follows:

• πb goes to the bush and stays there: Ep(M)[V
πb(sw)] = −5 + 0.1× 150 γ

1−γ = 280

• πalt alternates between the plants: Ep(M)[V
πalt(sw)] = −5 1

1−γ = −100

• πw eats at the weed forever: Ep(M)[V
πw(sw)] = 21 1

1−γ = 420; and it would go from sb
so Ep(M)[V

πw(sb)] = −5 + γ420 = 394

• πeat always eats wherever it is, so Ep(M)[V
πeat(sw)] = 21 1

1−γ = 420 and
Ep(M)[V

πeat(sb)] = 0.1× 150 1
1−γ = 300

Because πw gets the highest estimated value, π̄c would choose to follow it, thus never learning about
the bush and staying at the weed forever.

As an example of π̄c underestimating its own value, take its estimate of its value of eating from
⟨sb, h0⟩, i.e. if it were at the bush with no additional information. It assumes it would follow the
best MDP policy under current information at the next step no matter what it found at sb, which is
still πw, giving estimate:

ˆ̄Qc(⟨sb, h0⟩, eat) = Ep(M)[R(sw, eat) + γV πw(sb)] = 0.1× 150 + 394γ = 369 (48)

However, this significantly underestimates the value. If π̄c ate at sb and found no food, it would
update to πw to go and eat at sw, and if it did find food it would update to a π that continues eating
at sb. This corresponds to a much higher true value:

Q̄c(⟨sb, h0⟩, eat) = 0.1
150

1− γ
+ 0.9(−5γ +

21γ2

1− γ
)) = 637 (49)
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