
Benefits of Assistance over Reward Learning

Rohin Shah ∗† Pedro Freire † Neel Alex † Rachel Freedman †

Dmitrii Krasheninnikov † Lawrence Chan † Michael Dennis †

Pieter Abbeel † Anca Dragan † Stuart Russell †

Abstract

Much recent work has focused on how an agent can learn what to do from human
feedback, leading to two major paradigms. The first paradigm is reward learning,
in which the agent learns a reward model through human feedback that is provided
externally from the environment. The second is assistance, in which the human is
modeled as a part of the environment, and the true reward function is modeled as a
latent variable in the environment that the agent may make inferences about. The
key difference between the two paradigms is that in the reward learning paradigm,
by construction there is a separation between reward learning and control using the
learned reward. In contrast, in assistance these functions are performed as needed
by a single policy. By merging reward learning and control, assistive agents can
reason about the impact of control actions on reward learning, leading to several
advantages over agents based on reward learning. We illustrate these advantages in
simple environments by showing desirable qualitative behaviors of assistive agents
that cannot be found by agents based on reward learning.

1 Introduction

Traditional computer programs are instructions on how to perform a particular task: to compute a
factorial, we tell the machine to enumerate the integers from 1 to n, and multiply them together.
However, we do not know how to mechanically perform more challenging tasks like translation. The
field of artificial intelligence raises the level of abstraction so that we simply specify what the task is,
and let the machine to figure out how to do it. To get good translations, we present pairs of sentences
which provide examples of translation, and let the machine determine how to translate well.

As we apply our techniques to increasingly complex tasks, even specifying the task becomes difficult.
Several criteria that we might have thought were part of a specification of fairness turn out to be
provably impossible to simultaneously satisfy [34, 12, 16]. When we specify reward functions for
reinforcement learning by hand, the resulting agents often “game” their reward function by finding
solutions that technically achieve high reward without doing what the designer intended [36, 35, 14].
In even more complex environments, we need to specify what not to change [41]; failure to do so
can lead to negative side effects [2]. Furthermore, powerful agents with poor specifications may
produce undesirable behavior, due to instrumental subgoals [8, 46] such as resisting shutdown and
accumulating resources and power [53].

A natural solution is to once again raise the level of abstraction, and create an agent that is uncertain
about the objective and infers it from human feedback, rather than directly specifying some particular

∗Contact author, rohinmshah@berkeley.edu
†Center for Human-Compatible AI, UC Berkeley

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

What is the reward

of ?

All pies need ,

let me make it

If I use the to make , there won’t be any left

for and . I’ll wait for more information.

Learning about reward

Making robust plans Preserving option value when possible

+

+

I won’t find out which pie is preferable before

Alice gets very hungry, so I’ll make .

Guessing when feedback is unavailable

+

Figure 1: R must cook a pie for H , by placing flour on the plate to make the pie dough, filling it with
either Apple, Blueberry, or Cherry filling, and finally baking it. However, R does not know which
filling H prefers, and H is not available for questions since she is doing something else. What should
R do in this situation?

task(s). Rather than using the current model of intelligent agents optimizing for their objectives, we
would now have beneficial agents optimizing for our objectives [49].

Reward learning [13, 61, 50, 57, 33] attempts to instantiate this by learning a reward model from
human feedback, and then using a control algorithm to optimize the learned reward. Crucially, the
control algorithm does not reason about the effects of the chosen actions on the reward learning
process, which is external to the environment.

In contrast, in the assistance paradigm [27, 23], the human H is modeled as part of the environment
and as having some latent goal that the agent R (for robot) does not know. The agent’s goal is to
maximize this (unknown) human goal. If the human decision function is known (though the goal is
not), this becomes a POMDP [23] that can be solved using existing algorithms. It is not required for
R to learn a reward model; nonetheless it is usually instrumentally useful to do so.

Our key insight is that by having a single control policy rather than separate reward learning and
control modules, the action selection can take into account the reward learning process. This gives
assistive agents a significant advantage over reward learning agents, which cannot perform similar
reasoning.

Consider for example the kitchen environment illustrated in Figure 1, in which R must bake a pie for
H . R is uncertain about which type of pie H prefers to have, and currently H is at work and cannot
answer R’s questions. An assistive R can make the pie crust, but wait to ask H about her preferences
over the filling (Section 4.1). R may never clarify all of H’s preferences: for example, R only needs
to know how to dispose of food if it turns out that the ingredients have gone bad (Section 4.2). If
H will help with making the pie, R can allow H to disambiguate her desired pie by watching what
filling she chooses (Section 4.3). These behaviors cannot be expressed by a reward learning agent.

The rest of the paper is organized as follows. Section 2 explains background on reward learning and
assistance. Section 3 identifies two phase communicative assistance as the analog of reward learning,
and proves the two equivalent. Section 4 illustrates the benefits of unconstrained assistance, first by
removing the two phase restriction to illustrate planning based on anticipated future experiences, and
second by removing the communication restriction to allow R to learn from H’s physical actions.
Section 5 discusses remaining limitations and future work, while Section 6 concludes.

2 Background and Related Work

We introduce the key ideas behind reward learning and assistance.

2.1 POMDPs

A partially observable Markov decision process (POMDP) M = 〈S,A,Ω, O, T, r, P0, γ〉 con-
sists of a finite state space S, a finite action space A, a finite observation space Ω, an observation
function O : S → ∆(Ω) (where ∆(X) is the set of probability distributions over X), a transition
function T : S × A → ∆(S), a reward function r : S × A × S → R, an initial state distribution
P0 : ∆(S), and a discount rate γ ∈ (0, 1). We will write ot to signify the tth observation O(st). A
solution to the POMDP is given by a policy π : (O×A)∗×O → ∆(A) that maximizes the expected
sum of rewards ER(π) = Es0∼P0,at∼π(·|o0:t,a0:t−1),st+1∼T (·|st,at) [

∑∞
t=0 γ

tr(st, at, st+1)].

2

2.2 Reward learning

We consider two variants of reward learning: non-active reward learning, in which R must infer the
reward by observing H’s behavior, and active reward learning, in which R may choose particular
questions to ask H in order to get particular feedback.

A non-active reward learning problem P = 〈M\r, C, 〈Θ, rθ, PΘ〉, πH , k〉 contains a POMDP
without rewardM\r = 〈S,AR,ΩR, OR, T, P0, γ〉, and instead R has access to a parameterized
reward space 〈Θ, rθ, PΘ〉. R is able to learn about θ∗ by observing H make k different choices c,
each chosen from a set of potential choices C. In order for R to learn from the human’s choices,
it also assumes access to the human decision function πH(c | θ) that determines how the human
makes choices for different possible reward functions rθ. Common decision functions include perfect
optimality [44] and Boltzmann rationality [61]. There are many types of choices [33], including
demonstrations [44, 61, 24], comparisons [60, 57, 13, 50], corrections [5], the state of the world [51],
proxy rewards [29], natural language [25], etc.

A policy decision function f(c0:k−1) produces a policy πR after observing H’s choices. A solution
is a policy decision function f that maximizes expected reward Eθ∼PΘ,c0:k−1∼πH [ER(f(c0:k−1))].
Since c0:k−1 only serves to provide information toR, this is equivalent to choosing πR that maximizes
expected reward given the posterior over reward functions, that is Eθ∼P (θ|c0:k−1)

[
ER(πR)

]
.

An active reward learning problem P = 〈M\r,Q,C, 〈Θ, rθ, PΘ〉, πH , k〉 adds the ability forR to
ask H particular questions q ∈ Q in order to get more targeted feedback about θ. The human decision
function πH(c | q, θ) now depends on the question asked. A solution consists of a question policy
πRQ(qi | q0:i−1, c0:i−1) and a policy decision function f(q0:k−1, c0:k−1) that maximize expected
reward Eθ∼PΘ,q0:k−1∼πRQ,c0:k−1∼πH [ER(f(q0:k−1, c0:k−1))].

A typical algorithm [22, 18, 40, 13, 50, 60, 56] will compute and ask q ∈ Q that maximizes an active
learning criterion such as information gain [7] or volume removal [50]. Best results are achieved by
selecting questions with the highest value of information [15, 60, 42, 56], but these are usually much
more computationally expensive. R then finds a policy that maximizes expected reward under the
inferred distribution over θ, in order to approximately solve the original POMDP.

Note that a non-active reward learning problem is equivalent to an active reward learning problem
with only one question, since having just a single question means that R has no choice in what
feedback to get (see Appendix A.1 for proofs).

2.3 Assistance

The key idea of assistance is that helpful behaviors like reward learning are incentivized when
R does not know the true reward r and can only learn about it by observing human behavior.
Following Hadfield-Menell et al. [27]3, we define an assistance gameM as a tuple

M = 〈S, {AH , AR}, {ΩH ,ΩR}, {OH , OR}, T, PS , γ, 〈Θ, rθ, PΘ〉〉.
Here S is a finite set of states, AH a finite set of actions for H , ΩH a finite set of observations for
H , and OH : S → ∆(ΩH) an observation function for H (respectively AR,ΩR, OR for R). The
transition function T : S×AH ×AR → ∆(S) gives the probability over next states given the current
state and both actions. The initial state is sampled from PS ∈ ∆(S). Θ is a set of possible reward
function parameters θ which parameterize a class of reward functions rθ : S ×AH ×AR × S → R,
and Pθ is the distribution from which θ is sampled. γ ∈ (0, 1) is a discount factor.

As with POMDPs, policies can depend on history. Both H and R are able to observe each other’s
actions, and on a given timestep, R acts before H . We use τRt : (ΩR × AH × AR)t to denote
R’s observations until time t, and τHt for H’s observations; thus R’s policy can be written as
πR(aR | oRt , τRt−1), while H’s can be written as πH(aH | oHt , aRt τHt−1, θ). Note that unlike H , R
does not observe the reward parameter θ, and must infer θ much like it does the hidden state.

A fully observable assistance game is one in which both H and R can observe the full state. In
such cases, we omit ΩH ,ΩR, OH and OR.

3Relative to Hadfield-Menell et al. [27], our definition allows for partial observability and requires that the
initial distribution over S and Θ be independent. We also have H choose her action sequentially after R, rather
than simultaneously with R, in order to better parallel the reward learning setting.

3

Since we have not yet specified how H behaves, it is not clear what the agent should optimize for.
Should it be playing a Nash strategy or optimal strategy pair of the game, and if so, which one?
Should it use a non-equilibrium policy, since humans likely do not use equilibrium strategies? This
is a key hyperparameter in assistance games, as it determines the communication protocol for H
and R. For maximum generality, we can equip the assistance game with a policy-conditioned belief
B : ΠR → ∆(ΠH) over πH , which specifies how the human responds to the agent’s choice of
policy [30]. The agent’s goal is to maximize expected reward given this belief.

Prior work on assistance games [27, 38, 58] focuses on finding optimal strategy pairs. This corre-
sponds to a belief thatH will know and perfectly respond toR’s policy (see Appendix A.3). However,
since we want to compare to reward learning, we follow its assumptions and so assume that the
human policy πH is available. This corresponds to B(πR)(π̃H) = 1[π̃H = πH]. We define an
assistance problem P as a pair 〈M, πH〉 where πH is a human policy for the assistance gameM.
Note that πH depends on θ: we are effectively assuming that we know how H chooses how to behave
given a particular reward rθ.

Given an assistance problem, a robot policy πR induces a probability distribution over trajectories:
τ ∼ 〈s0, θ, π

H , πR〉, τ ∈ [S ×AH ×AR]∗. We denote the support of this distribution by Traj(πR).
The expected reward of a robot policy for 〈M, πH〉 is given by

ER(πR) = E
s0∼PS ,θ∼Pθ,τ∼〈s0,θ,πH ,πR〉

[∞∑
t=0

γtrθ(st, a
H
t , a

R
t , st+1)

]
.

A solution of 〈M, πH〉 is a robot policy that maximizes expected reward: πR = argmax
π̃R

ER(π̃R).

2.3.1 Solving assistance problems

Once the πH is given, H can be thought of as an aspect of the environment, and θ can be thought of
as a particularly useful piece of information for estimating how good actions are. This suggests that
we can reduce the assistance problem to an equivalent POMDP. Following Desai [19], the key idea is
to embed πH in the transition function T and embed θ in the state.

In theory, to embed potentially non-Markovian πH in T , we need to embed the entire history of
the trajectory in the state, but this leads to extremely large POMDPs. In our experiments, we only
consider Markovian human policies, for which we do not need to embed the full history, keeping the
state space manageable. Thus, the policy can be written as πH(aH | oH , aR, θ). To ensure that R
must infer θ from human behavior, as in the original assistance game, the observation function does
not reveal θ, but does reveal the previous human action aH .

Proposition 1. Every assistance problem 〈M, πH〉 can be reduced to an equivalent POMDPM′.

The full reduction and proof of equivalence is given in Appendix A.2.

When M is fully observable, in the reduced POMDP θ is the only part of the state not directly
observable to the robot, making it an instance of a hidden-goal MDP [23]. For computational
tractability, much of the work on hidden goals [32, 23] selects actions assuming that all goal
ambiguity is resolved in one step. This effectively separates reward learning and control in the same
way as typical reward learning algorithms, thus negating many of the benefits we highlight in this
work. Intention-aware motion planning [6] also embeds the human goal in the state in order to avoid
collisions with humans during motion planning, but does not consider applications for assistance.

Macindoe et al. [37] uses the formulation of a POMDP with a hidden goal to produce an assistive agent
in a cops and robbers gridworld environment, while Woodward et al. [58] uses deep reinforcement
learning to solve an assistance game in which the team must collect either plums or lemons. To our
knowledge, these are the only prior works that use an assistive formulation in a way that does not
ignore the information-gathering aspect of actions. While these works focus on algorithms to solve
assistance games, we instead focus on the qualitative benefits of using an assistance formulation.

Since we can reduce an assistance problem to a regular POMDP, we can use any POMDP solver
to find the optimal πR. In our examples for this paper, we use an exact solver when feasible, and
point-based value iteration (PBVI) [48] or deep reinforcement learning (DRL) when not. When using
DRL, we require recurrent models, since the optimal policy can depend on history.

4

A common confusion is to ask how DRL can be used, given that it requires a reward signal, but by
assumption R does not know the reward function. This stems from a misunderstanding of what it
means for R “not to know” the reward function. When DRL is run, at the beginning of each episode,
a specific value of θ is sampled as part of the initial state. The learned policy πR is not provided
with θ: it can only see its observations oR and human actions aH , and so it is accurate to say that πR
“does not know” the reward function. However, the reward is calculated by the DRL algorithm, not by
πR, and the algorithm can and does use the sampled value of θ for this computation. πR can then
implicitly learn the correlation between the actions aH chosen by πH , and the high reward values
that the DRL algorithm computes; this can be often be thought of as an implicit estimation of θ in
order to choose the right actions.

3 Reward learning as two-phase communicative assistance

There are two key differences between reward learning and assistance. First, reward learning
algorithms split reward learning and control into two separate phases, while assistance merges them
into a single phase. Second, in reward learning, the human’s only role is to communicate reward
information to the robot, while in assistance the human can help with the task. These two properties
exactly characterize the difference between the two: reward learning problems and communicative
assistance problems with two phases can be reduced to each other, in a very natural way.

A communicative assistance problem is one in which the transition function T and the reward
function rθ are independent of the choice of human action aH , and the human policy πH(· | oH , aR, θ)
is independent of the observation oH . Thus, in a communicative assistance problem, H’s actions only
serve to respond to R, and have no effects on the state or the reward (other than by influencing R).

For the notion of two phases, we will also need to classify robot actions as communicative or not.
We will assume that there is some distinguished action aRnoop that “does nothing”. Then, a robot
action âR is communicative if for any s, aH , s′ we have T (s′ | s, aH , âR) = T (s′ | s, aH , aRnoop)
and R(s, aH , âR, s′) = R(s, aH , aRnoop, s

′). A robot action is physical if it is not communicative.

Now consider a communicative assistance problem 〈M, πH〉 with noop action aRnoop and let the
optimal robot policy be πR∗. Intuitively, we would like to say that there is an initial communication
phase in which the only thing that happens is that H responds to questions from R, and then a second
action phase in which H does nothing and R acts. Formally, the assistance problem is two phase
with actions at tact if it satisfies the following property:

∃aHnoop ∈ AH , ∀τ ∈ Traj(πR∗),
[
∀t < tact : aRt is communicative ∧ ∀t ≥ tact : aHt = aHnoop

]
.

Thus, in a two phase assistance problem, every trajectory from an optimal policy can be split into a
“communication” phase where R cannot act and an “action” phase where H cannot communicate.

Reducing reward learning to assistance. We can convert an active reward learning problem to a
two-phase communicative assistance problem in an intuitive way: we addQ to the set of robot actions,
make C the set of human actions, add a timestep counter to the state, and construct the reward such
that an optimal policy must switch between the two phases after k questions. A non-active reward
learning problem can first be converted to an active reward learning problem.
Proposition 2. Every active reward learning problem 〈M, Q,C, 〈Θ, rθ, PΘ〉, πH , k〉 can be reduced
to an equivalent two phase communicative assistance problem 〈M′, πH′〉.
Corollary 3. Every non-active reward learning problem 〈M, C, 〈Θ, rθ, PΘ〉, πH , k〉 can be reduced
to an equivalent two phase communicative assistance problem 〈M′, πH′〉.

Reducing assistance to reward learning. The reduction from a two-phase communicative assis-
tance problem to an active reward learning problem is similarly straightforward: we interpret R’s
communicative actions as questions and H’s actions as answers. There is once again a simple
generalization to non-active reward learning.
Proposition 4. Every two-phase communicative assistance problem 〈M, πH , aRnoop〉 can be reduced
to an equivalent active reward learning problem.
Corollary 5. If a two-phase communicative assistance problem 〈M, πH〉 has only one communica-
tive robot action, it can be reduced to an equivalent non-active reward learning problem.

5

4 Qualitative improvements for general assistance

We have seen that reward learning is equivalent to two-phase communicative assistance problems,
where inferring the reward distribution can be separated from control using the reward distribution.
However, for general assistance games, it is necessary to merge estimation and control, leading to
several new qualitative behaviors. When the two phase restriction is lifted, we observe relevance
aware active learning and plans conditional on future feedback. When the communicative restriction
is lifted, we observe learning from physical actions.

We demonstrate these qualitative behaviors in simple environments using point-based value iteration
(PBVI) or deep reinforcement learning (DRL). We describe the qualitative results here, deferring
detailed explanations of environments and results to Appendix C.

4.1 Plans conditional on future feedback

We start with the kitchen environment (Figure 1), in which R must bake a pie for H , but doesn’t
know what type of pie H would like: Apple, Blueberry, or Cherry. Each type has a weight specifying
the reward for that pie. Assuming people tend to like apple pie the most and cherry pie the least,
we have θA ∼ Uniform[2, 4], θB ∼ Uniform[1, 3], and θC ∼ Uniform[0, 2]. We define the questions
Q = {qA, qB , qC}, where qX means “What is the value of θX?”, and thus, the answer set is C = R.

R can select ingredients to assemble the pie. Eventually, R must use “bake”, which bakes the selected
ingredients into a finished pie, resulting in reward that depends on what type of pie has been created.
H initially starts outside the room, but will return at some prespecified time. rθ assigns a cost of
asking a question of 0.1 if H is inside the room, and 3 otherwise. The horizon is 6 timesteps.

Successful behavior in this environment depends crucially on reasoning about future reward informa-
tion. If H will return early, then R can query her and make the pie that she actually wants. If H will
return home late, R should make the most likely choice, so that there is a pie ready to be eaten.

How early does H need to come back in order for R to be able to ask her about her preferences? If
we had to collect all feedback before acting, H would need to come back by timestep 2, as it then
takes the next 4 actions to query her about her preferences and bake the pie. However, R can do
better. Notice that, regardless of H’s preferences, R will need to use flour to make pie dough. R can
do this before querying H , allowing R to query H about her preferences as late as timestep 4 while
still making the right type of pie. This behavior, where R takes actions that are robustly good but
waits on actions whose reward will be clarified in the future, is very related to conservative agency
[54], a connection explored in more depth in Appendix D.

However, if H will only be home at timestep 6, then R will not have enough time to both query
preferences and make the correct pie based on her response, even if it makes the dough in advance.
So, R doesn’t wait for H to return: its prior suggests that H wants apple pie, and so it makes that.

4.2 Relevance aware active learning

?

Figure 2: The wormy-apples kitchen environ-
ment. H wants an apple, butRmight discover
worms in the apple, and have to dispose of it
in either of the trash or compost bins.

Once we relax the two-phase restriction, R starts to
further optimize whether and when it asks questions.
In particular, sinceRmay be uncertain about whether
a question’s answer will even be necessary, R will
only ask questions once they become immediately
relevant to the task at hand.

Consider for example a modification to the kitchen
environment: R knows that H wants an apple pie,
but when R picks up some apples, there is a 20%
chance that it finds worms in some of the apples. R
is unsure whether H wants her compost bin to have
worms, and so does not know whether to dispose of
the bad apples in the trash or compost bin. Since
this situation is relatively unlikely, ideally R would
only clarifyH’s preferences when the situation arises.
However, if this were a two phase communicative assistance game, the optimal policy would show

6

one of two undesirable behaviors, depending on the discount and reward: either it would always ask
H where to dispose of wormy apples (even when the apples don’t have worms), or it never asks and
instead guesses when it does encounter wormy apples.

In contrast, once R can mix questions and physical actions, R asks about wormy apples only when
it needs to dispose of one. R always starts by picking up apples. If the apple does not have worms,
R immediately uses the apples to bake the pie. If some apples have worms and the cost of asking a
question is sufficiently low, R elicits H’s preferences and disposes of the apples appropriately. It
then bakes the pie with the remaining apples.

While this may seem inconsequential in this example, consider just how many situations could come
up in more complex settings. Should R ask whether H would prefer to use seedless apples, should
scientists ever invent them in the future? Or perhaps R should ask H how her pie preferences vary
based on her emotional state? Asking about all possible situations is not scalable in the general case.

4.3 Learning from physical actions

So far we have considered communicative assistance problems, in which H only provides feedback
rather than acting to maximize reward herself. Allowing H to have physical actions enables a greater
variety of potential behaviors. Most clearly, when R knows the reward (that is, PΘ puts support over
a single θ), assistance games become equivalent to human-AI collaboration [45, 11, 20].

With uncertain rewards, we can see further interesting qualitative behaviors: R can learn just by
observing how H acts in an environment, and then work with H to maximize reward, all within a
single episode, as in shared autonomy with intent inference [32, 9]. This can significantly reduce the
burden on H in providing reward information to R (or equivalently, reduce the cost incurred by R in
asking questions to H). Some work has shown that in such situations, humans tend to be pedagogic:
they knowingly take individually suboptimal actions, in order to more effectively convey the goal
to the agent [31, 27]. An assistive R who knows this can quickly learn what H wants, and help her
accomplish her goals.

+

+

+

+ + +

Figure 3: The cake-or-pie variant
of the kitchen environment. H is
equally likely to prefer cake or pie.
Communication must take place
through physical actions alone.

We illustrate this with a variant of our kitchen environment,
shown in Figure 3. There are no longer questions and answers.
Both H and R can move to an adjacent free space, and pick up
and place the various objects. Only R may bake the dessert. R
is uncertain whether H prefers cake or cherry pie.

For both recipes, it is individually more efficient for H to pick
up the dough first. However, we assume H is pedagogic and
wants to quickly show R which recipe she wants. So, if she
wants cake, she will pick up the chocolate first to signal to R
that cake is the preferred dessert.

For this πH , R initially waits to see which ingredient H picks
up first, and then quickly helps H by putting in the ingredients
from its side of the environment and baking the dessert. It
learns implicitly to make the cake when H picks up chocolate,
and to make the pie when H picks up dough. This is equivalent
to pragmatic reasoning [26]: “H would have picked up the
chocolate if she wanted cake, so the fact that she picked up
the dough implies that she wants cherry pie”. However, we
emphasize that R is not explicitly programmed to reason in this
manner.

Note thatR is not limited to learning fromH’s physical actions:
R can also use its own physical actions to “query” the human
for information, an effect illustrated in Woodward et al. [58].

5 Limitations and future work

We see multiple avenues for future work to bring the benefits we describe from the illustrative
environments we use to real-world settings:

7

Improving existing algorithms. A major benefit of active reward learning algorithms is that they
are significantly more computationally efficient. Can we modify active reward learning algorithms in
order to gain the benefits outlined in Section 4, while maintaining their computational efficiency?

Deep reinforcement learning. A natural worry is that assistance problems are too computationally
complex to solve without separating reward learning and control. We are hopeful that this can be
solved through the application of deep reinforcement learning. An assistance problem is just like
any other POMDP, except that there is one additional unobserved state variable θ and one additional
observation aH . This should not be a huge burden, since deep reinforcement learning has been
demonstrated to scale to huge observation and action spaces [47, 55].

Environment design. We have shown that by having a hidden human goal, we can design environ-
ments in which optimal agent behavior is significantly more “helpful”. One important direction for
future work is to design larger, more realistic environments, in order to spur research into how best
to solve such environments. We would be particularly excited to see a suite of assistance problems
become a standard benchmark by which deep reinforcement learning algorithms are assessed.

5.1 Limitations of assistance and reward learning

While we believe that the assistance framework makes meaningful conceptual progress over reward
learning, a number of challenges for reward learning remain unaddressed by assistance:

Human modeling. A major motivation for both paradigms is that reward specification is very
difficult. However, now we need to specify a prior over reward functions, and the human model πH .
Consequently, misspecification can still lead to bad results [4, 10]. While it should certainly be easier
to specify a prior over θ with a “grain of truth” on the true reward θ∗ than to specify θ∗ directly, it is
less clear that we can specify πH well.

One possibility is to add uncertainty over the human policy πH . However, this can only go so far:
information about θ must come from somewhere. If R is sufficiently uncertain about θ and πH , then
it cannot learn about the reward [3]. Thus, for good performance we need to model πH . While
imitation learning can lead to good results [11], the best results will likely require insights from a
broad range of fields that study human behavior.

Assumption that H knows θ. Both assistance games and reward learning makes the assumption
that H knows her reward exactly, but in practice, human preferences change over time [1, 17, 52]. It
is not clear how this should be managed.

Dependence on uncertainty. All of the behaviors of Section 4, as well as previously explored
benefits such as off switch corrigibility [28], depend on R expecting to gain information about θ.
However, R will eventually exhaust the available information about θ. If everything is perfectly
specified, this is not a problem: R will have converged to the true θ∗. However, in the case
of misspecification, after convergence R is effectively certain in an incorrect θ, which has many
troubling problems that we sought to avoid in the first place [59].

6 Conclusion

While much recent work has focused on how we can build agents that learn what they should do
from human feedback, there is not yet a consensus on how such agents should be built. In this paper,
we contrasted the paradigms of reward learning and assistance. We showed that reward learning
problems are equivalent to a special type of assistance problem, in which the human may only provide
feedback at the beginning of the episode, and the agent may only act in the environment after the
human has finished providing feedback. By relaxing these restrictions, we enable the agent to reason
about how its actions in the environment can influence the process by which it solicits and learns
from human feedback. This allows the agent to (1) choose questions based on their relevance, (2)
create plans whose success depends on future feedback, and (3) learn from physical human actions in
addition to communicative feedback.

8

Broader Impact

We expect that assistance problems will enable us to build AI systems that try to generically help
humans, rather than pursuing a specific task that must be chosen at training time. Such a broad and
generic skill is likely to be applicable to many applications in the coming decades, such as personal
assistants, recommender systems, medical robotics, etc. By and large, we expect this to be broadly
beneficial for humanity.

However, generic skills are typically dual-use: they could also be used by bad actors to achieve
socially harmful goals. This is likely to be the case with assistive agents as well: for example, such
an agent could help produce better and quicker online scams or spear phishing attacks. While we
do not believe this is plausible with the current level of assistive agents, it would be wise to conduct
further research as the technology matures.

Acknowledgments and Disclosure of Funding

This work was partially supported by Open Philanthropy, AFOSR, ONR YIP and NSF SCHOOL. We
thank researchers at the Center for Human-Compatible AI and the InterACT lab for helpful discussion
and feedback.

References
[1] Maurice Allais. The so-called allais paradox and rational decisions under uncertainty. In

Expected utility hypotheses and the Allais paradox, pages 437–681. Springer, 1979.

[2] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané.
Concrete problems in AI safety. arXiv preprint arXiv:1606.06565, 2016.

[3] Stuart Armstrong and Sören Mindermann. Occam’s razor is insufficient to infer the preferences
of irrational agents. In Advances in Neural Information Processing Systems, pages 5598–5609,
2018.

[4] Stuart Armstrong, Jan Leike, Laurent Orseau, and Shane Legg. Pitfalls of learning a reward
function online. arXiv preprint arXiv:2004.13654, 2020.

[5] Andrea Bajcsy, Dylan P Losey, Marcia K O’Malley, and Anca D Dragan. Learning robot
objectives from physical human interaction. Proceedings of Machine Learning Research, 78:
217–226, 2017.

[6] Tirthankar Bandyopadhyay, Kok Sung Won, Emilio Frazzoli, David Hsu, Wee Sun Lee, and
Daniela Rus. Intention-aware motion planning. In Algorithmic Foundations of Robotics X,
pages 475–491. Springer, 2013.

[7] Erdem Bıyık, Malayandi Palan, Nicholas C Landolfi, Dylan P Losey, and Dorsa Sadigh.
Asking easy questions: A user-friendly approach to active reward learning. arXiv preprint
arXiv:1910.04365, 2019.

[8] Nick Bostrom. Superintelligence: Paths, Dangers, Strategies. Oxford University Press, Inc.,
USA, 2014.

[9] Connor Brooks and Daniel Szafir. Balanced information gathering and goal-oriented actions
in shared autonomy. In 2019 14th ACM/IEEE International Conference on Human-Robot
Interaction (HRI), pages 85–94, 2019.

[10] Ryan Carey. Incorrigibility in the CIRL framework. In Proceedings of the 2018 AAAI/ACM
Conference on AI, Ethics, and Society, pages 30–35, 2018.

[11] Micah Carroll, Rohin Shah, Mark K Ho, Tom Griffiths, Sanjit Seshia, Pieter Abbeel, and Anca
Dragan. On the utility of learning about humans for human-ai coordination. In Advances in
Neural Information Processing Systems, pages 5174–5185, 2019.

9

[12] Alexandra Chouldechova. Fair prediction with disparate impact: A study of bias in recidivism
prediction instruments. Big Data, 5(2):153–163, 2017.

[13] Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. In Advances in Neural Information Processing
Systems, pages 4299–4307, 2017.

[14] Jack Clark and Dario Amodei. Faulty reward functions in the wild, 2016. URL https:
//blog.openai.com/faulty-reward-functions.

[15] Cohn, Robert W. Maximizing Expected Value of Information in Decision Problems by Querying
on a Wish-to-Know Basis. PhD thesis, University of Michigan, 2016.

[16] Sam Corbett-Davies, Emma Pierson, Avi Feller, Sharad Goel, and Aziz Huq. Algorithmic
decision making and the cost of fairness. In Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 797–806, 2017.

[17] Richard M Cyert and Morris H DeGroot. Adaptive utility. In Adaptive Economic Models, pages
223–246. Elsevier, 1975.

[18] Christian Daniel, Malte Viering, Jan Metz, Oliver Kroemer, and Jan Peters. Active reward
learning. In Robotics: Science and systems, 2014.

[19] Nishant Desai. Uncertain reward-transition mdps for negotiable reinforcement learning. 2017.

[20] Christos Dimitrakakis, David C Parkes, Goran Radanovic, and Paul Tylkin. Multi-view decision
processes: the helper-ai problem. In Advances in Neural Information Processing Systems, pages
5443–5452, 2017.

[21] Michael O Duff. Optimal learning: Computational procedures for Bayes-adaptive Markov
decision processes. PhD thesis, University of Massachusetts Amherst, 2002.

[22] Brochu Eric, Nando D Freitas, and Abhijeet Ghosh. Active preference learning with discrete
choice data. In Advances in Neural Information Processing Systems, pages 409–416, 2008.

[23] Alan Fern, Sriraam Natarajan, Kshitij Judah, and Prasad Tadepalli. A decision-theoretic model
of assistance. Journal of Artificial Intelligence Research, 50:71–104, 2014.

[24] Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adversarial inverse
reinforcement learning. arXiv preprint arXiv:1710.11248, 2017.

[25] Justin Fu, Anoop Korattikara, Sergey Levine, and Sergio Guadarrama. From language to
goals: Inverse reinforcement learning for vision-based instruction following. arXiv preprint
arXiv:1902.07742, 2019.

[26] Noah D Goodman and Michael C Frank. Pragmatic language interpretation as probabilistic
inference. Trends in Cognitive Sciences, 20(11):818–829, 2016.

[27] Dylan Hadfield-Menell, Stuart J Russell, Pieter Abbeel, and Anca Dragan. Cooperative Inverse
Reinforcement Learning. In Advances in Neural Information Processing Systems, pages 3909–
3917, 2016.

[28] Dylan Hadfield-Menell, Anca Dragan, Pieter Abbeel, and Stuart Russell. The off-switch game.
In Workshops at the Thirty-First AAAI Conference on Artificial Intelligence, 2017.

[29] Dylan Hadfield-Menell, Smitha Milli, Pieter Abbeel, Stuart J Russell, and Anca Dragan. Inverse
reward design. In Advances in Neural Information Processing Systems, pages 6765–6774, 2017.

[30] Joseph Y Halpern and Rafael Pass. Game theory with translucent players. International Journal
of Game Theory, 47(3):949–976, 2018.

[31] Mark K Ho, Michael Littman, James MacGlashan, Fiery Cushman, and Joseph L Auster-
weil. Showing versus doing: Teaching by demonstration. In Advances in Neural Information
Processing Systems, pages 3027–3035, 2016.

10

https://blog.openai.com/faulty-reward-functions
https://blog.openai.com/faulty-reward-functions

[32] Shervin Javdani, Siddhartha S Srinivasa, and J Andrew Bagnell. Shared autonomy via hindsight
optimization. Robotics Science and Systems: online proceedings, 2015, 2015.

[33] Hong Jun Jeon, Smitha Milli, and Anca D Dragan. Reward-rational (implicit) choice: A
unifying formalism for reward learning. arXiv preprint arXiv:2002.04833, 2020.

[34] Jon Kleinberg, Sendhil Mullainathan, and Manish Raghavan. Inherent trade-offs in the fair
determination of risk scores. arXiv preprint arXiv:1609.05807, 2016.

[35] Victoria Krakovna. Specification gaming examples in AI, 2018. URL https://vkrakovna.
wordpress.com/2018/04/02/specification-gaming-examples-in-ai/.

[36] Joel Lehman, Jeff Clune, and Dusan Misevic. The surprising creativity of digital evolution. In
Artificial Life Conference Proceedings, pages 55–56. MIT Press, 2018.

[37] Owen Macindoe, Leslie Pack Kaelbling, and Tomás Lozano-Pérez. POMCoP: Belief space
planning for sidekicks in cooperative games. In Eighth Artificial Intelligence and Interactive
Digital Entertainment Conference, 2012.

[38] Dhruv Malik, Malayandi Palaniappan, Jaime F Fisac, Dylan Hadfield-Menell, Stuart Rus-
sell, and Anca D Dragan. An efficient, generalized Bellman update for cooperative inverse
reinforcement learning. arXiv preprint arXiv:1806.03820, 2018.

[39] James John Martin. Bayesian decision problems and Markov chains. Wiley, 1967.

[40] Lucas Maystre and Matthias Grossglauser. Just sort it! A simple and effective approach to
active preference learning. In Proceedings of the 34th International Conference on Machine
Learning, pages 2344–2353, 2017.

[41] John McCarthy and Patrick J Hayes. Some philosophical problems from the standpoint of
artificial intelligence. In Readings in Artificial Intelligence, pages 431–450. Elsevier, 1981.

[42] Sören Mindermann, Rohin Shah, Adam Gleave, and Dylan Hadfield-Menell. Active inverse
reward design. arXiv preprint arXiv:1809.03060, 2018.

[43] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning, 2013.

[44] Andrew Y Ng and Stuart J Russell. Algorithms for inverse reinforcement learning. In Interna-
tional Conference on Machine learning, 2000.

[45] Stefanos Nikolaidis and Julie Shah. Human-robot cross-training: computational formulation,
modeling and evaluation of a human team training strategy. In 2013 8th ACM/IEEE International
Conference on Human-Robot Interaction (HRI), pages 33–40. IEEE, 2013.

[46] Stephen M Omohundro. The basic AI drives. In Artificial General Intelligence, pages 483–492,
2008.

[47] OpenAI. OpenAI Five, 2018. https://openai.com/blog/openai-five/.

[48] Joelle Pineau, Geoff Gordon, Sebastian Thrun, et al. Point-based value iteration: An anytime
algorithm for POMDPs. In IJCAI, pages 1025–1032, 2003.

[49] Stuart Russell. Human Compatible: Artificial Intelligence and the Problem of Control. Penguin,
2019.

[50] Dorsa Sadigh, Anca D Dragan, Shankar Sastry, and Sanjit A Seshia. Active preference-based
learning of reward functions. In Robotics: Science and Systems, 2017.

[51] Rohin Shah, Dmitrii Krasheninnikov, Jordan Alexander, Pieter Abbeel, and Anca Dragan.
Preferences implicit in the state of the world. In International Conference on Learning Repre-
sentations, 2019.

[52] Jason F Shogren, John A List, and Dermot J Hayes. Preference learning in consecutive
experimental auctions. American Journal of Agricultural Economics, 82(4):1016–1021, 2000.

11

https://vkrakovna.wordpress.com/2018/04/02/specification-gaming-examples-in-ai/
https://vkrakovna.wordpress.com/2018/04/02/specification-gaming-examples-in-ai/
https://openai.com/blog/openai-five/

[53] Alexander Matt Turner. Optimal farsighted agents tend to seek power. arXiv preprint
arXiv:1912.01683, 2019.

[54] Alexander Matt Turner, Dylan Hadfield-Menell, and Prasad Tadepalli. Conservative agency via
attainable utility preservation. In Proceedings of the AAAI/ACM Conference on AI, Ethics, and
Society, pages 385–391, 2020.

[55] Oriol Vinyals, Igor Babuschkin, Junyoung Chung, Michael Mathieu, Max Jaderberg, Wo-
jciech M. Czarnecki, Andrew Dudzik, Aja Huang, Petko Georgiev, Richard Powell, Timo
Ewalds, Dan Horgan, Manuel Kroiss, Ivo Danihelka, John Agapiou, Junhyuk Oh, Valentin
Dalibard, David Choi, Laurent Sifre, Yury Sulsky, Sasha Vezhnevets, James Molloy, Trevor
Cai, David Budden, Tom Paine, Caglar Gulcehre, Ziyu Wang, Tobias Pfaff, Toby Pohlen,
Yuhuai Wu, Dani Yogatama, Julia Cohen, Katrina McKinney, Oliver Smith, Tom Schaul,
Timothy Lillicrap, Chris Apps, Koray Kavukcuoglu, Demis Hassabis, and David Silver. Al-
phastar: Mastering the real-time strategy game StarCraft II. https://deepmind.com/blog/
alphastar-mastering-real-time-strategy-game-starcraft-ii/, 2019.

[56] Nils Wilde, Dana Kulic, and Stephen L Smith. Active preference learning using maximum
regret. arXiv preprint arXiv:2005.04067, 2020.

[57] Christian Wirth, Riad Akrour, Gerhard Neumann, and Johannes Fürnkranz. A survey of
preference-based reinforcement learning methods. Journal of Machine Learning Research, 18
(1):4945–4990, 2017.

[58] Mark Woodward, Chelsea Finn, and Karol Hausman. Learning to interactively learn and assist.
arXiv preprint arXiv:1906.10187, 2019.

[59] Eliezer Yudkowsky. Problem of fully updated deference, year unknown. URL https://
arbital.com/p/updated_deference/.

[60] Shun Zhang, Edmund Durfee, and Satinder Singh. Approximately-optimal queries for planning
in reward-uncertain markov decision processes. In Twenty-Seventh International Conference on
Automated Planning and Scheduling, 2017.

[61] Brian D Ziebart, J Andrew Bagnell, and Anind K Dey. Modeling interaction via the principle of
maximum causal entropy. 2010.

12

https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
https://arbital.com/p/updated_deference/
https://arbital.com/p/updated_deference/

A Reward learning and assistance formalisms

A.1 Relation between non-active and active reward learning

The key difference between non-active and active reward learning is that in the latter R may ask H
questions in order to get more targeted feedback. This matters as long as there is more than one
question: with only one question, since there is no choice for R to make, R cannot have any influence
on the feedback that H provides. As a result, non-active reward learning is equivalent to active reward
learning with a single question.

Proposition 6. Every non-active reward learning problem 〈M\r, C, 〈Θ, rθ, PΘ〉, πH , k〉 can be
reduced to an active reward learning problem.

Proof. We construct the active reward learning problem as 〈M\r,Q′, C, 〈Θ, rθ, PΘ〉, πH
′
, k〉, where

Q′ , {qφ} where qφ is some dummy question, and πH
′
(c | q, θ) , πH(c | θ).

Suppose the solution to the new problem is 〈πR′Q , f ′〉. Since f ′ is a solution, we have:

f ′ = argmax
f̂

E
θ∼PΘ,q0:k−1∼πR

′
Q ,c0:k−1∼πH′ (·|qi,θ)

[
ER(f̂(q0:k−1, c0:k−1))

]
= argmax

f̂

E
θ∼PΘ,q0:k−1=qφ,c0:k−1∼πH′ (·|qφ,θ)

[
ER(f̂(q0:k−1 = qφ, c0:k−1))

]
all q are qφ

= argmax
f̂

E
θ∼PΘ,c0:k−1∼πH(·|θ)

[
ER(f̂(q0:k−1 = qφ, c0:k−1))

]
.

Thus f(c0:k−1) = f ′(q0:k−1 = qφ, c0:k−1) is a maximizer of Eθ∼PΘ,c0:k−1∼πH(·|θ)

[
ER(f̂(c0:k−1)

]
,

making it a solution to our original problem.

Proposition 7. Every active reward learning problem 〈M\r,Q,C, 〈Θ, rθ, PΘ〉, πH , k〉 with
|Q| = 1 can be reduced to a non-active reward learning problem.

Proof. Let the sole question in Q be qφ. We construct the non-active reward learning problem as
〈M\r, C, 〈Θ, rθ, PΘ〉, πH

′
, k〉, with πH

′
(c | θ) = πH(c | qφ, θ).

Suppose the solution to the new problem is f ′. Then we can construct a solution to the original
problem as follows. First, note that πRQ must be πRQ(qi | q0:i−1, c0:i−1) = 1[qi = qφ], since there is
only one possible question qφ. Then by inverting the steps in the proof of Proposition 6, we can see

that f ′ is a maximizer of Eθ∼PΘ,q0:k−1∼πRQ,c0:k−1∼πH(·|qi,θ)

[
ER(f̂(· | c0:k−1))

]
. Thus, by defining

f(q0:k−1, c0:k−1) = f ′(c0:k−1), we get a maximizer to our original problem, making 〈πRQ, f〉 a
solution to the original problem.

A.2 Reducing assistance problems to POMDPs

Suppose that we have an assistance problem 〈M, πH〉 with:

M = 〈S, {AH , AR}, {ΩH ,ΩR}, {OH , OR}, T, PS , γ, 〈Θ, rθ, PΘ〉〉.

Then, we can derive a single-player POMDP for the robotM′ = 〈S′, AR,Ω′, O′, T ′, r′, P ′0, γ〉 by
embedding the human reward parameter into the state. We must include the human’s previous action
aH into the state, so that the robot can observe it, and so that the reward can be computed.

To allow for arbitrary (non-Markovian) human policies πH , we could encode the full history in the
state, in order to embed πH into the transition function T . However, in our experiments we only
consider human policies that are in fact Markovian. We make the same assumption here, giving a
policy πH(aHt | oHt , aRt , θ) that depends on the current observation and previous robot action.

The transformationM 7→M′ is given as follows:

13

S′ , S ×AH ×Θ State space

Ω′ , ΩR ×AH Observation space

O′(o′ | s′) = O′((oR, aH1) | (s, aH2 , θ)) Observation function

, 1[aH1 = aH2] ·OR(oR | s)
T ′(s′2 | s′1, aR) = T ′((s2, a

H
1 , θ2) | (s1, a

H
0 , θ1), aR) Transition function

, T (s2 | s1, a
H
1 , a

R) · 1[θ2 = θ1] ·
∑

oH∈ΩH

OH(oH | s1) · πH(aH1 | oH , aR, θ)

r′(s′1, a
R, s′2) = r′((s1, a

H
0 , θ), a

R, (s2, a
H
1 , θ)) Reward function

, rθ(s1, a
H
1 , a

R, s2)

P ′0(s′) = P ′0((s, aH , θ)) Initial state distribution

, PS(s) · PΘ(θ) · 1[aH = aHinit] where aHinit is arbitrary

In the case where the original assistance problem is fully observable, the resulting POMDP is an
instance of a Bayes-Adaptive MDP [39, 21].

Any robot policy πR can be translated from the APOMDPM naturally into an identical policy on
M′. Note that in either case, policies are mappings from (ΩR, AH , AR)∗ × ΩR to ∆(AR).

This transformation preserves optimal agent policies:

Proposition 8. A policy πR is a solution ofM if and only if it is a solution ofM′.

Proof. Recall that an optimal policy π∗ in the POMDPM′ is one that maximizes the expected value:

EV(π) = E
s′0∼P ′0,τ ′∼〈s′0,π〉

[∞∑
t=0

γtr′(s′t, at, st+1)

]
= E
s′0∼P ′0,τ ′∼〈s′0,π〉

[∞∑
t=0

γtrθ(st, a
H
t , at, st+1)

]
where the trajectories τ ′s are sequences of state, action pairs drawn from the distribution induced by
the policy, starting from state s0.

Similarly, an optimal robot policy πR∗ in the APOMDPM is one that maximizes its expected reward:

ER(πR) = E
s0∼PS ,θ∼PΘ,τ∼〈s0,θ,πR〉

[∞∑
t=0

γtrθ(st, a
H
t , a

R
t , st+1)

]
.

To show that the optimal policies coincide, suffices to show that for any π, ER(π) (inM) is equal
to EV(π) (in M′). To do this, we will show that π induces the “same" distributions over the
trajectories. For mathematical convenience, we will abuse notation and consider trajectories of the
form τ ; θ ∈ (S,AH , AR)∗ ×Θ; it is easy to translate trajectories of this form to trajectories in either
M′ orM.

We will show that the sequence τ ; θ has the same probability when the robot takes the policy π in
bothM′ andM by induction on the lengths of the sequence.

First, consider the case of length 1 sequences. τ ; θ = [(s, aR, aH); θ]. Under bothM′ andM, s
and θ are drawn from PS and PΘ respectively. Similarly, aR and aH are drawn from πR(· | oR0) and
πH(· | oH , aR, θ) respectively. So the distribution of length 1 sequences is the same under bothM′
andM.

Now, consider some longer sequence τ ; θ = [(s1, a
R
1 , a

H
1),, (st, a

R
t , a

H
t); θ]. By the inductive

hypothesis, the distribution of (s1, a
H
1 , a

R
1),, (st−1, a

H
t−1, a

R
t−1) and θ are identical; it suffices to

show that (st, a
H
t , a

R
t) has the same distribution, conditioned on the other parts of τ ; θ, underM′

and underM. Yet by construction, st is drawn from the same distribution T (·|st−1, a
H
t−1, a

R
t−1), aHt

is drawn from the same distribution πH(· | oHt , aRt , θ), and aRt is drawn from the same distribution
πR(· | oRt , τRt−1)).

14

A.3 Optimal strategy pairs as policy-conditioned belief

We use the term policy-conditioned belief to refer to a distribution over human policies which depends
on the chosen robot policy. We use policy-conditioned beliefs as opposed to a simple unconditional
distribution over human policies, because it allows us to model a wide range of situations, including
situations with prior coordination, or where humans adapt to the robot’s policy as a result of prior
interactions. Moreover, this presents a unifying framework with prior work on assistance games [27].
In fact, finding an optimal strategy pair for the assistance game can be thought of as finding the policy
which is best when the human adapts optimally, as formalized below:

Proposition 9. Let M = 〈S, {AH , AR}, {ΩH ,ΩR}, {OH , OR}, T, PS , γ, 〈Θ, rθ, PΘ〉〉 be an as-
sistance game. Let B(πR)(πH) ∝ 1[EJR(πH , πR) = max

π̃H∈ΠH
EJR(π̃H , πR)] be an associated

policy-conditioned belief. Let πR be the solution to 〈M, B〉. Then 〈B(πR), πR〉 is an optimal
strategy pair.

Proof. Let 〈πH , πR〉 be an arbitrary strategy pair. Then EJR(πH , πR) ≤ EJR(B(πR), πR) by
the definition of B, and EJR(B(πR), πR) ≤ EJR(B(πR), πR) by the definition of πR. Thus
EJR(πH , πR) ≤ EJR(B(πR), πR). Since 〈πH , πR〉 was assumed to be arbitrary, 〈B(πR), πR〉 is
an optimal strategy pair.

B Equivalence of restricted assistance and existing algorithms

B.1 Equivalence of two phase assistance and reward learning

Here we prove the results in Section 3 showing that two phase communicative assistance problems
and reward learning problems are equivalent.

We first prove Proposition 4, and then use it to prove the others.

Proposition 4. Every two-phase communicative assistance problem 〈M, πH , aRnoop〉 can be reduced
to an equivalent active reward learning problem.

Proof. Let M = 〈S, {AH , AR}, {ΩH ,ΩR}, {OH , OR}, T, PS , γ, 〈Θ, rθ, PΘ〉〉 be the assistance
game, and let the assistance problem’s action phase start at tact. Let aHφ ∈ AH be some arbitrary
human action and oHφ ∈ ΩH be some arbitrary human observation. We construct the new active
reward learning problem 〈M′, Q′, C ′, 〈Θ, r′θ, PΘ〉, πH

′
, k′〉 as follows:

Q′ , {aR ∈ AR : aR is communicative} Questions

C ′ , AH Answers

M′ , 〈S,A′,ΩR, OR, T ′, P ′0, γ〉 POMDP

A′ , AR\Q′ Physical actions

T ′(s′ | s, aR) , T (s′ | s, aHφ , aR) Transition function

k′ , tact Number of questions

P ′0(s) ,
∑

s0:k′∈S
PM(s0:k′ , sk′+1 = s | aR0:k′ = aRnoop, a

H
0:k′ = aHφ) Initial state distribution

r′θ(s, a
R, s′) , rθ(s, a

H
φ , a

R, s′) Reward function

πH
′
(c | q, θ) , πH(c | oHφ , q, θ) Human decision function

Note that it is fine to use aHφ in T, rθ and to use oHφ in πH even though they were chosen arbitrarily,
because since the assistance problem is communicative, the result does not depend on the choice.
The PM term in the initial state distribution denotes the probability of a trajectory underM and can

15

be computed as

PM(s0:T+1 | aR0:T , a
H
0:T) = PS(s0)

T∏
t=0

T (st+1 | st, aHt , aRt).

Given some pair 〈πR′Q , f ′〉 to the active reward learning problem, we construct a policy for the
assistance problem as

πR(aRt | oRt , τRt−1) ,


πR
′

Q (aRt | aR0:t−1, a
H
0:t−1), t < k and aR0:t ∈ Q′

f ′(aR0:k−1, a
H
0:k−1)(aRt | oRk:t, a

R
k:t−1), t ≥ k and aR0:k−1 ∈ Q′ and aRk:t ∈ A′

0, else
.

We show that there must exist a solution to P that is the analogous policy to some pair. Assume
towards contradiction that this is not the case, and that there is a solution πR∗ that is not the analogous
policy to some pair. Then we have a few cases:

1. πR∗ assigns positive probability to aRi = a /∈ Q′ for i < k. This contradicts the two-phase
assumption.

2. πR∗ assigns positive probability to aRi = q ∈ Q for i ≥ k. This contradicts the two-phase
assumption.

3. πR∗(aRt | oRt , τRt−1) depends on the value of oRi for some i < k. Since both aH0:k−1

and aR0:k−1 cannot affect the state or reward (as they are communicative), the distribution
over oR0:k−1 is fixed and independent of πR, and so there must be some other πR that is
independent of oR0:k−1 that does at least as well. That πR would be the analogous policy to
some pair, giving a contradiction.

Now, suppose we have some pair 〈πR′Q , f ′〉, and let its analogous policy be πR. Then we have:

E
θ∼PΘ,q0:k−1∼πR

′
Q ,c0:k−1∼πH′

[ER(f ′(q0:k−1, c0:k−1))]

= E
θ∼PΘ

[
E

q0:k−1∼πR,c0:k−1∼πH
[ER(f ′(q0:k−1, c0:k−1))]

]

= E
θ∼PΘ

[
E

q0:k−1∼πR,c0:k−1∼πH

[
E

s0∼P ′0,aRt ∼f ′(q0:k−1,c0:k−1),st+1∼T ′(·|st,aRt)

[∞∑
t=0

γtr′θ(st, a
R
t , st+1)

]]]

= E
θ∼PΘ

[
E

q0:k−1∼πR,c0:k−1∼πH

[
E

sk∼P ′0,aRt ∼πR(·|〈c0:k−1,ok:t〉,〈q0:k−1,ak:t−1〉,st+1∼T ′(·|st,aRt)

[
1

γk

∞∑
t=k

γtr′θ(st, a
R
t , st+1)

]]]

= E
θ∼PΘ

[
E

q0:k−1∼πR,c0:k−1∼πH

[
E

sk∼P ′0,aRt ∼πR(·|〈c0:k−1,ok:t〉,〈q0:k−1,ak:t−1〉,st+1∼T ′(·|st,aRt)

[
1

γk

∞∑
t=k

γtrθ(st, a
H
φ , a

R
t , st+1)

]]]

However, since all the actions in the first phase are communicative and thus don’t impact state or
reward, the first k timesteps in the two phase assistance game have constant reward in expectation.
Let C = Es0:k

[∑k−1
t=0 γ

trθ(st, a
H
φ , a

R
noop, st+1)

]
. This gives us:

E
θ∼PΘ,q0:k−1∼πR

′
Q ,c0:k−1∼πH

[ER(f ′(q0:k−1, c0:k−1))]

= E
θ∼PΘ

[
E

s0∼PS ,θ∼PΘ,τ∼〈s0,θ,πH ,πR〉

[
1

γk

∞∑
t=0

γtrθ(st, a
H
t , a

R
t , st+1)

]]
− 1

γk
C

=
1

γk
(
ER(πR)− C

)
.

16

Thus, if 〈πR′Q , f ′〉 is a solution to the active reward learning problem, then πR is a solution of the
two-phase communicative assistance problem.

Corollary 5. If a two-phase communicative assistance problem 〈M, πH , aRnoop〉 has exactly one
communicative robot action, it can be reduced to an equivalent non-active reward learning problem.

Proof. Apply Proposition 4 followed by Proposition 7. (Note that the construction from Proposition 4
does lead to an active reward learning problem with a single question, meeting the precondition for
Proposition 7.)

Proposition 2. Every active reward learning problem P = 〈M, Q,C, 〈Θ, rθ, PΘ〉, πH , k〉 can be
reduced to an equivalent two phase communicative assistance problem P ′ = 〈M′, πH′〉.

Proof. Let M = 〈S,A,Ω, O, T, P0, γ〉. Let q0 ∈ Q be some question and c0 ∈ C be some
(unrelated) choice. Let N be a set of fresh states {n0, . . . nk−1}: we will use these to count the
number of questions asked so far. Then, we construct the new two phase communicative assistance
problem P ′ = 〈M′, πH′ , aR′noop〉 as follows:

M′ , 〈S′, {C,AR
′
}, {ΩH

′
,ΩR

′
}, {OH

′
, OR

′
}, T ′, P ′S , γ, 〈Θ, r′θ, PΘ〉〉 Assistance game

S′ , S ∪N State space

P ′S(ŝ) , 1[ŝ = n0] Initial state distribution

AR
′
, A ∪Q Robot actions

ΩH
′
, S H’s observation space

ΩR
′
, Ω ∪N R’s observation space

OH
′
(oH

′
| ŝ) , 1[oH

′
= ŝ] H’s observation function

OR
′
(oR

′
| ŝ) ,

{
1[oR

′
= ŝ], ŝ ∈ N

O(oR
′ | ŝ, else

R’s observation function

T ′(ŝ′ | ŝ, aH , aR) ,


P0(ŝ′), ŝ = nk−1,

1[ŝ′ = ni+1], ŝ = ni with i < k − 1

T (ŝ′ | ŝ, aR), ŝ ∈ S and aR ∈ A,
1[s′ = s], else

Transition function

r′θ(ŝ, a
H , aR, ŝ′) ,


−∞, ŝ ∈ N and aR /∈ Q,
−∞, ŝ ∈ S and aR ∈ Q,
0, ŝ ∈ N and aR ∈ Q,
rθ(s, a

R, s′), else

Reward function

πH
′
(aH | oH , aR, θ) ,

{
πH(aH | aR, θ), aR ∈ Q
c0, else

Human policy

aR
′

noop , q0 Distinguished noop action

Technically r′θ should not be allowed to return−∞. However, since S and A are finite, rθ is bounded,
and so there exists some large finite negative number that is functionally equivalent to −∞ that we
could use instead.

Looking at the definitions, we can see T ′ and r′ are independent of aH , and πH
′

is independent of
oH , making this a communicative assistance problem. By inspection, we can see that every q ∈ Q is
a communicative robot action. Any aR /∈ Q must not be a communicative action, because the reward
r′θ differs between aR and q0. Thus, the communicative robot actions are Q and the physical robot
actions are A.

Note that by construction of P ′S and T , we must have si = ni for i ∈ {0, 1, . . . k − 1}, after which
sk is sampled from P0 and all st ∈ S for t ≥ k. Given this, by inspecting r′θ, we can see that an

17

optimal policy must have aR0:k−1 ∈ Q and aRk: /∈ Q to avoid the −∞ rewards. Since aRk: /∈ Q, we
have aHk: = c0. Thus, setting aHnoop = c0, we have that the assistance problem is two phase with
actions at tact = k, as required.

Let a policy πR
′

for the assistance problem be reasonable if it never assigns positive probability to
aR ∈ A when t < k or to aR ∈ Q when t ≥ k. Then, for any reasonable policy πR

′
we can construct

an analogous pair 〈πRQ, f〉 to the original problem P as follows:

πRQ(qi | q0:i−1, c0:i−1) , πR
′
(qi | oR0:i−1 = n0:i−1, a

R
0:i−1 = q0:i−1, a

H
0:i−1 = c0:i−1),

f(q0:k−1, c0:k−1)(at | o0:t, a0:t−1) , πR
′
(at | oR0:t+k, a

R
0:t+k−1, a

H
0:t+k−1),

where for the second equation we have

oR0:k−1 = n0:k−1 aR0:k−1 = q0:k−1 aH0:k−1 = c0:k−1

oRk:t+k = o0:t aRk:t+k−1 = a0:t−1 aHk:t+k−1 = aHnoop

Note that this is a bijective mapping.

Consider some such policy πR
′

and its analogous pair 〈πRQ, f〉. By construction of T , we have
that the first k states in any trajectory are n0:k−1 and the next state is distributed as P0(·). By our
assumption on πR

′
we know that the first k robot actions must be selected from Q and the remaining

robot actions must be selected from A, which also implies (based on πH) that after the the remaining
human actions must be c0. Finally, looking at rθ we can see that the first k timesteps get 0 reward.
Thus:

ERP′(π
R′) = E

s′0∼P ′S ,θ∼Pθ,τ∼〈s′0,θ,πH
′ ,π̃R〉

[∞∑
t=0

γtrθ(s
′
t, a

H′

t , aR
′

t , s
′
t+1)

]

= E
θ∼Pθ,aR

′
0:k−1∼πR,a

H′
0:k−1∼πH ,s

′
k∼P0,τ ′k:∼〈sk,θ,πH

′ ,π̃R〉

[∞∑
t=k

γtrθ(s
′
t, a

H′

t , aR
′

t , s
′
t+1)

]

= E
θ∼Pθ,q0:k−1∼πRQ,c0:k−1∼πH ,s0∼P0,τ∼〈s0,θ,f(q0:k−1,c0:k−1)〉

[
γk
∞∑
t=0

γtrθ(st, at, st+1)

]
= γk E

θ∼PΘ,q0:k−1∼πRQ,c0:k−1∼πH
[ER(f(q0:k−1, c0:k−1))] ,

which is the objective of the reward learning problem scaled by γk.

Since we have a bijection between reasonable policies in P ′ and tuples in P that preserves the
objectives (up to a constant), given a solution πR∗ to P ′ (which must be reasonable), its analogous
pair 〈πRQ, f〉 must be a solution to P .

Corollary 3. Every non-active reward learning problem 〈M, C, 〈Θ, rθ, PΘ〉, πH , k〉 can be reduced
to an equivalent two phase communicative assistance problem 〈M′, πH′〉.

Proof. Apply Proposition 6 followed by Proposition 2.

B.2 Assistance with no reward information

In a communicative assistance problem, once there is no information to be gained about θ, the best
thing for R to do is to simply maximize expected reward according to its prior. We show this in the
particular case where πH is independent of θ and thus cannot communicate any information about θ:
Proposition 10. A communicative assistance problem 〈M, πH〉 where πH is independent of θ can
be reduced to a POMDPM′ with the same state space.

Proof. GivenM = 〈S, {AH , AR}, {ΩH ,ΩR}, {OH , OR}, T, PS , γ, 〈Θ, rθ, PΘ〉〉, we define a new
POMDP as M′ = 〈S,AR,ΩR, OR, T ′, r′, PS , γ〉, with T ′(s′ | s, aR) = T (s′ | s, aHφ , aR) and

r′(s, aR, s′) = Eθ∼Pθ
[
rθ(s, a

H
φ , a

R, s′)
]
. Here, aHφ is some action in AH ; note that it does not

18

matter which action is chosen since in a communicative assistance problem human actions have no
impact on T and r.

Expanding the definition of expected reward for the assistance problem, we get:

ER(πR) = E
s0∼PS ,θ∼PΘ,τ∼〈s0,θ,πR〉

[∞∑
t=0

γtrθ(st, a
H
t , a

R
t , st+1)

]

= E
s0∼PS

[
E

θ∼PΘ

[
E

τ∼〈s0,θ,πR〉

[∞∑
t=0

γtrθ(st, a
H
t , a

R
t , st+1)

]]]
Note that because πH(aH | oH , aR, θ) is independent of θ, the robot gains no information about θ
and thus πR is also independent of θ. This means that we have:

ER(πR) = E
s0∼PS

[
E

θ∼PΘ

[
E

τ∼〈s0,πR〉

[∞∑
t=0

γtrθ(st, a
H
t , a

R
t , st+1)

]]]
Let rmax = maxs,aH ,aR,s′ |rθ(s, aH , aR, s′)| (which exists since S, AH , and AR are finite). Then:

∞∑
t=0

γt|rθ(st, aHt , aRt , s′)| ≤
∞∑
t=0

γtrmax =
rmax
1− γ

<∞.

So we can apply Fubini’s theorem to swap the expectations and sums. Applying Fubini’s theorem
twice gives us:

ER(πR) = E
s0∼PS

[
E

τ∼〈s0,πR〉

[
E

θ∼PΘ

[∞∑
t=0

γtrθ(st, a
H
t , a

R
t , st+1)

]]]

= E
s0∼PS

[
E

τ∼〈s0,πR〉

[∞∑
t=0

γt E
θ∼PΘ

[
rθ(st, a

H
t , a

R
t , st+1)

]]]

= E
s0∼PS

[
E

τ∼〈s0,πR〉

[∞∑
t=0

γtr′(st, a
R
t , st+1)

]]
.

In addition, the trajectories are independent of πH , since the assistance problem is communicative,
and so for a given policy πR, the trajectory distributions for M and M′ coincide, and thus the
expected rewards for πR also coincide. Thus, the optimal policies must coincide.

C Experimental details

C.1 Plans conditional on future feedback

In the environment described in Section 4.1, R needs to bake either apple or blueberry pie (cherry is
never preferred over apple) within 6 timesteps, and may query H about her preferences about the pie.
Making the pie takes 3 timesteps: first R must make flour into dough, then it must add one of the
fillings, and finally it must bake the pie. Baking the correct pie results in +2 reward, while baking the
wrong one results in a penalty of -1. In addition, H might be away for several timesteps at the start of
the episode. Querying H costs 0.1 when she is present and 3 when she is away.

The optimal policy for this environment depends on whether H would be home early enough for R
to query her and bake the desired the pie by the end of the episode. R should always quickly make
dough, as that is always required. If H returns home on timestep 4 or earlier, R should wait for her to
get home, ask her about her preferences and then finish the desired pie. If H returns home later, R
should make its best guess about what she wants, and ensure that there is a pie ready for her to eat:
querying H when she is away is too costly, and there is not enough time to wait for H , query her, put
in the right filling, and bake the pie.

We use PBVI to train an agent for this assistance problem with different settings for how long H is
initially away. As expected, this results in a policy that makes dough, queries H and bakes the correct
pie if H is back on timestep 4 or earlier; if H is back on timestep 5 or 6, R simply makes apple pie
as that is most likely to be what H wants.

19

0 1 2 3 4 5
Timesteps 1e6

4

5

6

7

8

9

A
ve

ra
ge

 R
et

ur
n

pedagogic H, optimal R

non-pedagogic H, optimal R

CakeOrPie Environment

Figure 4: DQN smoothed learning curves on the CakeOrPie environment, with 6 seeds over 5M
timesteps and learning rate of 10−4.

C.2 Relevance-aware active learning: optimal gridworlds

In the wormy-apple environment described in Section 4.2, the robot had to bring the human some
apples in order to make a pie, but there’s a 20% chance that the apples have worms in them, and the
robot does not yet know how to dispose of soiled apples. The robot gets 2 reward for making an
apple pie (regardless of how it disposed of any wormy apples), and gets −2 reward if it disposes of
the apples in the wrong container. Additionally, asking a question incurs a cost of 0.1. We solve this
environment with exact value iteration.

If the environment is two-phase, with a lower discount rate (λ = 0.9), R’s policy never asks questions
and instead simply tries to make the apple pie, guessing which bin to dispose of wormy apples in
if it encounters any. Intuitively, since it would have to always ask the question at the beginning, it
would always incur a cost of 0.1 as well as delay the pie by a timestep resulting in 10% less value,
and this is only valuable when there turn out to be worms and its guess about which bin to dispose of
them in is incorrect, which only happens 10% of the time. This ultimately isn’t worthwhile. This
achieves an expected undiscounted reward of 1.8. Removing the two-phase restriction causes R to
ask questions mid-trajectory, even with this low discount. With this result achieves the maximal
expected undiscounted reward of 1.98.

With a higher discount rate of λ = 0.99, the two-phase policy will always ask about which bin to
dispose of wormy apples in, achieving 1.9 expected undiscounted reward. This is still less than the
policy without the two-phase restriction, which continues to get undiscounted reward 1.98 because it
avoids asking a question 80% of the time, and so incurs the cost of asking a question less often.

C.3 Learning from physical actions: cake-or-pie experiment

In the environment described in Section 4.3, H wants a dessert, but R is unsure whether H prefers
cake or pie. Preparing the more desired recipe provides a base value of V = 10, and the less desired
recipe provides a base value of V = 1. Since H doesn’t want the preparation to take too long, the
actual reward when a dessert is made is given by rt = V ·f(t), with f(t) = 1− (t/N)

4, and N = 20
as the episode horizon.

The experiments use the pedagogic H , that picks the chocolate first if they want cake, which allows
R to distinguish the desired recipe early on - this is in contrast with the non-pedagogic H , which
does not account for R beliefs and always goes for the dough first.

With the pedagogic H , the optimal R does not move until H picks or skips the dough; if H skips the
dough, this implies the recipe is cake and R takes the sugar, and then the cherries - otherwise it goes
directly for the cherries. With the non-pedagogic H , the optimal R goes for the cherries first (since it
is a common ingredient), and only then it checks whether H went for the chocolate or not, and has to
go all the way back to grab the sugar if H got the chocolate.

20

We train R with Deep Q-Networks (DQN; [43]); we ran 6 seeds for 5M timesteps and a learning rate
of 10−4; results are shown in Figure 4.

D Option value preservation

In Section 4.1, we showed that R takes actions that are robustly good given its uncertainty over θ,
but waits on actions whose reward will be clarified by future information about θ. Effectively, R is
preserving its option value: it ensures that it remains capable of achieving any of the plausible reward
functions it is uncertain over.

A related notion is that of conservative agency [54], which itself aims to preserve an agent’s ability
to optimize a wide variety of reward functions. This is achieved via attainable utility preservation
(AUP). Given an agent optimizing a reward rspec and a distribution over auxiliary reward functions
raux, the AUP agent instead optimizes the reward

rAUP (s, a) = rspec(s, a)− λ E
raux

[max(Qraux(s, aφ)−Qraux(s, a), 0)]

where the hyperparameter λ determines how much to penalize an action for destroying option value,
and aφ is an action that corresponds to R “doing nothing”.

However, the existing AUP penalty is applied to the reward, which means it penalizes any action that
is part of a long-term plan that destroys option value, even if the action itself does not destroy option
value. For example, in the original Kitchen environment of Figure 1 with a sufficiently high λ, any
trajectory that ends with baking a pie destroys option value and so would have negative reward. As a
result, there is no incentive to make dough: the only reason to make dough is to eventually make a
pie, but we have established that the value of making a pie is negative.

What we need is to only penalize an action when it is going to immediately destroy option value. This
can be done by applying the penalty during action selection, rather than directly to the reward:

πAUP (s) = argmax
a

Qrspec(s, a)− λ E
raux

[max(Qraux(s, aφ)−Qraux(s, a), 0)]

After this modification, the agent will correctly make dough, and stop since it does not know what
filling to use.

In an assistance problem, R will only preserve option value if it expects to get information that will
resolve its uncertainty later: otherwise, it might as well get what reward it can given its uncertainty.
Thus, we might expect to recover existing notions of option value preservation in the case where the
agent is initially uncertain over θ, but will soon learn the true θ. Concretely, let us consider a fully
observable communicative Assistance POMDP where the human will reveal θ on their next action.
In that case, R’s chosen action a gets immediate reward r̂(s, a) = Eθ [rθ(s, a)], and future reward
Eθ∼PΘ,s′∼T (·|s,a) [Vθ(s

′)], where Vθ(s) refers to the value of the optimal policy when the reward is
known to be rθ and the initial state is s. Thus, the agent should choose actions according to:

argmax
a

E
s′∼T (·|s,a)

[
E
θ

[rθ(s, a) + γVθ(s
′)]

]
= argmax

a
E

s′∼T (·|s,a)

[
r̂(s, a) + γVr̂(s

′)− γVr̂(s′) + γ E
θ

[Vθ(s
′)]

]
= argmax

a
Qr̂(s, a)− γ E

θ

[
E

s′∼T (·|s,a)
[Vr̂(s

′)]− E
s′∼T (·|s,a)

[Vθ(s
′)]

]

This bears many resemblances to the AUP policy, once we set the distribution over auxiliary rewards
to be the distribution over rθ, along with rspec = r̂ and λ = γ. Nonetheless, there are significant
differences, primarily because AUP was designed for the case where rspec and raux could be arbitrarily
different, which is not the case for us. In particular, with AUP the agent is penalized for any loss in
raux by taking the chosen action a relative to doing nothing, while in the assistance problem, the agent
is penalized for any loss in rθ by acting according to r̂ relative to what could be achieved if R knew
the true reward. It is intriguing that both these methods lead to behavior that we would characterize
as “preserving option value”.

21

	Introduction
	Background and Related Work
	POMDPs
	Reward learning
	Assistance
	Solving assistance problems

	Reward learning as two-phase communicative assistance
	Qualitative improvements for general assistance
	Plans conditional on future feedback
	Relevance aware active learning
	Learning from physical actions

	Limitations and future work
	Limitations of assistance and reward learning

	Conclusion
	Reward learning and assistance formalisms
	Relation between non-active and active reward learning
	Reducing assistance problems to POMDPs
	Optimal strategy pairs as policy-conditioned belief

	Equivalence of restricted assistance and existing algorithms
	Equivalence of two phase assistance and reward learning
	Assistance with no reward information

	Experimental details
	Plans conditional on future feedback
	Relevance-aware active learning: optimal gridworlds
	Learning from physical actions: cake-or-pie experiment

	Option value preservation

