
Policy invariance under reward transformations:

Theory and application to reward shaping

Andrew Y. Ng, Daishi Harada, Stuart Russell

Computer Science Division

University of California, Berkeley

Berkeley CA 94720

fang,daishi,russellg@cs.berkeley.edu

Abstract

This paper investigates conditions under

which modi�cations to the reward function

of a Markov decision process preserve the op-

timal policy. It is shown that, besides the

positive linear transformation familiar from

utility theory, one can add a reward for tran-

sitions between states that is expressible as

the di�erence in value of an arbitrary poten-

tial function applied to those states. Further-

more, this is shown to be a necessary con-

dition for invariance, in the sense that any

other transformation may yield suboptimal

policies unless further assumptions are made

about the underlying MDP. These results

shed light on the practice of reward shap-

ing, a method used in reinforcement learn-

ing whereby additional training rewards are

used to guide the learning agent. In par-

ticular, some well-known \bugs" in reward

shaping procedures are shown to arise from

non-potential-based rewards, and methods

are given for constructing shaping potentials

corresponding to distance-based and subgoal-

based heuristics. We show that such po-

tentials can lead to substantial reductions in

learning time.

1 Introduction

In sequential decision problems, such as are studied

in the dynamic programming and reinforcement learn-

ing literatures, the \task" is represented by the reward

function. Given the reward function and a model of

the domain, the optimal policy is determined. An ele-

mentary theoretical question that arises is this: What

freedom do we have in specifying the reward function,

such that the optimal policy remains unchanged?

In the �eld of utility theory, which studies pri-

marily single-step decisions, the corresponding ques-

tion for the utility function can be answered very

simply. For single-step decisions without uncer-

tainty, any monotonic transformation on utilities

leaves the optimal decision unchanged; with uncer-

tainty, only positive linear transformations are al-

lowed [von Neumann and Morgenstern, 1944]. These

results have important implications for designing eval-

uation functions in games, eliciting utility functions

from humans, and many other areas.

To our knowledge, the question of policy invariance un-

der reward function transformations has not been fully

explored for sequential decision problems.

1

Policy-

preserving transformations are important at least in

these areas:

� The task of structural estimation of MDPs

[Rust, 1994] involves recovering the model and

reward function from observed optimal behav-

ior. (See also the discussion of inverse rein-

forcement learning in [Russell, 1998].) Policy-

preserving transformations determine the extent

to which a reward function can be recovered.

� The practice of reward shaping in reinforcement

learning consists of supplying additional rewards

to a learning agent to guide its learning process,

beyond those supplied by the underlying MDP. It

is important to understand the impact of shaping

on the learned policy.

1

Some results are known for approximate invariance:

if rewards are perturbed by at most ", the new policy's

value is within 2"=(1 �) of the original optimal pol-

icy [Singh and Yee, 1994, Williams and Baird, 1994].

This paper focuses primarily on reward shaping, which

has the potential to be a very powerful technique for

scaling up reinforcement learning methods to han-

dle complex problems [Dorigo and Colombetti, 1994,

Mataric, 1994, Randl�v and Alstr�m, 1998]. (Similar

ideas have arisen in the animal training literature;

see [Saksida et al., 1997] for a discussion.) Often, a

very simple pattern of extra rewards su�ces to render

straightforward an otherwise completely intractable

problem.

To see why policy invariance is important in shaping,

consider the following examples of bugs that can arise:

[Randl�v and Alstr�m, 1998] describes a system that

learns to ride a simulated bicycle to a particular lo-

cation. To speed up learning, they provided positive

rewards whenever the agent made progress towards the

goal. The agent learned to ride in tiny circles near the

start state because no penalty was incurred for riding

away from the goal. A similar problem occurred with

a soccer-playing robot being trained by David Andre

and Astro Teller (personal communication). Because

possession in soccer is important, they provided a re-

ward for touching the ball. The agent learned a policy

whereby it remained next to the ball and \vibrated,"

touching the ball as frequently as possible. These poli-

cies are clearly not optimal for the original MDP.

These examples suggest that the shaping rewards must

obey certain conditions if they are not to mislead the

agent into learning suboptimal policies. The di�-

culty with positive-reward cycles leads one to consider

rewards derived from a conservative potential|that

is, the reward for executing a transition between two

states is (essentially) the di�erence in the value of

a potential function applied to each state. It turns

out that not only is this a su�cient condition for

guaranteeing policy invariance under reward transfor-

mations, but that, assuming no prior knowledge of

the MDP, this is also a necessary condition for be-

ing able to make such a guarantee. Section 2 gives

the de�nitions needed to state this claim precisely,

and Section 3 states and proves the claim. Section 4

shows how to construct shaping potentials of various

kinds and demonstrates their e�cacy in speeding up

learning on some simple domains. Finally, Section 5

connects our results to existing algorithms such as

Advantage learning [Baird, 1994] and �-policy itera-

tion [Bertsekas and Tsitsiklis, 1996], and closes with

discussion and future work.

2 Preliminaries

2.1 De�nitions

In this section, we provide some of the de�nitions used

throughout the paper, focusing on the case of �nite-

state Markov decision processes (MDPs). Shaping is

of interest to us in both �nite-state and in�nite-state

problems, but the underlying MDP theory for the

in�nite-state case is signi�cantly more di�cult, even

in the absence of shaping. Nevertheless, our analy-

sis and methodology are easily generalized from the

�nite to the in�nite-state space case once the underly-

ing MDP theory is laid out, and we will mention this

again later; but for now, let us start our de�nitions

with explicitly considering only �nite-state domains.

A (�nite-state) Markov decision process (MDP),

is a tuple M = (S;A; T; ;R), where: S is a �nite set

of states; A = fa

1

; : : : ; a

k

g is a set of k � 2 actions;

T = fP

sa

(�)js 2 S; a 2 Ag are the next-state tran-

sition probabilities, with P

sa

(s

0

) giving the proba-

bility of transitioning to state s

0

upon taking action a

in state s; 2 (0; 1] is the discount factor; and R

speci�es the reward distributions. For simplicity, we

will assume rewards are deterministic, in which case

R is a bounded real function called the reward func-

tion. In the literature, reward functions are typically

written R : S �A 7! R, with R(s; a) being the reward

received upon taking action a in state s. Though we

will often write reward functions in this form, we will

also allow a more general form, R : S � A � S 7! R,

with R(s; a; s

0

) being the reward received upon taking

action a in state s and transitioning to state s

0

.

Given a �xed set of actions A, a policy over a set

of states S is any function � : S 7! A. Note that

policies are de�ned over states and not over MDPs,

so the same policy may be applied to two di�erent

MDPs so long as the two MDPs use the same states

and actions. Given any policy � over states S and any

MDP M = (S;A; T; ;R) using the same states and

actions, we may then de�ne the value function V

�

M

,

which evaluated at any state s gives V

�

M

(s) = E[r

1

+

r

2

+

2

r

3

+ : : : ;�; s], where r

i

is the reward received

on the ith step of executing the policy � from state s,

and the expectation is over the state-transitions taken

upon executing �. We then de�ne the optimal value

function to be V

�

M

(s) = sup

�

V

�

M

(s), the Q-function,

evaluated at any s 2 S; a 2 A as

Q

�

M

(s; a) = E

s

0

�P

sa

(�)

[R(s; a; s

0

) + V

�

M

(s

0

)] (1)

(where the notation s

0

� P

sa

(�) means that s

0

is drawn

according to the distribution P

sa

(�)), and the optimal

Q-function as Q

�

M

(s; a) = sup

�

Q

�

M

(s; a). Finally, we

de�ne the optimal policy for an MDPM as �

�

M

(s) =

argmax

a2A

Q

�

M

(s; a). The optimal policy may not be

unique, and we more generally say a policy � is optimal

in M if �(s) 2 argmax

a2A

Q

�

M

(s; a) for all s 2 S.

Lastly, when the context MDP is clear, we may also

drop the M -subscript, and write V

�

rather than V

�

M

,

etc.

We also need some (largely standard) regularity con-

ditions so as to make sure all of the above de�nitions

make sense. For undiscounted (= 1) MDPs, we as-

sume that S contains a distinguished state s

0

called

an absorbing state, so that the MDP \stops" after a

transition into s

0

, with no further rewards thereafter.

Moreover, again for undiscounted MDPs, we assume

all policies are proper, meaning that upon execut-

ing any policy starting from any state, we will with

probability 1 eventually transition into s

0

. Since this

is really a condition on T , we will in this paper say

the transition probabilities T are proper if this condi-

tion holds. Discounted MDPs have no corresponding

absorbing state and are always in�nite-horizon; note

therefore that for them, we can write S � fs

0

g = S.

The above were the standard regularity conditions

needed for MDPs with �nite state spaces (see,

e.g. [Sutton and Barto, 1998]), which is the case which

we had explicitly said we would focus on. For MDPs

with in�nite state spaces, more would be needed: for

example, in the undiscounted case, the expectation in

our de�nition of V

�

M

(s) = E[r

1

+r

2

+

2

r

3

+ : : : ;�; s]

may not even exist.

2

These issues need to be prop-

erly addressed before we can even de�ne things such

as optimal policies, and excellent sources for this mate-

rial include [Bertsekas, 1995, Hern�andez-Lerma, 1989,

Bertsekas and Shreve, 1978]. But unfortunately, ex-

plaining the in�nite jSj case in full generality would

require more measure theory than we wish to delve into

here, and we only comment that, with the appropriate

generalizations of the required regularity conditions on

the MDP, all of our results are easily generalized to the

in�nite jSj case. Throughout this paper, we will how-

ever continually draw links to how the results may be

proved for in�nite jSj, though we defer the more gen-

eral proofs for in�nite jSj to the full paper. For now,

we note only that for the in�nite-state case, an impor-

tant and useful condition is that the reinforcements

are bounded in absolute value; this will be mentioned

again later in the paper.

2

This is in a similar sense to the \mean" of a Cauchy

distribution not existing.

2.2 Shaping Rewards

In this section, we introduce our formal framework

of shaping rewards. Intuitively, we are trying to

learn a policy for some MDP M = (S;A; T; ;R),

and we wish to help our learning algorithm by giv-

ing it additional \shaping" rewards which will hope-

fully guide it towards learning a good (or optimal) pol-

icy faster. To formalize this, we assume that, rather

than running our reinforcement learning algorithm on

M = (S;A; T; ;R), we will run it on some trans-

formed MDP M

0

= (S;A; T; ;R

0

), where R

0

= R+ F

is the reward function in the transformed MDP, and

F : S � A � S 7! R is a bounded real-valued func-

tion called the shaping reward function. (Simi-

lar to R, the domain of F for the undiscounted case

should strictly be S � fs

0

g � A � S, but we will not

be overly pedantic about this point for now.) So, if in

the original MDP M we would have received reward

R(s; a; s

0

) for transitioning from s to s

0

on action a,

then in the new MDP M

0

we would receive reward

R(s; a; s

0

) + F (s; a; s

0

) on the same event.

For any �xed MDP and assuming additive, memory-

less shaping reward functions, this R

0

= R + F is the

most general possible form of shaping rewards.

3

More-

over, they cover a fairly large range of possible shap-

ing rewards one might come up with. For example,

to encourage moving towards a goal, a shaping-reward

function that one might choose is F (s; a; s

0

) = r when-

ever s

0

is closer (in whatever appropriate sense) to the

goal than s, and F (s; a; s

0

) = 0 otherwise, where r is

some positive reward. Or, to encourage taking action

a

1

in some set of states S

0

, one might set F (s; a; s

0

) = r

whenever a = a

1

; s 2 S

0

, and F (s; a; s

0

) = 0 otherwise.

One elementary but important property of this form

of reward transformation is that it can generally be

implemented: In many reinforcement learning ap-

plications, we are not explicitly given M as a tu-

ple (S;A; T; ;R), but are allowed to learn about M

only through taking actions in the MDP and by ob-

serving the resulting state transitions and rewards.

Given such access to M , we can simulate having the

same type of access to M

0

simply by taking actions

3

In the full paper, we will consider an even more general,

not necessarily additive, form: R

0

(s; a; s

0

) = F (r; s; a; s

0

)

for arbitrary F , and where r = R(s; a; s

0

) is the reward we

would have received in the original MDP M . Under the

appropriate conditions, it turns out that, if we are to give

optimality guarantees similar to those we will give here,

then the only additional freedom this gives us in choosing

shaping rewards is it allows us to rescale rewards by any

�xed positive factor. Since this does not add any interest-

ing richness to F , we defer this result to the full paper.

in M , and then \pretending" we observed reward

R(s; a; s

0

) + F (s; a; s

0

) whenever we actually observed

reward R(s; a; s

0

) in M . Naturally, the simple rea-

son that this works is that M and M

0

use the same

actions, states and transition probabilities. Thus,

online/o�ine model-based/model-free algorithms that

may be applied toM may in general be readily applied

to M

0

in the same way.

Since we are learning a policy forM

0

in the hope of us-

ing it in M , the question at hand is thus the following:

For what forms of shaping-reward functions F can we

guarantee that �

�

M

0

, the optimal policy inM

0

, will also

be optimal in M? The next section will answer this to

a fair degree of generality.

3 Main results

In practical applications, we often do not exactly know

T a priori (and may or may not know R(s; a; s

0

)). Our

goal is therefore, given S and A (and possibly R), to

come up with a shaping-reward function F : S � A�

S 7! R that is \good" and so that �

�

M

0

will be optimal

in M . In this section, we will give a form for F under

which we can guarantee �

�

M

0

will be optimal inM . We

also provide a weak converse showing that, without

further knowledge of T and R, this is the only type of

shaping function that can always give this guarantee.

First focusing on the undiscounted case (= 1), let us

try to gain some intuition about what F might give rise

to the shaping \bug" pointed out in the Introduction.

On Randl�v and Altr�m's bicycle task, when the agent

was rewarded for riding towards the goal but not pun-

ished for riding away from it, it learned to ride in a tiny

circle and thereby obtain positive reward whenever it

happened to be moving towards the goal. More gen-

erally, if there is some sequence of states s

1

; s

2

; : : : ; s

n

such that the agent can travel through them in a cycle

(s

1

! s

2

! � � � ! s

n

! s

1

! � � �), and gain net posi-

tive shaping-reward by doing so (F (s

1

; a

1

; s

2

) + � � �+

F (s

n�1

; a

n�1

; s

n

) + F (s

n

; a

n

; s

1

) > 0), then it seems

that the agent may be \distracted" from whatever it

really should be trying to do (such as ride towards

the goal,) and instead try to repeatedly go round this

cycle.

To address this di�culty with cycles, a form for F that

immediately comes to mind is to let F be a di�erence

of potentials: F (s; a; s

0

) = �(s

0

) � �(s), where � is

some function over states. This way, F (s

1

; a

1

; s

2

) +

� � � + F (s

n�1

; a

n�1

; s

n

) + F (s

n

; a

n

; s

1

) = 0, and we

have eliminated the problem of cycles that \distract"

the agent. Are there other ways to choose F ? And

aside from cycles, are there any other problems with

shaping that we need to address? It turns out that,

without more prior knowledge about T and R, such

potential-based shaping functions F are the only F

that will guarantee consistency with the optimal policy

in M . Moreover, this turns out to be essentially all we

need in order to make this guarantee. This is made

formal in the following theorem:

Theorem 1 Let any S, A, , and any shaping reward

function F : S � A � S 7! R be given. We say F

is a potential-based shaping function if there exists

a real-valued function � : S 7! R such that for all

s 2 S � fs

0

g; a 2 A; s

0

2 S,

F (s; a; s

0

) = �(s

0

)� �(s); (2)

(where S � fs

0

g = S if < 1). Then, that F

is a potential-based shaping function is a necessary

and su�cient condition for it to guarantee consis-

tency with the optimal policy (when learning from

M

0

= (S;A; T; ;R + F) rather than from M =

(S;A; T; ;R)), in the following sense:

� (Su�ciency) If F is a potential-based shaping

function, then every optimal policy in M

0

will also

be an optimal policy in M (and vice versa).

� (Necessity) If F is not a potential-based shap-

ing function (e.g. no such � exists satisfying

Equation (2)), then there exist (proper) transition

functions T and a reward function R : S�A 7! R,

such that no optimal policy inM

0

is optimal inM .

Also note the following: For the in�nite-state case, if

one were to choose some � to construct a potential-

based shaping function, then for the formal results

to go through, we really should demand that � be

bounded, so that the shaping rewards F are also

bounded (similar to the condition that R be bounded,

in Section 2.1); this issue will be discussed again later.

Note that for the �nite-state case, this is a vacuous

condition since � would, having a range of �nite car-

dinality, automatically be bounded. Also, the neces-

sity and su�ciency conditions above might seem a lit-

tle more complicated than usual, and this is because

there can be multiple optimal policies in M or in M

0

.

Nevertheless, it should be clear that the quanti�ca-

tions used make this the strongest possible theorem of

this form. The su�ciency condition says that so long

as we use a potential-based F , then we are guaranteed

any �

�

M

0

we might be trying to learn will also be op-

timal in M . The necessity condition says that if we

have no knowledge of T and R, then we must choose

a potential-based F for learning in M

0

, if we want to

guarantee consistency with learning the optimal pol-

icy in M . (If we do have intimate knowledge of T;R,

then the necessity condition does not say much, and it

is possible that we might be able to use other shaping

functions.)

The proof of necessity is given in Appendix A. Here, we

only prove that Equation (2) is a su�cient condition:

that if F is indeed of the form in (2), then we may

guarantee that every optimal policy in M

0

will also

be optimal in M . Again, we prove this result fully

rigorously only for the case of �nite jSj; the proof for

in�nite jSj is nearly identical, but requires a little more

care in justifying the use of the Bellman Equations.

Proof (of su�ciency): Let F be of the form given

in (2). If = 1, then since replacing �(s) with �

0

(s) =

�(s)�k for any constant k would not change the shap-

ing rewards F (which is a di�erence of these poten-

tials), we may, by replacing �(s) with �(s) � �(s

0

) if

necessary, assume without loss of generality that the

� used to express F via (2) satis�es �(s

0

) = 0.

For the original MDP M , we know that its optimal

Q-function Q

�

M

satis�es the Bellman Equations (see

e.g. [Sutton and Barto, 1998])

Q

�

M

(s; a) = E

s

0

�P

sa

(�)

�

R(s; a; s

0

) + max

a

0

2A

Q

�

M

(s

0

; a

0

)

�

Some simple algebraic manipulation then gives us

Q

�

M

(s; a)� �(s) = E

s

0

�

R(s; a; s

0

) + �(s

0

)� �(s)

+max

a

0

2A

(Q

�

M

(s

0

; a

0

)� �(s

0

))

�

If we now de�ne

^

Q

M

0

(s; a)

4

= Q

�

M

(s; a) � �(s) and

substitute that and F (s; a; s

0

) = �(s

0

) � �(s) back

into the previous equation, we get

^

Q

M

0

(s; a)

= E

s

0

�

R(s; a; s

0

) + F (s; a; s

0

) + max

a

0

2A

^

Q

M

0

(s

0

; a

0

)

�

= E

s

0

�

R

0

(s; a; s

0

) + max

a

0

2A

^

Q

M

0

(s

0

; a

0

)

�

But this is exactly the Bellman equation for M

0

. For

the undiscounted case, we moreover have

^

Q

M

0

(s

0

; a) =

Q

�

M

(s

0

; a)��(s

0

) = 0� 0 = 0. So,

^

Q

M

0

(s; a) satis�es

the Bellman equations for M

0

, and must in fact be

the unique optimal Q-function. Thus, Q

�

M

0

(s; a) =

^

Q

M

0

(s; a) = Q

�

M

(s; a) � �(s), and the optimal policy

for M

0

therefore satis�es

�

�

M

0

(s) 2 argmax

a2A

Q

�

M

0

(s; a)

= argmax

a2A

Q

�

M

(s; a)� �(s)

= argmax

a2A

Q

�

M

(s; a)

and is therefore also optimal in M . To show every

optimal policy in M is also optimal in M

0

, simply ap-

ply the same proof with the roles of M and M

0

inter-

changed (and using the shaping function �F). This

completes the proof. 2

Corollary 2 Under the conditions of Theorem 1, sup-

pose that F does indeed take the form F (s; a; s

0

) =

�(s

0

)��(s). Suppose further that �(s

0

) = 0 if = 1.

Then for all s 2 S, a 2 A,

Q

�

M

0

(s; a) = Q

�

M

(s; a)� �(s); (3)

V

�

M

0

(s) = V

�

M

(s)� �(s): (4)

Proof: (3) was proved in the su�ciency proof above;

(4) follows immediately from the identity V

�

(s) =

max

a2A

Q

�

(s; a). 2

Remark 1 (Robustness and learning): Although

we have not proved it here, the identities in Corollary 2

actually hold for arbitrary policies �, not just the opti-

mal policy: V

�

M

0

(s) = V

�

M

(s)� �(s) (and similarly for

Q-functions). A consequence of this is that potential-

based shaping is robust in the sense that near-optimal

policies are also preserved; that is, if we learn a near

optimal policy � inM

0

(say, jV

�

M

0

(s)�V

�

M

0

(s)j < ") us-

ing potential-based shaping, then � will also be near-

optimal in M (jV

�

M

(s) � V

�

M

(s)j < "). (To see this,

apply the identity we just pointed out to policies �

and to �

�

M

= �

�

M

0

, and subtract.)

Remark 2 (All policies optimal under �): To

better understand why potential-based F preserve op-

timal policies, it is worth noting if we have an MDP

M that has a potential-based reinforcement function

R(s; a; s

0

) = �(s

0

)��(s), then any policy is optimal

in M . Thus, potential-based shaping functions are in-

di�erent to policies, in the sense that they give us no

reason to prefer any policy over any other; at an intu-

itive level, this accounts for why they do not give us

any reason to prefer any policy other than �

�

M

when

we switch from M to M

0

.

The Theorem suggests that we choose shaping rewards

of the form F (s; a; s

0

) = �(s

0

)��(s). In applications,

0 50 100 150 200 250 300 350 400 450 500
0

100

200

300

400

500

600
10x10 Grid world

Trial number

S
te

ps
 ta

ke
n

to
 r

ea
ch

 g
oa

l

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5
x 10

4 50x50 Grid world

Trial number

S
te

ps
 ta

ke
n

to
 r

ea
ch

 g
oa

l

(a) (b)

Figure 1: (a) Experiment with 10x10 grid-world. Plot of steps taken to goal vs. trial number. Dot is no shaping,

dot-dash is � = 0:5�

0

, solid is � = �

0

. (b) Experiment with 50x50 grid-world.

� should of course be chosen using expert knowledge

about the domain. As to how one may do this, Corol-

lary 2 suggests a particularly nice form for �, if we

know enough about the domain to try choosing it as

such. We see that if �(s) = V

�

M

(s) (with �(s

0

) = 0

in the undiscounted case), then Equation (4) tells us

that the value function in M

0

is V

�

M

0

(s) � 0 | and

this is a particularly easy value function to learn; even

lacking a model of the world, all that would remain

to be done would be to learn the non-zero Q-values.

Though to avoid misconception, we also stress this

is not the only way of choosing useful �, and that

such shaping rewards can help signi�cantly even if

� is far from V

�

M

(say in the sup-norm), such as by

guiding exploration, etc., and we will see examples of

this in the next section. But in any case, so long as

we choose potential-based F , we have the guarantee

that any (near-)optimal policy we learn inM

0

will also

be (near-)optimal in M . Let us now turn our atten-

tion to some small experiments that demonstrate how

potential-based shaping might be applied in practice.

4 Experiments

Much empirical work before us has convinc-

ingly justi�ed the use of shaping [Mataric, 1994,

Randl�v and Alstr�m, 1998], and we will not bother

to try to further justify its use. Here, our goal in-

stead is to show how potential-style shaping functions

�t into the picture, and to demonstrate how such shap-

ing functions might be derived in practice.

Towards these goals, we chose for simplicity and clarity

to use very simple grid-world domains to showcase the

interesting aspects of potential-based shaping. The

�rst domain was a shortest-path-to-goal 10x10 grid-

world with start and goal states in opposite corners,

no discounting, and a -1 per-step reinforcement. Ac-

tions are the 4 compass directions, and move 1 step in

the intended direction 80% of the time and a random

direction 20% of the time, and agent stays in the same

place if it tries to walk o� the grid. What might be

a good shaping potential �(s)? We had pointed out

earlier that Equation (4) suggests �(s) = V

�

M

(s) might

be a good shaping potential. So let us now go through

the type of reasoning that might suggest a crude esti-

mate of V

�

M

; by doing so, we hope to demonstrate how,

with a little expert knowledge about distances and the

location of the goal, similar reasoning may perhaps be

used to similarly derive � for other minimum-cost-to-

goal problems.

Upon trying to take a step towards the goal, we have

an 80% chance of taking the desired step towards the

goal, and a 20% chance of a random action. If we

take a random action, then unless we are at the bor-

der of the gridworld, we are as likely to move towards

as away from the goal. Hence, from most states, we

would expect the optimal policy to make about 0.8

steps of (Manhattan distance) progress towards the

goal per timestep, and a crude estimate of the ex-

pected number of steps needed to get to the goal from

s would be manhattan(s;goal)=0:8. Thus, we set

S
3

2

1
4

G

0 100 200 300 400 500 600 700 800
0

50

100

150

200

250

300

350

400

450
5x5 Grid world with 5 flags/subgoals

Trial number

S
te

ps
 ta

ke
n

to
 r

ea
ch

 g
oa

l

(a) (b)

Figure 2: (a) 5x5 grid-world with 5 subgoals (including goal state), which must be visited in order 1; 2; 3; 4; G.

(b) Experiment with 5x5 grid-world with subgoals. Plot of steps taken to goal vs. trial number. Dot is no

shaping, dot-dash is � = �

0

, solid is � = �

1

.

our estimate of the value function and therefore �(s)

to be �

0

(s) =

^

V

M

(s) = �manhattan(s;goal)=0:8.

This is what we used as our guess of a \good" shap-

ing function. Also, as a shaping-reward that would

be quite far (in the sup-norm) from V

�

M

0

(s), we also

tried using �(s) = 0:5�

0

(s). The results of this �rst

experiment

4

are shown in Figure 1a. (All experiments

reported in this section are averages over 40 indepen-

dent runs.) As can be readily seen, using either of

these shaping functions signi�cantly helped speed up

learning. Moreover, it is worth re-stressing that even

though 0:5�

0

is quite far from V

�

M

, it still signi�cantly

helped the initial stages of learning. For a larger 50x50

grid-world, the results become even more dramatic:

Figure 1b shows the result of the same experiment re-

peated on the larger grid. The plots for �

0

and 0:5�

0

are so low in the graph that they can barely be seen;

learning without shaping is clearly losing hopelessly to

the potential-based shaping algorithm.

Reiterating, the goal of these experiments was not to

try to justify shaping | that has been done far more

convincingly by others. Instead, what we have demon-

strated here is a style of some very simple reasoning

that, by putting together a distance-to-goal heuristic,

has enabled us to pick a sensible � that dramatically

4

Using Sarsa [Sutton and Barto, 1998], 0.10-greedy ex-

ploration, learning rate 0:02. Experiments with Sarsa(�)

also gave analogous results showing shaping signi�cantly

speeding up learning.

sped up learning.

Next, another class of problems for which a similar

style of reasoning might work is domains where we can

assign subgoals. Consider the grid-world in Figure 2a,

where we start in the lower-left hand corner, and must

pick up a set of \ags" in sequence before going to the

�nal goal state. Actions and rewards are the same as

in the previous grid-world, and the state-space is ex-

panded to keep track of the collected ags. Since each

ag is a subgoal, it is tempting to choose F so that we

are rewarded for visiting the subgoals. Let us now see

how a potential-function style of reasoning can indeed

lead us to choose such an F , and how Equation (4)

further suggests magnitudes for the subgoal rewards.

With knowledge of the subgoal locations and using rea-

soning analogous to that suggested earlier (0.8 steps of

progress per timestep, etc.), we may estimate the ex-

pected number of timesteps, say t, needed to reach

the goal. If we imagine that each subgoal is about

equally hard to reach from the previous one, then hav-

ing reached the n-th subgoal, we would still have about

((5� n)=5)t steps to go. A slightly more re�ned argu-

ment changes this to ((5 � n � 0:5)=5)t steps (where

0.5 comes from the \typical case" where we are halfway

between the n-th and n + 1-st subgoals), and so our

�rst choice of �(s) is �

0

(s) = �((5 � n

s

� 0:5)=5)t,

where n

s

denotes the number of subgoals we have

achieved when we are at s. Using this form of shaping-

reward function, we see that �(s) = �

0

(s) jumps by

t=5 whenever we reach any subgoal (other than the

�nal goal state), and so the shaping reward function

F (s; a; s

0

) = �(s

0

)��(s) is giving t=5 reward for reach-

ing each of these subgoals. This is exactly what our in-

tuition had suggested might be a good shaping reward.

For comparison, we also carried out this experiment

using a more �ne-tuned shaping reward that, simi-

lar to the previous grid-world experiments, explicitly

estimated the remaining time-to-goal for each state

and constructed the corresponding �

1

(s) =

^

V

M

(s) po-

tential function. The result of these experiments are

shown in Figure 2b, and we see that using our �rst

crude shaping function �

0

has allowed us to signi�-

cantly speed up learning over not using shaping (and

the �ne-tuned �

1

unsurprisingly gave even better per-

formance). When repeating this experiment on larger

domains or with more subgoals, the results (not re-

ported here) become even more dramatic.

5 Discussion and Conclusions

We have shown necessary and su�cient conditions for

a shaping function F to leave optimal policies invari-

ant. Here are two easy generalizations worth men-

tioning: Aside from guaranteeing consistency while

trying to learn the optimal policy, it is easy to

show (by an argument similar to Remark 1 in Sec-

tion 3) that potential-based F also work when try-

ing to learn a good policy from within a restricted

class of policies, such as in the framework studied

in [Kearns et al., 1999] (and which for example in-

cludes the task of �nding the best weights for a neural

network mapping from states to actions). Also, for

Semi-Markov decision processes (SMDPs) where ac-

tions take varying amounts of time to complete, Equa-

tion (2) unsurprisingly generalizes to F (s; a; s

0

; �) =

e

���

�(s

0

)��(s), where � is the time the action took

to complete, and � is the discount rate.

Finally, the \�(s

0

)��(s)" form also seems on the sur-

face reminiscent of terms in some of the equations used

in Advantage learning [Baird, 1994] and �-policy iter-

ation [Bertsekas and Tsitsiklis, 1996]. At a very crude

level, it turns out that each of them may be thought

of as trying to modify � so to gain some computa-

tional or representational advantage. If we consider

the problem of modifying �, then trying to learn a

rough shaping function seems to lead quite naturally

to an algorithm for multi-scale value-function approx-

imation; and although it may initially seem unusual

to try to learn a shaping function, it is the multiscale

\rough vs. �ne" approximation aspect that this leads

to which makes it possibly powerful;

5

this will be the

subject of future work.

In this paper, we have shown that potential-based

shaping rewards �(s

0

) � �(s) leave (near-)optimal

policies unchanged. Moreover, this was proved to be

the only type of shaping that can guarantee such in-

variance unless we make further assumptions about

the MDP. But just as some practitioners use discount-

ing even on undiscounted problems (perhaps to im-

prove convergence of algorithms), we believe that fu-

ture experience with potential-style shaping rewards

may also lead one to occasionally try shaping rewards

that are inspired by potentials, but which are perhaps

not strictly of the form we have given. For example,

in analogy to using discounting even on undiscounted

problems, it is conceivable that for certain problems,

it may be easier for an expert to propose a potential �

for an \undiscounted" shaping function �(s

0

) � �(s),

even when 6= 1. Even though our theorem may no

longer guarantee optimality in this case, such a shap-

ing function may, purely from an engineering point of

view, still be worth trying | judiciously and with care.

In the same spirit, whereas our regularity conditions

had demanded using bounded �, it is also plausible

that some practitioners might want to try certain un-

bounded �. Naturally, if expert knowledge about the

domain is available, then non-potential shaping func-

tions might also be fully appropriate.

As guidelines for choosing shaping functions, we have

suggested a distance-based heuristic and a subgoal-

based heuristic for choosing potentials; because shap-

ing is often crucial to making learning tractable, we

believe the task of �nding good shaping functions will

be a problem of increasing importance.

Acknowledgments

A. Ng is supported by a Berkeley Fellowship. This

work was also supported in part by ARO MURI

grant DAAH04-96-1-0341, ONR grant N00014-97-1-

0941, and NSF grant ECS-9873474.

References

[Baird, 1994] Baird, L. C. (1994). Reinforcement

Learning in continuous time: Advantage updating.

5

This also relates to the observation that something

like a learned shaping reward seems to be operating

psychologically|e.g., the capture of a piece in chess op-

erates as a reward even though the underlying MDP has

rewards only for checkmate.

In Proceedings of the International Conference on

Neural Networks.

[Bertsekas, 1995] Bertsekas, D. P. (1995). Dynamic

Programming and Optimal Control, Volume II.

Athena Scienti�c.

[Bertsekas and Shreve, 1978] Bertsekas, D. P. and

Shreve, S. E. (1978). Stochastic Optimal Control:

The Discrete Time Case. Academic Press.

[Bertsekas and Tsitsiklis, 1996] Bertsekas, D. P. and

Tsitsiklis, J. N. (1996). Neuro-dynamic Program-

ming. Athena Scienti�c.

[Dorigo and Colombetti, 1994] Dorigo, M. and

Colombetti, M. (1994). Robot shaping: Develop-

ing autonomous agents through learning. Arti�cial

Intelligence, 71(2):321{370.

[Hern�andez-Lerma, 1989] Hern�andez-

Lerma, O. (1989). Adaptive Markov Control Pro-

cesses. Springer-Verlag.

[Kearns et al., 1999] Kearns, M., Mansour, Y., and

Ng, A. Y. (1999). Approximate planning in large

POMDPs via reusable trajectories. (Preprint).

[Mataric, 1994] Mataric, M. J. (1994). Reward func-

tions for accelerated learning. In Proceedings of

the Eleventh International Conference on Machine

Learning. Morgan Kaufmann.

[Randl�v and Alstr�m, 1998] Randl�v, J. and Al-

str�m, P. (1998). Learning to drive a bicycle using

reinforcement learning and shaping. In Proceedings

of the Fifteenth International Conference on Ma-

chine Learning. Morgan Kaufmann.

[Russell, 1998] Russell, S. (1998). Learning agents

for uncertain environments (extended abstract). In

Proceedings of the Eleventh Annual ACM Work-

shop on Computational Learning Theory (COLT-

98), Madison, Wisconsin. ACM Press.

[Rust, 1994] Rust, J. (1994). Do people behave ac-

cording to Bellman's principal of optimality? Sub-

mitted to Journal of Economic Perspectives.

[Saksida et al., 1997] Saksida, L., Raymond, S., and

Touretzky, D. (1997). Shaping robot behaviour

using principles from instrumental conditioning.

Robotics and Autonomous Systems, 22(3{4):231{

249.

[Singh and Yee, 1994] Singh, S. and Yee, R. (1994).

An upper bound on the loss from approximate

optimal-value functions. Machine Learning, 16:227{

233.

[Sutton and Barto, 1998] Sutton, R. S. and Barto,

A. G. (1998). Reinforcement Learning: An Intro-

duction. MIT Press.

[von Neumann and Morgenstern, 1944] von Neu-

mann, J. and Morgenstern, O. (1944). Theory of

Games and Economic Behavior. Princeton Univer-

sity Press, Princeton, New Jersey, �rst edition.

[Williams and Baird, 1994] Williams, R. J. and Baird,

L. C. (1994). Tight performance bounds on greedy

policies based on imperfect value functions. In Pro-

ceedings of the Tenth Yale Workshop on Adaptive

and Learning Systems.

Appendix A: Proof of necessity

In this Appendix, we sketch the proof of the neces-

sity part of Theorem 1. For brevity, we give the proof

only for the case of jAj = 2; the generalization is ob-

vious but more tedious. We begin with the following

Lemma.

Lemma 3 If there exists s 2 S � fs

0

g; s

0

2 S and

a; a

0

2 A such that F (s; a; s

0

) 6= F (s; a

0

; s

0

), then there

exists (proper) transition functions T and a reward

function R such that no optimal policy in M

0

is op-

timal in M .

Proof (Sketch, Lemma 3): Assume without loss of

generality that F (s; a; s

0

) > F (s; a

0

; s

0

), and let � =

F (s; a; s

0

)� F (s; a

0

; s

0

) > 0. In the undiscounted case,

also assume for simplicity that s 6= s

0

. (When = 1,

the proof for s = s

0

is nearly the same, but hav-

ing to ensure properness just makes it much more te-

dious.) We then constructM as follows: Let P

sa

(s

0

) =

P

sa

0

(s

0

) = 1:0, and let R(s; a; s

0

) = 0 and R(s; a

0

; s

0

) =

�=2. Clearly �

�

M

(s) = a

0

. On the other hand, since

R

0

= R + F , we have R

0

(s; a; s

0

) = F (s; a; s

0

) and

R

0

(s; a

0

; s

0

) = �=2 + F (s; a

0

; s

0

) = F (s; a; s

0

) ��=2 <

R

0

(s; a; s

0

), and hence �

�

M

0

(s) = a. 2

We are now ready to show the main necessity result.

Proof (of necessity). Assume F is not potential-

based. We need to show we can construct T;R such

that no optimal policy �

�

M

0

in M

0

is also optimal in

M . By Lemma 3, if F (s; a; s

0

) depends on a, we are

done; hence we need only consider shaping functions

a

0

a

s

1

s

2

ŝ

0

Figure 3: The unlabeled thick edges correspond to

both actions. All edges have probability 1. The edge

(s

1

; a; ŝ

0

) carries a reward �=2, and all other edges

have zero reward.

of the form F (s; a; s

0

) = F (s; s

0

) (which do not depend

on a).

If = 1, let ŝ

0

= s

0

be the distinguished absorbing

state; otherwise let ŝ

0

be some �xed state. Noting

that constant o�sets of the reward do not a�ect the

optimal policy when < 1, we may, by replacing all

F (s; s

0

) with F (s; s

0

) � F (ŝ

0

; ŝ

0

) if necessary, assume

without loss of generality that F (ŝ

0

; ŝ

0

) = 0. Now de-

�ne �(s) = �F (s; ŝ

0

) for all s. By assumption of F

not being potential-based, there exists s

1

, s

2

such that

�(s

2

)��(s

1

) 6= F (s

1

; s

2

) (let us assume s

1

; s

2

; ŝ

0

are

distinct; the other cases are either impossible or han-

dled similarly). We then construct M in the follow-

ing way (still assuming jAj = 2). From state s

1

, let

P

s

1

a

(ŝ

0

) = P

s

1

a

0

(s

2

) = 1:0, and from states s

2

and ŝ

0

let both actions a and a

0

lead to ŝ

0

with probability 1.

Also de�ne � = F (s

1

; s

2

)+ F (s

2

; ŝ

0

)�F (s

1

; ŝ

0

) and

let R(s

1

; a; ŝ

0

) = �=2, R(�; �; �) = 0 elsewhere. This

model is illustrated in Figure 3. Then we have

Q

�

M

(s

1

; a) =

�

2

Q

�

M

(s

1

; a

0

) = 0

Q

�

M

0

(s

1

; a) =

�

2

+ F (s

1

; ŝ

0

)

= F (s

1

; s

2

) + F (s

2

; ŝ

0

)�

�

2

Q

�

M

0

(s

1

; a

0

) = F (s

1

; s

2

) + F (s

2

; ŝ

0

);

where we have relied on the fact that V

�

M

(ŝ

0

) =

V

�

M

0

(ŝ

0

) = 0 by construction. Hence

�

�

M

(s

1

) =

�

a if � > 0,

a

0

otherwise

�

�

M

0

(s

1

) =

�

a

0

if � > 0,

a otherwise

2

