
Concurrent Hierarchical Reinforcement Learning

Bhaskara Marthi, David Latham, Stuart Russell
Dept of Computer Science

UC Berkeley
Berkeley, CA 94720

{bhaskara|latham|russell}@cs.berkeley.edu

Carlos Guestrin
Intel Berkeley Research Lab

Berkeley, CA 94720
guestrin@cs.stanford.edu

Abstract

We describe a language for partially specifying policies in do-
mains consisting of multiple subagents working together to
maximize a common reward function. The language extends
ALisp with constructs for concurrency and dynamic assign-
ment of subagents to tasks. During learning, the subagents
learn a distributed representation of the Q-function for this
partial policy. They then coordinate at runtime to find the
best joint action at each step. We give examples showing that
programs in this language are natural and concise. We also
describe online and batch learning algorithms for learning a
linear approximation to the Q-function, which make use of
the coordination structure of the problem.

Introduction
The field of hierarchical reinforcement learning (Precup
& Sutton 1998; Parr & Russell 1997; Dietterich 1998;
Andre 2003) attempts to reduce the complexity of solving
large Markov decision processes by making use of the tem-
poral structure of good policies. One way of viewing the
latter three of these frameworks is that they constrain the set
of policies using a partial program. The learning or planning
task then becomes that of finding the optimal completion of
this program. The partial program is a convenient way for
the designer to incorporate prior knowledge about the prob-
lem into the solution algorithm. Also, it imposes additive
structure on the value function, which in turn allows for state
abstraction and faster learning.

However, for some large domains it is difficult to write
a concise partial program that expresses one’s prior knowl-
edge. Consider, for example, an agent that plays the com-
puter game Stratagus (formerly known as Freecraft). This
game simulates a battle between two opposing armies, each
controlled by a player. The armies consist of several units or
“subagents”, such as peasants, footmen, and knights. Play-
ing the game requires coordinating the subagents to per-
form various activities like gathering resources, construct-
ing buildings, and attacking the enemy. This domain can be
viewed as an MDP with a multidimensional action vector,
but a single reward signal.

There is a lot of prior knowledge that we may want to in-
corporate into our agent using a partial program. For exam-

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

ple, building a barracks may require first sending some peas-
ants to gather gold and wood, accompanied by some foot-
men for protection, and having some of the peasants actu-
ally build the barracks once enough resources are gathered.
We might also have more low-level prior knoledge about ac-
tions of individual subagents, for example about navigation.
It is not easy to express all this knowledge using a single-
threaded program. For example, it is natural to represent
each task using a subroutine, but it is then not possible for
different subagents to be carrying out different tasks. One
might try to have a separate partial program executing for
each subagent. However, this makes it hard to specify coor-
dinated behaviour, and the environment of each subagent is
no longer Markovian.

In this paper, we present Concurrent ALisp, a language
for expressing prior knowledge about such domains using a
multithreaded program where each task is represented by a
thread of execution. Threads can be created and destroyed
over time, as new tasks are initiated and terminated. At
any point, each task controls some subset of the subagents.
Subagents may be reassigned between tasks, and the set of
subagents is allowed to change over time. Threads may ex-
change information using shared memory, but even if they
do not, they will coordinate their actions at runtime to max-
imize the joint Q-function. We first describe the syntax of
this language, and then give a formal semantics for it us-
ing a semi-Markov decision process. We then describe al-
gorithms for learning and acting in this SMDP. Finally, we
show example partial programs and experimental results for
a multiagent domain.

Many problems in manufacturing, search-and-rescue, and
computer games involve several subagents acting in paral-
lel to satisfy a common goal or maximize a global reward.
Work on this problem in deterministic domains includes
ConGolog (Giacomo, Lesperance, & Levesque 2000) which
builds on situation calculus and (Boutilier & Brafman 1997)
which uses STRIPS to represent concurrent actions. The lat-
ter makes use of structure in the transition distributions and
reward functions, and could possibly be combined with this
work, which imposes structure on the policies.

Most work on multiple-agent scenarios in MDPs has fo-
cussed only on primitive actions. One exception is (Mahade-
van et al. 2004), in which each subagent has its own MAXQ
hierarchy, and Q-functions at the higher levels of this hier-

archy also depend on the machine states of the other sub-
agents.

Background
Our language is an extension of ALisp, and so we begin
with a brief overview of ALisp. A complete description
can be found in (Andre 2003). We will assume an MDP
M = (S,A, T,R) where S is a set of states, A is a set of ac-
tions, T (s, a, s′) is the transition distribution, andR(s, a, s′)
is the reward function.

The ALisp programming language consists of standard
Lisp (Steele 1990) augmented with three operations:

• choice form
1
. . . formn represents a choice point,

where learning takes place.

• call subroutine arg
0
. . . argn calls a subroutine and no-

tifies the learning mechanism that a call has occurred.

• action action−name executes a primitive action in the
environment.

An ALisp program for M is a Lisp program that may also
refer to the state of M and use the above operations. To give
this a precise semantics, imagine an agent executing the pro-
gram as it moves through the environment. At each step it
has a joint state ω = (s, a), where s ∈ S is the environment
state and θ is the machine state, consisting of the program
counter θ.ρ (the next statement to execute), the runtime stack
state θ.s, and the global memory state θ.m. If ρ is at an
action statement, the corresponding action is done in the
environment and ρ moves to the next statement in the pro-
gram. If ρ is at a call statement, the subroutine is called,
θ is updated appropriately, and the call information is noted
(for use during learning). If ρ is at a choice statement, the
agent must choose between the forms to execute. If none
of these conditions hold, ρ is updated according to standard
Lisp semantics.

Combining an MDP with an ALisp program results in an
SMDP over the joint states, and the actions correspond to the
choices at choice points of the program. Let a completion
of an ALisp program in an environment consist of a choice
function at each choice point, which specifies which choice
to take as a function of the current environment state and
machine state. We then have

Theorem 1 The natural correspondence between station-
ary policies for the SMDP and completions of the Alisp pro-
gram preserves the value function. In particular, the optimal
policy for the SMDP corresponds to the optimal completion
of the program.

Our approach
The language
We assume an MDP as before, where

• Each state s includes a list of subagents that are present in
this state

• The set of actions available at s is of the form A1 × · · · ×
AM where there is a one-one correspondence between
subagents present in this state and components m of the
action set.

Our language builds on common Lisp, together with the
Allegro implementation of multithreading, which provides
standard constructs like locks and waiting. These constructs
introduce the possibility of deadlock. We leave it up to the
programmer to write programs that always eventually do an
action in the environment, and all our results assume this
condition.

At any point during execution, each subagent is “as-
signed” to a unique thread. The operation

(my− subagents)

when executed in a thread returns the list of subagents cur-
rently assigned to that thread. There is a single thread at the
beginning of execution, and new threads are started using a
statement of the form

(spawn l s a e)

where l is a label, s is a function 1, a is an argument list,
and e is a subset of the subagents currently assigned to the
calling thread. This statement asynchronously spawns off
a new thread of execution at the given function call, with
the subagents in e assigned to it. The label is used by other
threads to refer to the newly created thread.

A thread can also reassign some of its subagents to an-
other thread. This is done with the statement

(reassign e label)

where label is the label of the thread to which subagents in
e should be reassigned.

The action operation needs to be extended to handle
multiple subagents. We use the syntax

(action (e1 a1) . . . (en an))

to indicate that subagent ei should do ai.
The choice statement is as in ALisp. We also include a

choose-from-list statement for cases when the num-
ber of choices is not known in advance.

The presence of multiple simultaneously executing
threads means that there is in general no simple hierarchical
decomposition of the value function as in ALisp. For this
reason, our current implementation of the language does not
include a separate call statement - function calls can just
be done using standard Lisp syntax.

A concurrent partial program for an MDP is a program
that may use the above constructs, and contains a function
run, where the root thread begins its execution. If the
MDP is one in which the set of subagents may change over
time, then the partial program must also provide a function
assign-new-effectors which decides the thread the
newly added effectors are assigned to after an environment
step.

Example
We illustrate the language with an example for an extension
to Dietterich’s taxi domain (Dietterich 1998) in which the

1this is easy to implement in Lisp, where functions are first class
objects

(defun top ()
(loop

for i below num-taxis
do (spawn i #’taxi-top

(list i) (list i)))
(loop

do (wait exists-unserved-passenger)
(wait exists-idle-taxi)
(setf i

(choose-list ’top-choice
idle-taxis))

(setf (aref tasks i)
(first-unserved-passenger))

))

(defun taxi-top (i)
(loop

do (wait (has-task i))
(serve i (aref tasks i))))

(defun serve (i j)
(get-pass i j)
(put-pass i j))

(defun get-pass (i j)
(nav i (pass-source j))
(action i ’pickup))

(defun put-pass (i j)
(nav i (pass-dest j))
(action i ’putdown))

(defun nav (i loc)
(loop

until (equal (taxi-pos i) loc)
(choice (action (i ’north))

(action (i ’south))
(action (i ’west))
(action (i ’east))
(action (i ’wait)))))

Figure 1: Program for the multiple taxi domain

task is to control multiple taxis moving around in a world
with multiple passengers appearing from time to time. The
taxis have noisy move actions, and a taxi may also choose to
wait for an environment step. A reward is gained whenever
a passenger is successfully picked up from their source and
delivered to their destination. Also, a negative reward results
when two taxis collide.

Our partial program for this domain in Figure 1 is quite
similar to programs for the single taxi domain. The main
difference is the top level function, which spawns off threads
for each taxi, and then chooses which taxi to assign each new
passenger to. The individual taxi threads make no mention
of other taxis or multithreading constructs. This is inten-
tional - we would like the existence of multiple threads to
be as transparent as possible to make it easy to write par-
tial programs. However, we do want the taxis to coordinate
their behaviour in the world - for example, the penalty for
collisions means that taxis should avoid moving to the same
location. In the next section, we will describe the semantics
for our language, which makes such coordination happen
automatically.

Semantics
The semantics for a concurrent ALisp program is defined
in terms of an SMDP it induces on the set of environment-
machine states. A machine state θ consists of a global mem-
ory state m which includes the contents of all shared vari-
ables, a set T of currently active threads, and for each i ∈ T ,

• A unique identifier ν;

• A program counter ρ which is a location in the partial
program;

• The set E of subagents currently assigned to this thread;

• The runtime stack σ.

A joint state ω consists of an environment state s and a
machine state θ. A choice state is a joint state in which each
running thread is at a choice or action statement, and at least
one thread is at a choice. An action state is a joint state in
which all running threads are at action statements. Choice
statements are the only controllable states of the SMDP, and
the set of actions available at a choice state equals the set of
joint choices for the threads that are at a choice point. Thus,
although the threads may run independently, they must wait
for each other at choice points. The reason for this is that we
would like decisions to be made together to allow coordina-
tion - we believe that making decisions sequentially would
lead to Q functions that are more difficult to represent and
learn. Also, threads wait for each other at actions. This pre-
vents the overall behaviour from depending on the speed of
execution of the different threads.

To define transitions, we first define the semantics of a
single thread executing a statement which is not an action
or a choice in a joint state. If the statement does not use
any of the new constructs, then it has the standard (multi-
threaded) Lisp semantics. It is also easy to formalize the
descriptions of spawn, die, and reassign from the pre-
vious section. However, defining the transition distribution
of the SMDP using these components runs into problems,

because it depends on which thread is selected for execution
by the scheduler.

We instead define an SMDP over the set of choice states.
First, given a particular scheduling algorithm, we define a
transition distribution procedurally as follows : after mak-
ing a joint choice c at a choice state, update the program
counters of the threads that made the choice according to c.
Then repeatedly do the following :

• If at an action state, perform the joint action in the envi-
ronment and get the new environment state. Assign any
new effectors to threads by calling the partial program’s
assign-new-effectors function. Update the pro-
gram counters of all the threads.

• Otherwise, use the scheduler to pick a thread that’s not at
a choice or action, and execute the statement pointed to
by this thread’s program counter.

until we are at a choice state. Assuming we’re guaranteed
to eventually terminate or reach a choice state, this gives
a well-defined next-state distribution. Similarly, define the
SMDP reward function to be the sum of the rewards re-
ceived at environment actions between the two choice states.
A priori, these two functions will depend on the choice
of scheduler. However, from now on we restrict attention
to partial programs in which these functions are scheduler-
independent. This is analogous to requiring that a standard
program contain no race conditions. The following theorem
justifies the use of this SMDP.

Theorem 2 The natural correspondence between comple-
tions of the ALisp partial program and stationary policies
for the SMDP preserves the value function. In particular,
the optimal completion corresponds to the optimal policy for
the SMDP.

Linear function approximation
The learning task is to find a policy for the SMDP of a
partial program, i.e. a mapping from choice states to joint
choices. Unfortunately, this is too large to represent directly,
so we represent it implicitly using the Q-function Q(ω, a).
Of course, the Q-function is also too large to represent ex-
actly, but we can use a linear approximation

Q(ω, a) ≈
∑

i

wiφi(ω, a)

Apart from the partial program, the programmer must also
specify the features φ, and they provide another way to in-
corporate prior knowledge. The features can depend not
just on the environment state but also on the machine state,
which can be very useful. For example, a partial program
may set a certain flag in its global memory upon completing
a particular task, and we can have a feature that depends on
this flag.

Algorithms
We first describe how to select the best action in a particular
joint state given a learnt Q-function. This requires a max-
imization over the action set, which is exponentially large
in the number of threads. We use the solution described

in (Guestrin, Lagoudakis, & Parr 2002), and assume that the
features φi in the linear approximation to Q each depend on
a small number of action variables in any given joint state.
We then form the cost network (Dechter 1999) representa-
tion of

∑
kQk and solve the maximization problem using

nonserial dynamic programming. This takes time exponen-
tial in the treewidth of the cost network. This action selec-
tion algorithm is also used in the inner loops of the following
learning algorithms.

The learning problem is to learn the Q-function in an
SMDP. Thus standard SMDP techniques can be applied.
One simple method is to use SMDP Q-learning with linear
function approximation. Q-learning uses a set of samples of
the form (ω, a, r, ω′, N), representing a transition from ω to
ω′ under action a, yielding reward r and taking N units of
time. Assuming a discount factor γ and learning rate α, the
Q-learning update rule is then

w′ = w+α(r+γN max
a′

Q(ω′, a′;w)−Q(ω, a;w))φ(ω, a)

In practice, the performance of Q-learning is quite sen-
sitive to the parameters in the learning rate and exploration
policies, and it is susceptible to divergence. Least-squares
policy iteration (Lagoudakis & Parr 2001) is a batch algo-
rithm that tries to address these problems. LSPI was origi-
nally designed for MDPs, so we now show how to extend it
to SMDPs.

Let Φ be the feature matrix with rows indexed by
state-action pairs, so Φ(x, a) = (φ1(x, a) . . . φK(x, a))

T .
Suppose we are trying to evaluate a policy π, and let
Pπ(ω′, N |ω, a) be the transition distribution of the associ-
ated semi-Markov process. We would like to find weights w
such that Φw is a fixed point of the Bellman backup

Q(ω, a)← R(ω, a) +
∑

ω′,N

P (ω′, N |ω, a)γNQ(ω′, π(ω′))

followed by a projection onto the column space ofΦ. A little
algebra shows that w is a solution of the equation Aw = b
where A = ΦT (Φ− PγΦ) with

Pγ(ω, a, ω
′) =

∑

N

P (ω′, N |ω, a)γN

and b = ΦTR. The matrices Φ and Pγ are too large to han-
dle explicitly, and so as in LSPI, we can form an approxima-
tion Φ̂ from a set of samples {(ωi, ai, ri, ω′

i, Ni)} by letting
the ith row be φ(ωi, ai). In the MDP case,N is always 1 and
so PγΦ(ω, a) is just γ times the expected next-state value of
doing a in ω. It can therefore be estimated by the matrix P̂Φ
whose ith row is γφ(ω′

i, π(ω
′

i)). In the SMDP case, because
of the variable discount factor, PγΦ can no longer be viewed
as an expectation over ω′. However, we can rewrite

PγΦ(ω, a) =
∑

ω′,N

P (ω′, N |ω, a)γNφ(ω′, π(ω′))

which is an expectation with respect to the joint distribu-
tion P (ω′, N |ω, a). Thus, given samples (ωi, ai, ri, ω′

i, Ni),
we may use the unbiased estimate P̂Φ whose ith row is
γNiφ(ωi, ai).

0 10 20 30 40 50 60 70 80 90 100
−14

−12

−10

−8

−6

−4

−2

0

2

Number of samples

A
ve

ra
ge

 R
ew

ar
d

Learning performance of Q−learning and LSPI on multi−taxi domain

LSPI
Q−learning

Results
We tested the two learning algorithms on the multiple taxi
domain with the partial program described earlier. The lin-
ear function approximator included a feature checking for
collisions, features that computed the distance of a taxi to its
current goal, and a constant feature. Uniform sampling was
used to generate the samples for both algorithms. The opti-
mal average reward in this MDP is about 0, so it can be seen
from the figure that the two algorithms reach the optimum
very fast. Q-learning does better in this situation, proba-
bly because the matrix operations in LSPI are numerically
unstable with a very small number of samples. Of course,
this is a very simple domain. We believe that our approach
will scale to much larger problems, and to this end we have
implemented an interface to the Stratagus domain described
earlier, and are working on applying our algorithms to it.

Conclusions
We have described a language for specifying partial pro-
grams in MDPs consisting of multiple cooperating sub-
agents. The language is very expressive, including all the
functionality of a standard programming language as well
as constructs for concurrency, spawning of threads, and dy-
namic allocation of subagents to tasks. We are currently
working on discovering additive decompositions of the type
found in (Dietterich 1998; Andre 2003), on improved learn-
ing algorithms, and on scaling up our algorithms to handle
the full Stratagus domain.

References
Andre, D. 2003. Programmable reinforcement learning
agents. Ph.D. Dissertation, UC Berkeley.
Boutilier, C., and Brafman, R. 1997. Planning with concur-
rent interacting actions. In Proceedings of the Fourteenth
National Conference on Artificial Intelligence, 720–729.
Claus, C., and Boutilier, C. 1998. The dynamics of rein-
forcement learning in cooperative multiagent systems. In

Proceedings of the Fifteenth National Conference on Arti-
ficial Intelligence, 746–752.
Dechter, R. 1999. Bucket elimination : a unifying frame-
work for reasoning. Artificial Intelligence 41–85.
Dietterich, T. 1998. Hierarchical reinforcement learning
with the maxq value function decomposition. Journal of
Artificial Intelligence Research 13:227–303.
Giacomo, G. D.; Lesperance, Y.; and Levesque, H. 2000.
Congolog, a concurrent programming language based on
the situation calculus. Artificial Intelligence 109–169.
Guestrin, C.; Koller, D.; Gearhart, C.; and Kanodia, N.
2003. Generalizing plans to new environments in relational
mdps. In IJCAI 2003.
Guestrin, C.; Lagoudakis, M.; and Parr, R. 2002. Co-
ordinated reinforcement learning. In Proceedings of the
Nineteenth International Conference on Machine Learn-
ing, 227–234.
Lagoudakis, M., and Parr, R. 2001. Model free least
squares policy iteration. In Advances in Neural Informa-
tion Processing Systems.
Mahadevan, S.; Ghavamzadeh, M.; Rohanimanesh, K.; and
Theocharous, G. 2004. Hierarchical approaches to concur-
rency, multiagency, and partial observability. In Sie, J.;
Barto, A.; Powell, W.; and Wunsch, D., eds., Learning and
approximate dynamic programming : scaling up to the real
world. New York: John Wiley.
Parr, R., and Russell, S. 1997. Reinforcement learning
with hierarchies of machines. In Advances in Neural Infor-
mation Processing Systems.
Precup, D., and Sutton, R. 1998. Multi-time models for
temporally abstract planning. In Advantages in Neural In-
formation Processing Systems 10.
Steele, G. 1990. Common Lisp the language. Digital Press,
2nd edition.

