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Abstract
We study the problem of learning many related tasks simultaneously using kernel methods and

regularization. The standard single-task kernel methods,such as support vector machines and
regularization networks, are extended to the case of multi-task learning. Our analysis shows that
the problem of estimating many task functions with regularization can be cast as a single task
learning problem if a family of multi-task kernel functionswe define is used. These kernels model
relations among the tasks and are derived from a novel form ofregularizers. Specific kernels that
can be used for multi-task learning are provided and experimentally tested on two real data sets.
In agreement with past empirical work on multi-task learning, the experiments show that learning
multiple related tasks simultaneously using the proposed approach can significantly outperform
standard single-task learning particularly when there aremany related tasks but few data per task.

Keywords: multi-task learning, kernels, vector-valued functions, regularization, learning algo-
rithms

1. Introduction

Past empirical work has shown that, when there are multiple related learning tasks it is beneficial
to learn them simultaneously instead of independently as typically done in practice (Bakker and
Heskes, 2003; Caruana, 1997; Heskes, 2000; Thrun and Pratt, 1997). However, there has been
insufficient research on the theory of multi-task learning and on developing multi-task learning
methods. A keygoal of this paper is to extend the single-task kernel learning methods which
have been successfully used in recent years to multi-task learning. Our analysis establishes that the
problem of estimating many task functions with regularization can be linked to a single task learning
problem provided a family of multi-task kernel functions we define is used. For this purpose, we
use kernels for vector-valued functions recently developed by Micchelli and Pontil (2005). We
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elaborate on these ideas within a practical context and present experiments of the proposed kernel-
based multi-task learning methods on two real data sets.

Multi-task learning is important in a variety of practical situations. For example,in finance
and economics forecasting predicting the value of many possibly related indicators simultaneously
is often required (Greene, 2002); in marketing modeling the preferencesof many individuals, for
example with similar demographics, simultaneously is common practice (Allenby and Rossi, 1999;
Arora, Allenby, and Ginter, 1998); in bioinformatics, we may want to study tumor prediction from
multiple micro–array data sets or analyze data from mutliple related diseases.

It is therefore important to extend the existing kernel-based learning methods, such as SVM
and RN, that have been widely used in recent years, to the case of multi-tasklearning. In this
paper we shall demonstrate experimentally that the proposed multi-task kernel-based methods lead
to significant performance gains.

The paper is organized as follows. In Section 2 we briefly review the standard framework for
single-task learning using kernel methods. We then extend this framework tomulti-task learning
for the case of learning linear functions in Section 3. Within this framework wedevelop a general
multi-task learning formulation, in the spirit of SVM and RN type methods, and propose some
specific multi-task learning methods as special cases. We describe experiments comparing two of
the proposed multi-task learning methods to their standard single-task counterparts in Section 4.
Finally, in Section 5 we discuss extensions of the results of Section 3 to non-linear models for
multi-task learning, summarize our findings, and suggest future researchdirections.

1.1 Past Related Work

The empirical evidence that multi-task learning can lead to significant performance improvement
(Bakker and Heskes, 2003; Caruana, 1997; Heskes, 2000; Thrun and Pratt, 1997) suggests that
this area of machine learning should receive more development. The simultaneous estimation of
multiple statistical models was considered within the econometrics and statistics literature (Greene,
2002; Zellner, 1962; Srivastava and Dwivedi, 1971) prior to the interests in multi-task learning in
the machine learning community.

Task relationships have been typically modeled through the assumption that theerror terms
(noise) for the regressions estimated simultaneously—often called “SeeminglyUnrelated Regressions”—
are correlated (Greene, 2002). Alternatively, extensions of regularization type methods, such as
ridge regression, to the case of multi-task learning have also been proposed. For example, Brown
and Zidek (1980) consider the case of regression and propose an extension of the standard ridge
regression to multivariate ridge regression. Breiman and Friedman (1998)propose the curds&whey
method, where the relations between the various tasks are modeled in a post–processing fashion.

The problem of multi-task learning has been considered within the statistical learning and ma-
chine learning communities under the name “learning to learn” (see Baxter, 1997; Caruana, 1997;
Thrun and Pratt, 1997). An extension of the VC-dimension notion and of thebasic generalization
bounds of SLT for single-task learning (Vapnik, 1998) to the case of multi-task learning has been
developed in (Baxter, 1997, 2000) and (Ben-David and Schuller, 2003). In (Baxter, 2000) the prob-
lem of bias learning is considered, where the goal is to choose an optimal hypothesis space from a
family of hypothesis spaces. In (Baxter, 2000) the notion of the “extended VC dimension” (for a
family of hypothesis spaces) is defined and it is used to derive generalization bounds on the average
error ofT tasks learned which is shown to decrease at best as1

T . In (Baxter, 1997) the same setup
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was used to answer the question “how much information is needed per task in order to learnT tasks”
instead of “how many examples are needed for each task in order to learnT tasks”, and the theory
is developed using Bayesian and information theory arguments instead of VCdimension ones. In
(Ben-David and Schuller, 2003) the extended VC dimension was used to derive tighter bounds that
hold for each task (not just the average error among tasks as considered in (Baxter, 2000)) in the
case that the learning tasks are related in a particular way defined. More recent work considers
learning multiple tasks in a semi-supervised setting (Ando and Zhang, 2004) and the problem of
feature selection with SVM across the tasks (Jebara, 2004).

Finally, a number of approaches for learning multiple tasks are Bayesian, where a probability
model capturing the relations between the different tasks is estimated simultaneously with the mod-
els’ parameters for each of the individual tasks. In (Allenby and Rossi,1999; Arora, Allenby, and
Ginter, 1998) a hierarchical Bayes model is estimated. First, it is assumed a priori that the parame-
ters of theT functions to be learned are all sampled from an unknown Gaussian distribution. Then,
an iterative Gibbs sampling based approach is used to simultaneously estimate both the individual
functions and the parameters of the Gaussian distribution. In this model relatedness between the
tasks is captured by this Gaussian distribution: the smaller the variance of the Gaussian the more
related the tasks are. Finally, (Bakker and Heskes, 2003; Heskes, 2000) suggest a similar hierarchi-
cal model. In (Bakker and Heskes, 2003) a mixture of Gaussians for the“upper level” distribution
instead of a single Gaussian is used. This leads to clustering the tasks, one cluster for each Gaussian
in the mixture.

In this paper we will not follow a Bayesian or a statistical approach. Instead, our goal is to
develop multi-task learning methods and theory as an extension of widely usedkernel learning
methods developed within SLT or Regularization Theory, such as SVM and RN. We show that using
a particular type of kernels, the regularized multi-task learning method we propose is equivalent to
a single-task learning one when such a multi-task kernel is used. The workhere improves upon the
ideas discussed in (Evgeniou and Pontil, 2004; Micchelli and Pontil, 2005b).

One of our aims is to show experimentally that the multi-task learning methods we develop here
significantly improve upon their single-task counterpart, for example SVM. Therefore, to emphasize
and clarify this point we only compare the standard (single-task) SVM with a proposed multi-task
version of SVM. Our experiments show the benefits of multi-task learning and indicate that multi-
task kernel learning methods are superior to their single-task counterpart. An exhaustive comparison
of anysingle-task kernel methods with their multi-task version is beyond the scope ofthis work.

2. Background and Notation

In this section, we briefly review the basic setup for single-task learning using regularization in
a reproducing kernel Hilbert space (RHKS)HK with kernelK. For more detailed accounts (see
Evgeniou, Pontil, and Poggio, 2000; Shawe-Taylor and Cristianini, 2004; Scḧolkopf and Smola,
2002; Vapnik, 1998; Wahba, 1990) and references therein.

2.1 Single-Task Learning: A Brief Review

In the standard single-task learning setup we are givenmexamples{(xi ,yi) : i ∈ Nm} ⊂ X ×Y (we
use the notationNm for the set{1, . . . ,m}) sampledi.i.d. from an unknown probability distribution
P on X ×Y . The input spaceX is typically a subset ofRd, thed dimensional Euclidean space, and
the output spaceY is a subset ofR. For example, in binary classificationY is chosen to be{−1,1}.
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The goal is to learn a functionf with small expected errorE[L(y, f (x))], where the expectation is
taken with respect toP andL is a prescribed loss function such as the square error(y− f (x))2. To
this end, a common approach within SLT and regularization theory is to learnf as the minimizer in
HK of the functional

1
m ∑

j∈Nm

L(y j , f (x j))+ γ‖ f‖2
K (1)

where‖ f‖2
K is the norm off in HK . WhenHK consists of linear functionsf (x)= w′x, with w,x∈R

d,
we minimize

1
m ∑

j∈Nm

L(y j ,w
′x j)+ γw′w (2)

where all vectors are column vectors and we use the notationA′ for the transpose of matrixA, and
w is ad×1 matrix.

The positive constantγ is called the regularization parameter and controls the trade off between
the error we make on them examples (the training error) and the complexity (smoothness) of the
solution as measured by the norm in the RKHS. Machines of this form have been motivated in the
framework of statistical learning theory (Vapnik, 1998). Learning methodssuch as RN and SVM
are particular cases of these machines for certain choices of the loss function L (Evgeniou, Pontil,
and Poggio, 2000).

Under rather general conditions (Evgeniou, Pontil, and Poggio, 2000;Micchelli and Pontil,
2005b; Wahba, 1990) the solution of Equation (1) is of the form

f (x) = ∑
j∈Nm

c jK(x j ,x) (3)

where{c j : j ∈Nm} is a set of real parameters andK is a kernel such as an homogeneous polynomial
kernel of degreer, K(x, t) = (x′t)r , x, t ∈R

d. The kernelK has the property that, forx∈ X , K(x, ·)∈
HK and, for f ∈ HK 〈 f ,K(x, ·)〉K = f (x), where〈·, ·〉K is the inner product inHK (Aronszajn, 1950).
In particular, forx, t ∈ X , K(x, t) = 〈K(x, ·),K(t, ·)〉K implying that them×m matrix (K(xi ,x j) :
i, j ∈ Nm) is symmetric and positive semi-definite foranyset of inputs{x j : j ∈ Nm} ⊆ X .

The result in Equation (3) is known as therepresenter theorem. Although it is simple to prove, it
is remarkable as it makes the variational problem (1) amenable for computations. In particular, ifL
is convex, the unique minimizer of functional (1) can be found by replacingf by the right hand side
of Equation (3) in Equation (1) and then optimizing with respect to the parameters{c j : j ∈ Nm}.

A popular way to define the spaceHK is based on the notion of afeature mapΦ : X → W ,
whereW is a Hilbert space with inner product denoted by〈·, ·〉W . Such a feature map gives rise
to the linear space of all functionsf : X → R defined forx∈ X andw∈ W as f (x) = 〈w,Φ(x)〉W

with norm 〈w,w〉W . It can be shown that this space is (modulo an isometry) the RKHSHK with
kernelK defined, forx, t ∈ X , asK(x, t) = 〈Φ(x),Φ(t)〉W . Therefore, the regularization functional
(1) becomes

1
m ∑

j∈Nm

L(y j ,〈w,Φ(x j)〉W )+ γ〈w,w〉W . (4)

Again, any minimizer of this functional has the form

w = ∑
j∈Nm

c jΦ(x j) (5)
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which is consistent with Equation (3).

2.2 Multi-Task Learning: Notation

For multi-task learning we haven tasks and corresponding to the`−th task there are availablem
examples{(xi`,yi`) : i ∈Nm} sampled from a distributionP̀ onX`×Y`. Thus, the total data available
is {(xi`,yi`) : i ∈ Nm, ` ∈ Nn}. The goal it to learn alln functions f` : X` → Y` from the available
examples. In this paper we mainly discuss the case that the tasks have a commoninput space, that
is X` = X for all ` and briefly comment on the more general case in Section 5.1.

There are various special cases of this setup which occur in practice. Typically, the input space
X` is independent of̀. Even more so, the input dataxi` may be independent of` for every sample
i. This happens in marketing applications of preference modeling (Allenby and Rossi, 1999; Arora,
Allenby, and Ginter, 1998) where the same choice panel questions are given to many individual
consumers, each individual provides his/her own preferences, andwe assume that there is some
commonality among the preferences of the individuals. On the other hand, there are practical cir-
cumstances where the output datayi` is independent of̀. For example, this occurs in the problem
of integrating information from heterogeneous databases (Ben-David, Gehrke, and Schuller, 2002).

In other cases one does not have either possibilities, that is, the spacesX`×Y` are different. This
is for example the machine vision case of learning to recognize a face by first learning to recognize
parts of the face, such as eyes, mouth, and nose (Heisele et al., 2002).Each of these tasks can be
learned using images of different size (or different representations).

We now turn to the extension of the theory and methods for single-task learning using the
regularization based kernel methods briefly reviewed above to the case of multi-task learning. In the
following section we will consider the case that functionsf` are all linear functions and postpone
the discussion of non-linear multi-task learning to Section 5.

3. A Framework for Multi-Task Learning: The Linear Case

Throughout this section we assume thatX` = R
d, Y` = R and that the functionsf` are linear, that is,

f`(x) = u′`x with u` ∈ R
d. We propose to estimate the vector of parametersu = (u` : ` ∈ Nn) ∈ R

nd

as the minimizer of a regularization function

R(u) :=
1

nm ∑
`∈Nn

∑
j∈Nm

L(y j`,u
′
`x j`)+ γJ(u) (6)

whereγ is a positive parameter,J is a homogeneous quadratic function ofu, that is,

J(u) = u′Eu (7)

andE a dn×dn matrix which captures the relations between the tasks. From now on we assume
that matrixE is symmetric andpositive definite, unless otherwise stated. We briefly comment on
the case thatE is positive semidefinite below.

For a certain choice ofJ (or, equivalently, matrixE), the regularization function (6) learns the
tasks independently using the regularization method (1). In particular, forJ(u) = ∑`∈Nn

‖u`‖2 the
function (6) decouples, that is,R(u) = 1

n ∑`∈Nn
r`(u`) wherer`(u`) = 1

m ∑ j∈Nm
L(y j`,u′`x j`)+γ‖u`‖2,

meaning that the task parameters are learnedindependently. On the other hand, if we chooseJ(u) =
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∑`,q∈Nn
‖u`−uq‖2, we can “force” the task parameters to be close to each other: task parametersu`

are learnedjointly by minimizing (6).
Note that function (6) depends ondn parameters whose number can be very large if the num-

ber of tasksn is large. Our analysis below establishes that the multi-task learning method (6) is
equivalent to a single-task learning method as in (2) for an appropriate choice of a multi-task ker-
nel in Equation (10) below. As we shall see, the input space of this kernel depends is the original
d−dimensional space of the data plus an additional dimension which records thetask the data be-
longs to. For this purpose, we take the feature space point of view and write all functionsf` in terms
of thesamefeature vectorw∈ R

p for somep∈ N, p≥ dn. That is, for eachf` we write

f`(x) = w′B`x, x∈ R
d, ` ∈ Nn (8)

or, equivalently,
u` = B′

`w, ` ∈ Nn (9)

for somep×d matrixB` yet to be specified. We also define thep×dn feature matrix B:= [B` : ` ∈
Nn] formed by concatenating then matricesB`, ` ∈ Nn.

Note that, since the vectoru` in Equation (9) is arbitrary, to ensure that there exists a solution
w to this equation it is necessary that the matrixB` is of full rank d for each` ∈ Nn. Moreover, we
assume that the feature matrixB is of full rankdnas well. If this is not the case, the functionsf` are
linearly related. For example, if we chooseB` = B0 for every` ∈ Nn, whereB0 is a prescribedp×d
matrix, Equation (8) tells us that all tasks are the same task, that is,f1 = f2 = · · · = fn. In particular
if p = d andB0 = Id the function (11) (see below) implements a single-task learning problem, as in
Equation (2) with all themndata from then tasks as if they all come from the same task.

Said in other words, we view the vector-valued functionf = ( f` : ` ∈ Nn) as the real-valued
function

(x, `) 7→ w′B`x

on the input spaceRd ×Nn whose squared norm isw′w. The Hilbert space of all such real-valued
functions has the reproducing kernel given by the formula

K((x, `),(t,q)) = x′B′
`Bqt, x, t ∈ R

d, `,q∈ Nn. (10)

We call this kernel alinear multi-task kernelsince it is bilinear inx andt for fixed ` andq.
Using this linear feature map representation, we wish to convert the regularization function (6)

to a function of the form (2), namely,

S(w) :=
1

nm ∑
`∈Nn

∑
j∈Nm

L(y j`,w
′B`x j`)+ γw′w, w∈ R

p. (11)

This transformation relates matrixE defining the homogeneous quadratic function ofu we used in
(6), J(u), and the feature matrixB. We describe this relationship in the proposition below.

Proposition 1 If the feature matrix B is full rank and we define the matrix E in Equation (7) as to
be E= (B′B)−1 then we have that

S(w) = R(B′w), w∈ R
d. (12)

Conversely, if we choose a symmetric and positive definite matrix E in Equation (7) and T is a
squared root of E then for the choice of B= T ′E−1 Equation (12) holds true.

620



LEARNING MULTIPLE TASKS WITH KERNEL METHODS

PROOF. We first prove the first part of the proposition. Since Equation (9) requires that the feature
vectorw is commonto all vectorsu` and those are arbitrary, the feature matrixB must be of full
rankdn and, so, the matrixE above is well defined. This matrix has the property thatBEB′ = Ip,
this being thep× p identity matrix. Consequently, we have that

w′w = J(B′w), w∈ R
p (13)

and Equation (12) follows.
On the other direction, we have to find a matrixB such thatBEB′ = Ip. To this end, we express

E in the form
E = TT′

whereT is adn× p matrix, p≥ dn. This maybe done in various ways sinceE is positive definite.
For example, withp= dnwe can find adn×dnmatrixT by using the eigenvalues and eigenvectors
of E. With this representation ofE we can choose our features to be

B = VT′E−1

whereV is anarbitrary p× p orthogonal matrix. This fact follows becauseBEB′ = Ip. In particular,
if we chooseV = Ip the result follows.

�

Note that this proposition requires thatB is of full rank becauseE is positive definite. As an
example, consider the case thatB` is adn×d matrix all of whosed×d blocks are zero except for
the`−th block which is equal toId. This choice means that we are learning all tasks independently,
that is,J(u) = ∑`∈Nn

‖u`‖2 and proposition (1) confirms thatE = Idn.
We conjecture that if the matrixB is not full rank, the equivalence between function (11) and

(6) stated in proposition 1 still holds true provided matrixE is given by the pseudoinverse of matrix
(B′B) and we minimize the latter function on the linear subspaceS spanned by the eigenvectors
of E which have a positive eigenvalue. For example, in the above case whereB` = B0 for all
` ∈ Nn we have thatS = {(u` : ` ∈ Nn) : u1 = u2 = · · · = un}. This observation would also extend
to the circumstance where there are arbitrary linear relations amongst the task functions. Indeed,
we can impose such linear relations on the features directly to achieve this relation amongst the
task functions. We discuss a specific example of this set up in Section 3.1.3. However, we leave a
complete analysis of the positive semidefinite case to a future occasion.

The main implication of proposition 1 is the equivalence between function (6) and (11) when
E is positive definite. In particular, this proposition implies that when matrixB andE are linked as
stated in the proposition, the unique minimizersw∗ of (11) andu∗ of (6) are related by the equations
u∗ = B′w∗.

Since functional (11) is like a single task regularization functional (2), bythe representer theorem—
see Equation (5)—its minimizer has the form

w∗ = ∑
j∈Nm

∑
`∈Nn

c j`B`x j`.

This implies that the optimal task functions are

f ∗q (x) = ∑
j∈Nm

∑
`∈Nn

c j`K((x j`, `),(x,q)), x∈ R
d,q∈ Nn (14)
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where the kernel is defined in Equation (10). Note that these equations hold for anychoice of the
matricesB`, ` ∈ Nn.

Having defined the kernel for (10), we can now use standard single-task learning methods to
learn multiple tasks simultaneously (we only need to define the appropriate kernel for the input data
(x, `)). Specific choices of the loss functionL in Equation (11) lead to different learning methods.

Example 1 In regularization networks (RN) we choose the square lossL(y,z) = (y− z)2, y,z∈ R

(see, for example, Evgeniou, Pontil, and Poggio, 2000). In this case theparametersc j` in Equa-
tion (14) are obtained by solving the system of linear equations

∑
q∈Nn

∑
j∈Nm

K((x jq,q),(xi`, `))c jq = yi`, i ∈ Nm, ` ∈ Nn. (15)

When the kernelK is defined by Equation (10) this is a form of multi-task ridge regression.

�

Example 2 In support vector machines (SVM) for binary classification (Vapnik, 1998) we choose
the hinge loss, namelyL(y,z) = (1−yz)+ where(x)+ = max(0,x) andy∈ {−1,1}. In this case, the
minimization of function (11) can be rewritten in the usual form

Problem 3.1

min

{

∑
`∈Nn

∑
i∈Nm

ξi` + γ‖w‖2

}

(16)

subject, for all i∈ Nm and` ∈ Nn, to the constraints that

yi`w
′B`xi` ≥ 1−ξi` (17)

ξi` ≥ 0.

Following the derivation in Vapnik (1998) the dual of this problem is given by

Problem 3.2

max
ci∈`

{

∑
`∈Nn

∑
i∈Nm

ci`−
1
2 ∑

`,q∈Nn

∑
i, j∈Nm

ci`yi`c jqy jqK((xi`, `),(x jq,q))

}

(18)

subject, for all i∈ Nn and` ∈ Nn, to the constrains that

0≤ ci` ≤
1
2γ

.

�

We now study particular examples some of which we also test experimentally in Section 5.
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3.1 Examples of Linear Multi-Task Kernels

We discuss some examples of the above framework which are valuable for applications. These
cases arise from different choices of matricesB` that we used above to model task relatedness or,
equivalently, by directly choosing the functionJ in Equation (6).

Notice that a particular case of the regularizerJ in Equation (7) is given by

J(u) = ∑
`,q∈Nn

u′`uqG`q (19)

whereG = (G`,q : `,q∈ Nn) is a positive definite matrix. Proposition (1) implies that the kernel has
the form

K((x, `),(t,q)) = x′t G−1
`q . (20)

Indeed,J can be written as(u,Eu) whereE is then×n block matrix whosè ,q block is thed×d
matrixG`qId and the result follows. The examples we discuss are with kernels of the form (20).

3.1.1 A USEFUL EXAMPLE

In our first example we chooseB` to be the(n+ 1)d× d matrix whosed× d blocks are all zero
except for the 1−st and(` + 1)−th block which are equal to

√
1−λId and

√
λnId respectively,

whereλ ∈ (0,1) andId is thed−dimensional identity matrix. That is,

B′
` = [

√

1−λId,0, . . . ,0
︸ ︷︷ ︸

`−1

,
√

λnId,0, . . . ,0
︸ ︷︷ ︸

n−`

] (21)

where here 0 stands for thed× d matrix all of whose entries are zero. Using Equation (10) the
kernel is given by

K((x, `),(t,q)) = (1−λ+λnδ`q)x
′t, `,q∈ Nn, x, t ∈ R

n. (22)

A direct computation shows that

E`q = ((B′B)−1)`q =
1
n

(
δ`q

λ
− 1−λ

nλ

)

Id

whereE`q is the(`,q)−th d×d block of matrixE. By proposition 1 we have that

J(u) =
1
n

(

∑
`∈Nn

‖u`‖2 +
1−λ

λ ∑
`∈Nn

‖u`−
1
n ∑

q∈Nn

uq‖2

)

. (23)

This regularizer enforces a trade–off between a desirable small size for per–task parameters and
closeness of each of these parameters to their average. This trade-offis controlled by the coupling
parameterλ. If λ is small the tasks parameters arerelated(closed to their average) whereas ifλ = 1
the task are learned independently.

The model of minimizing (11) with the regularizer (24) was proposed by Evgeniou and Pontil
(2004) in the context of support vector machines (SVM’s). In this casethe above regularizer trades
off large margin of each per–task SVM with closeness of each SVM to the average SVM. In Section
4 we will present numerical experiments showing the good performance ofthis multi–task SVM
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compared to both independent per–task SVM’s (that is,λ = 1 in Equation (22)) and previous multi–
task learning methods.

We note in passing that an alternate form for the functionJ is

J(u) = min

{

1
λn ∑

`∈Nn

‖u`−u0‖2 +
1

1−λ
‖u0‖2 : u0 ∈ R

d

}

. (24)

It was this formula which originated our interest in multi-task learning in the context of regulariza-
tion, see (Evgeniou and Pontil, 2004) for a discussion. Moreover, if wereplace the identity matrix
Id in Equation (21) by a (any)d×d matrixA we obtain the kernel

K((x, `),(t,q)) = (1−λ+λnδ`q)x
′Qt, `,q∈ Nn, x, t ∈ R

n (25)

whereQ = A′A. In this case the norm in Equation (23) and (24) is replaced by‖ · ‖Q−1.

3.1.2 TASK CLUSTERING REGULARIZATION

The regularizer in Equation (24) implements the idea that the task parametersu` are all related to
each other in the sense that eachu` is close to an “average parameter”u0. Our second example
extends this idea to different groups of tasks, that is, we assume that the task parameters can be
put together in different groups so that the parameters in thek−th group are all close to an average
parameteru0k. More precisely, we consider the regularizer

J(u) = min

{

∑
k∈Nc

(

∑
`∈Nn

ρ(`)
k ‖u`−u0k‖2 +ρ‖u0k‖2

)

: u0k ∈ R
d,k∈ Nc

}

(26)

whereρ(`)
k ≥ 0, ρ > 0, andc is the number of clusters. Our previous example corresponds toc = 1,

ρ = 1
1−λ andρ(`)

1 = 1
λn. A direct computation shows that

J(u) = ∑
`,q∈Nn

u′`uqG`q

where the elements of the matrixG = (G`q : `,q∈ Nn) are given by

G`q = ∑
k∈Nc

(

ρ(`)
k δ`q−

ρ(`)
k ρ(q)

k

ρ+∑r∈Nn
ρ(r)

k

)

.

If ρ(`)
k has the property that given any` there is a clusterk such thatρ(`)

k > 0 thenG is positive
definite. ThenJ is positive definite and by Equation (20) the kernel is given byK((x, `),(t,q)) =

G−1
`q x′t. In particular, ifρ(`)

h = δhk(`) with k(`) the cluster task̀ belongs to, matrixG is invertible
and takes the simple form

G−1
`q = δ`q +

1
ρ

θ`q (27)

whereθ`q = 1 if tasks` andq belong to the same cluster and zero otherwise. In particular, ifc = 1
and we setρ = 1−λ

λn the kernelK((x, `),(t,q)) = (δ`q + 1
ρ)x′t is the same (modulo a constant) as the

kernel in Equation (22).
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3.1.3 GRAPH REGULARIZATION

In our third example we choose ann×n symmetric matrixA all of whose entries are in the unit
interval, and consider the regularizer

J(u) :=
1
2 ∑

`,q∈Nn

‖u`−uq‖2A`q = ∑
`,q∈Nn

u′`uqL`q (28)

whereL = D−A with D`q = δ`q ∑h∈Nn
A`h. The matrixA could be the weight matrix of a graph with

n vertices andL the graph Laplacian (Chung, 1997). The equationA`q = 0 means that tasks̀andq
are not related, whereasA`q = 1 means strong relation.

The quadratic function (28) is only positive semidefinite sinceJ(u) = 0 whenever all the com-
ponents ofu` are independent of̀. To identify those vectorsu for which J(u) = 0 we express the
LaplacianL in terms of its eigenvalues and eigenvectors. Thus, we have that

L`q = ∑
k∈Nn

σkvk`vkq (29)

where the matrixV = (vk`) is orthogonal,σ1 = · · · = σr < σr+1 ≤ ·· · ≤ σn are the eigenvalues ofL
andr ≥ 1 is the multiplicity of the zero eigenvalue. The numberr can be expressed in terms of the
number of connected components of the graph, see, for example, (Chung, 1997). Substituting the
expression (29) forL in the right hand side of (28) we obtain that

J(u) = ∑
k∈Nn

σk

∥
∥
∥
∥
∥

∑
`∈Nn

u`vk`

∥
∥
∥
∥
∥

2

.

Therefore, we conclude thatJ is positive definite on the space

S =

{

u : u∈ R
dn, ∑

`∈Nn

u`vk` = 0,k∈ Nr

}

.

Clearly, the dimension ofS is d(n− r). S gives us a Hilbert space of vector-valued linear functions

H =
{

fu(x) = (u′`x : ` ∈ Nn) : u∈ S
}

and the reproducing kernel ofH is given by

K((x, `),(t,q)) = L+
`q x′t. (30)

whereL+ is the pseudoinverse ofL, that is,

L+
`q =

n

∑
k=r+1

σ−1
k vk`vkq.

The verification of these facts is straightforward and we do not elaborateon the details. We can
use this observation to assert that on the spaceS the regularization function (6) corresponding to
the Laplacian has auniqueminimum and it is given in the form of a representer theorem for kernel
(30).
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4. Experiments

As discussed in the introduction, we conducted experiments to compare the (standard) single-task
version of a kernel machine, in this case SVM, to a multi-task version developed above. We tested
two multi-task versions of SVM: a) we considered the simple case that the matrixQ in Equation (25)
is the identity matrix, that is, we use the multi-task kernel (22), and b) we estimate the matrixQ in
(25) by running PCA on the previously learned task parameters. Specifically, we first initializeQ to
be the identity matrix. We then iterate as follows:

1. We estimate parametersu` using (25) and the current estimate of matrixQ (which, for the
first iteration is the identity matrix).

2. We run PCA on these estimates, and select only the top principal components(corresponding
to the largest eigenvalues of the empirical correlation matrix of the estimatedu`). In partic-
ular, we only select the eigenvectors so that the sum of the corresponding eigenvalues (total
“energy” kept) is at least 90% of the sum of all the eigenvalues (not using the remaining
eigenvalues once we reach this 90% threshold). We then use the covariance of these principal
components as our estimate of matrixQ in (25) for the next iteration.

We can repeat steps (1) and (2) until all eigenvalues are needed to reach the 90% energy threshold
– typically in 4-5 iterations for the experiments below. We can then pick the estimated u` after the
iteration that lead to the best validation error. We emphasize, that this is simply a heuristic. We do
not have a theoretical justification for this heuristic. Developing a theory aswell as other methods
for estimating matrixQ is an open question. Notice that instead of using PCA we could directly
use for matrixQ simply the covariance of the estimatedu` of the previous iteration. However doing
so is sensitive to estimation errors ofu` and leads (as we also observed experimentally – we don’t
show the results here for simplicity) to poorer performance.

One of the key questions we considered is:how does multi-task learning perform relative to
single-task as the number of data per task and as the number of tasks change?This question is also
motivated by a typical situation in practice, where it may be easy to have data from many related
tasks, but it may be difficult to have many data per task. This could often be for example the case
in analyzing customer data for marketing, where we may have data about manycustomers (tens
of thousands) but only a few samples per customer (only tens) (Allenby and Rossi, 1999; Arora,
Allenby, and Ginter, 1998). It can also be the case for biological data, where we may have data
about many related diseases (for example, types of cancer), but only afew samples per disease
(Rifkin et al., 2003). As noted by other researchers in (Baxter, 1997,2000; Ben-David, Gehrke, and
Schuller, 2002; Ben-David and Schuller, 2003), one should expect that multi-task learning helps
more, relative to single task, when we have many tasks but only few data pertask – while when we
have many data per task then single-task learning may be as good.

We performed experiments with two real data sets. One was on customer choice data, and the
other was on school exams used by (Bakker and Heskes, 2003; Heskes, 2000) which we use here
also for comparison with (Bakker and Heskes, 2003; Heskes, 2000).We discuss these experiments
next.
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4.1 Customer Data Experiments

We tested the proposed methods using a real data set capturing choices among products made by
many individuals.1 The goal is to estimate a function for each individual modeling the preferences
of the individual based on the choices he/she has made. This function is used in practice to predict
what product each individual will choose among future choices. We modeled this problem as a
classification one along the lines of (Evgeniou, Boussios, and Zacharia,2002). Therefore, the goal
is to estimate a classification function for each individual.

We have data from 200 individuals, and for each individual we have 120 data points. The data
are three dimensional (the products were described using three attributes, such as color, price, size,
etc.) each feature taking only discrete values (for example, the color can be only blue, or black, or
red, etc.). To handle the discrete valued attributes, we transformed them intobinary ones, having
eventually 20-dimensional binary data. We consider each individual as adifferent “task”. Therefore
we have 200 classification tasks and 120 20-dimensional data points for each task – for a total of
24000 data points.

We consider a linear SVM classification for each task – trials with non-linear (polynomial of
degree 2 and 3) SVM did not improve performance for this data set. To testhow multi-task compares
to single task as the number of data per task and/or the number of tasks changes, we ran experiments
with varying numbers of data per task and number of tasks. In particular, we considered 50, 100,
and 200 tasks, splitting the 200 tasks into 4 groups of 50 or 2 groups of 100(or one group of 200),
and then taking the average performance among the 4 groups, the 2 groups (and the 1 group). For
each task we split the 120 points into 20, 30, 60, 90 training points, and 100,90, 60, 30 test points
respectively.

Given the limited number of data per task, we chose the regularization parameter γ for the
single-task SVM among only a few values (0.1, 1, 10) using the actual test error.2 On the other
hand, the multi-task learning regularization parameterγ and parameterλ in (22) were chosen using
a validation set consisting of one (training) data point per task which we thenincluded back to the
training data for the final training after the parameter selection. The parameters λ andγ used when
we estimated matrix Q through PCA were the same as when we used the identity matrix as Q. We
note that one of the advantages of multi-task learning is that, since the data aretypically from many
tasks, parameters such as regularization parameterγ can be practically chosen using only a few,
proportionally to all the data available, validation data without practically “losing” many data for
parameter selection – which may be a further important practical reason formulti-task learning.
Parameterλ was chosen among values (0, 0.2, 0.4, 0.6, 0.8) – value 1 correspondingto training one
SVM per task. Below we also record the results indicating how the test performance is affected by
parameterλ.

We display all the results in Table 4.1. Notice that the performance of the single-task SVM does
not change as the number of tasks increases – as expected. We also notethat when we use one
SVM for all the tasks—treating the data as if they come from the same task—we get a very poor
performance: between 38 and 42 percent test error for the (data× tasks) cases considered.

From these results we draw the following conclusions:

1. The data are proprietary were provided to the authors by Research International Inc. and are available upon request.
2. This lead to some overfitting of the single task SVM, however it only gave our competitor an advantage over our

approach.
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Tasks Data One SVM Indiv SVM Identity PCA
50 20 41.97 29.86 28.72 29.16
100 20 41.41 29.86 28.30 29.26
200 20 40.08 29.86 27.79 28.53

50 30 40.73 26.84 25.53 25.65
100 30 40.66 26.84 25.25 24.79
200 30 39.43 26.84 25.16 24.13

50 60 40.33 22.84 22.06 21.08
100 60 40.02 22.84 22.27 20.79
200 60 39.74 22.84 21.86 20.00

50 90 38.51 19.84 19.68 18.45
100 90 38.97 19.84 19.34 18.08
200 90 38.77 19.84 19.27 17.53

Table 1: Comparison of Methods as the number of data per task and the number of tasks changes.
“One SVM” stands for training one SVM with all the data from all the task, “Indiv SVM”
stands for training for each task independently, “Identity” stands for themulti-task SVM
with the identity matrix, and “PCA” is the multi-task SVM using the PCA approach. Mis-
classification errors are reported. Best performance(s) at the 5% significance level is in
bold.

• When there are few data per task (20, 30, or 60), both multi-task SVMs significantly outper-
form the single-task SVM.

• As the number of tasks increases the advantage of multi-task learning increases – for example
for 20 data per task, the improvement in performance relative to single-taskSVM is 1.14,
1.56, and 2.07 percent for the 50, 100, and 200 tasks respectively.

• When we have many data per task (90), the simple multi-task SVM does not provide any
advantage relative to the single-task SVM. However, the PCA based multi-task SVM signifi-
cantly outperforms the other two methods.

• When there are few data per task, the simple multi-task SVM performs better thanthe PCA
multi-task SVM. It may be that in this case the PCA multi-task SVM overfits the data.

The last two observations indicate that it is important to have a good estimate of matrix Q in
(25) for the multi-task learning method that uses matrixQ. Achieving this is currently an open ques-
tions that can be approached, for example, using convex optimization techniques, see, for example,
(Lanckriet et al., 2004; Micchelli and Pontil, 2005b)

To explore the second point further, we show in Figure 1 the change in performance for the
identity matrix based multi-task SVM relative to the single-task SVM in the case of 20data per
task. We useλ = 0.6 as before. We notice the following:

• When there are only a few tasks (for example, less than 20 in this case), multi-task can hurt
the performance relative to single-task. Notice that this depends on the parameterλ used.
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For example, settingλ close to 1 leads to using a single-task SVM. Hence our experimental
findings indicate thatfor few tasks one should use either a single-task SVM or a multi-task
one with parameterλ selected near 1.

• As the number of tasks increases, performance improves – surpassing the performance of the
single-task SVM after 20 tasks in this case.

As discussed in (Baxter, 1997, 2000; Ben-David, Gehrke, and Schuller, 2002; Ben-David and
Schuller, 2003), an important theoretical question is to study the effects ofadding additional tasks on
the generalization performance (Ben-David, Gehrke, and Schuller, 2002; Ben-David and Schuller,
2003). What our experiments show is that, for few tasks it may be inappropriate to follow a multi-
task approach if a smallλ is used, but as the number of tasks increases performance relative to
single-task learning improves. Therefore one should choose parameterλ depending on the number
of tasks, much like one should choose regularization parameterγ depending on the number of data.

We tested the effects of parameterλ in Equation (22) on the performance of the proposed ap-
proach. In Figure 2 we plot the test error for the simple multi-task learning method using the identity
matrix (kernel (22)) for the case of 20 data per task when there are 200tasks (third row in Table
4.1), or 10 tasks (for which single-task SVM outperforms multi-task SVM forλ = 0.6 as shown in
Figure 1). Parameterλ varies from 0 (one SVM for all tasks) to 1 (one SVM per task). Notice that
for the 200 tasks the error drops and then increases, having a flat minimumbetweenλ = 0.4 and
0.6. Moreover, for anyλ between 0.2 and 1 we get a better performance than the single-task SVM.
The same behavior holds for the 10 tasks, except that now the space ofλ’s for which the multi-task
approach outperforms the single-task one is smaller – only forλ between 0.7 and 1. Hence,for a
few tasks multi-task learning can still help if a large enoughλ is used. However, as we noted above,
it is an open question as to how to choose parameterλ in practice – other than using a validation set.

0 20 40 60 80 100 120 140 160 180 200
27.5
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29

29.5

30

30.5

31

Figure 1: The horizontal axis is the number of tasks used. The vertical axisis the total test misclas-
sification error among the tasks. There are 20 training points per task. We also show the
performance of a single-task SVM (dashed line) which, of course, is not changing as the
number of tasks increases.
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Figure 2: The horizontal axis is the parameterλ for the simple multi-task method with the identity
matrix kernel (22). The vertical axis is the total test misclassification error among the
tasks. There are 200 tasks with 20 training points and 100 test points per task. Left is for
10 tasks, and right is for 200 tasks.
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Figure 3: Performance on the school data. The horizontal axis is the parameterλ for the simple
multi-task method with the identity matrix while the vertical is the explained variance
(percentage) on the test data. The solid line is the performance of the proposed approach
while the dashed line is the best performance reported in (Bakker and Heskes, 2003).

4.2 School Data Experiment

We also tested the proposed approach using the “school data” from the Inner London Education
Authority available atmultilevel.ioe.ac.uk/intro/datasets.html. This experiment is also discussed
in (Evgeniou and Pontil, 2004) where some of the ideas of this paper were first presented. We

630



LEARNING MULTIPLE TASKS WITH KERNEL METHODS

selected this data set so that we can also compare our method directly with the work of Bakker and
Heskes (2003) where a number of multi-task learning methods are applied to this data set. This
data consists of examination records of 15362 students from 139 secondary schools. The goal is to
predict the exam scores of the students based on the following inputs: year of the exam, gender, VR
band, ethnic group, percentage of students eligible for free school meals in the school, percentage of
students in VR band one in the school, gender of the school (i.e. male, female, mixed), and school
denomination. We represented the categorical variables using binary (dummy) variables, so the total
number of inputs for each student in each of the schools was 27. Since thegoal is to predict the
exam scores of the students we ran regression using the SVMε–loss function (Vapnik, 1998) for the
multi–task learning method proposed. We considered each school to be “one task”. Therefore, we
had 139 tasks in total. We made 10 random splits of the data into training (75% of the data, hence
around 70 students per school on average) and test (the remaining 25%of the data, hence around
40 students per school on average) data and we measured the generalization performance using the
explained variance of the test data as a measure in order to have a direct comparison with (Bakker
and Heskes, 2003) where this error measure is used. The explained variance is defined in (Bakker
and Heskes, 2003) to be the total variance of the data minus the sum–squared error on the test set
as a percentage of the total data variance, which is a percentage versionof the standardR2 error
measure for regression for the test data. Finally, we used a simple linear kernel for each of the tasks.

The results for this experiment are shown in Figure 3. We set regularization parameterγ to be
1 and used a linear kernel for simplicity. We used the simple multi-task learning method proposed
with the identity matrix. We let the parameterλ vary to see the effects. For comparison we also
report on the performance of the task clustering method described in (Bakker and Heskes, 2003) –
the dashed line in the figure.

The results show again the advantage of learning all tasks (for all schools) simultaneously in-
stead of learning them one by one. Indeed, learning each task separately in this case hurts perfor-
mance a lot. Moreover, even the simple identity matrix based approach significantly outperforms
the Bayesian method of (Bakker and Heskes, 2003), which in turn in betterthan other methods as
compared in (Bakker and Heskes, 2003). Note, however, that for thisdata set one SVM for all tasks
performs the best, which is also similar to using a small enoughλ (any λ between 0 and 0.7 in
this case). Hence, it appears that the particular data set may come from a single task (despite this
observation, we use this data set for direct comparison with (Bakker andHeskes, 2003)). This result
also indicates that when the tasks are the same task, using the proposed multi-task learning method
does not hurt as long as a small enoughλ is used. Notice that for this data set the performance does
not change significantly forλ between 0 and 0.7, which shows that, as for the customer data above,
the proposed method is not very sensitive toλ. A theoretical study of the sensitivity of our approach
to the choice of the parameterλ is an open research direction which may also lead to a better un-
derstanding of the effects of increasing the number of tasks on the generalization performance as
discussed in (Baxter, 1997, 2000; Ben-David and Schuller, 2003).

5. Discussion and Conclusions

In this final section we outline the extensions of the ideas presented above tonon-linear functions,
discuss some open problems on multi-tasks learning and draw our conclusions.
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5.1 Nonlinear Multi-Task Kernels

We discuss a non-linear extension of the multi-task learning methods presented above. This gives
us an opportunity to provide a wide variety of multi-task kernels which may be useful for applica-
tions. Our presentation builds upon earlier work on learning vector–valued functions (Micchelli and
Pontil, 2005) which developed the theory of RKHS of functions whose range is a Hilbert space.

As in the linear case we view the vector-valued functionf = ( f` : ` ∈ Nn) as a real-valued
function on the input spaceX ×Nn. We expressf in terms of the feature mapsΦ` : X → W , ` ∈ Nn

whereW is a Hilbert space with inner product〈·, ·〉. That is, we have that

f`(x) = 〈w,Φ`(x)〉, x∈ X , ` ∈ Nn.

The vectorw is computed by minimizing the single-task functional

S(w) :=
1

nm ∑
`∈Nn

∑
j∈Nm

L(y j`,〈w,Φ`(x j`)〉)+ γ 〈w,w〉, w∈ W . (31)

By the representer theorem, the minimizer of functionalShas the form in Equation (14) where the
multi-task kernel is given by the formula

K((x, `),(t,q)) = 〈Φ`(x),Φq(t)〉 x, t ∈ X , `,q∈ Nn. (32)

In Section 3 we have discussed this approach in the case thatW is a finite dimensional Euclidean
space andΦ` the linear mapΦ`(x) = B`x, thereby obtaining the linear multi-task kernel (10). In
order to generalize this case it is useful to recall a result of Schur whichstates that the elementwise
product of two positive semidefinite matrices is also positive semidefinite, (Aronszajn, 1950, p. 358).
This implies that the elementwise product of two kernels is a kernel. Consequently, we conclude
that, for anyr ∈ N,

K((x, `),(t,q)) = (x′B′
`Bqt)

r (33)

is a polynomial multi-task kernel.
More generally we have the following lemma.

Lemma 2 If G is a kernel onT ×T and, for everỳ ∈ Nn, there are prescribed mappings z` : X →
T such that

K((x, `),(t,q)) = G(z̀ (x),zq(t)), x, t ∈ X , `,q∈ Nn (34)

then K is a multi-task kernel.

PROOF. We note that for every{ci` : i ∈ Nm, ` ∈ Nn} ⊂ R and{xi` : i ∈ Nm, ` ∈ Nn} ⊂ X we have

∑
i, j∈Nm

∑
`,q∈Nn

ci`c jqG(z̀ (xi`),zq(x jq)) = ∑
i,`

∑
jq

ci`c jqG(z̃i`, z̃jq) ≥ 0

where we have defined ˜zi` = z̀ (xi`) and the last inequality follows by the hypothesis thatG is a
kernel. �

For the special case thatT = R
p, z̀ (x) = B`x with B` a p×d matrix,` ∈ Nn, andG : R

p×R
p → R

is the homogeneous polynomial kernel,G(t,s) = (t ′s)r , the lemma confirms that the function (33)
is a multi-task kernel. Similarly, whenG is chosen to be a Gaussian kernel, we conclude that

K((x, `),(t,q)) = exp(−β‖B`x−Bqt‖2)
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is a multi-task kernel for everyβ > 0.
Lemma 2 also allows us to generalize multi-task learning to the case that each task function f`

has adifferent input domainX`, a situation which is important in applications, see, for example,
(Ben-David, Gehrke, and Schuller, 2002) for a discussion. To this end, we specify setsX`, ` ∈ Nn,
functionsg` : X` → R, and note that multi–task learning can be placed in the above framework by
defining the input space

X := X1×X2×·· ·×Xn.

We are interested in the functionsf`(x) = g`(P̀ x), wherex= (x1, . . . ,xn) andP̀ : X → X` is defined,
for everyx ∈ X by P̀ (x) = x`. Let G be a kernel onT × T and choosez̀ (·) = φ`(P̀ (·)) where
φ` : X` → T are some prescribed functions. Then by lemma 2 the kernel defined by Equation (34)
can be used to represent the functionsg`. In particular, in the case of linear functions, we choose
X` = R

d` , whered` ∈ N, T = R
p, p∈ N, G(s, t) = s′t andz̀ = D`P̀ whereD` is a p×d` matrix. In

this case, the multi-task kernel is given by

K((x, `),(t,q)) = x′P′
`D

′
`DqPqt

which is of the form in Equation (10) forB` = D`P̀ , ` ∈ Nn.
We note that ideas related to those presented in this section appear in (Girosi,2003).

5.2 Conclusion and Future Work

We developed a framework for multi-task learning in the context of regularization in reproducing
kernel Hilbert spaces. This naturally extends standard single-task kernel learning methods, such as
SVM and RN. The framework allows to model relationships between the tasks and to learn the task
parameters simultaneously. For this purpose, we showed that multi-task learning can be seen as
single-task learning if a particular family of kernels, that we called multi-task kernels, is used. We
also characterized the non-linear multi-task kernels.

Within the proposed framework, we defined particular linear multi-task kernels that correspond
to particular choices of regularizers which model relationships between thefunction parameters. For
example, in the case of SVM, appropriate choices of this kernel/regularizer implemented a trade–
off between large margin of each per–task individual SVM and closeness of each SVM to linear
combinations of the individual SVMs such as their average.

We tested some of the proposed methods using real data. The experimental results show that the
proposed multi-task learning methods can lead to significant performance improvements relative to
the single-task learning methods, especially when many tasks with few data each are learned.

A number of research questions can be studied starting from the framework and methods we
developed here. We close with commenting on some issues which stem out of themain theme of
this paper.

• Learning a multi-task kernel.The kernel in Equation (22) is perhaps the simplest nontrivial
example of a multi-task kernel. This kernel is a convex combination of two kernels, the first
of which corresponds to learning independent tasks and the second one is a rank one kernel
which corresponds to learning all tasks as the same task. Thus this kernellinearly combines
two opposite models to form a more flexible one. Our experimental results above indicate
the value of this approach provided the parameterλ is chosen for the application at hand.
Recent work by Micchelli and Pontil (2004) shows that, under rather general conditions,
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the optimal convex combination of kernels can be learned by minimizing the functional in
Equation (1) with respect toK and f ∈ HK , whereK is a kernel in the convex set of kernels,
see also (Lanckriet et al., 2004). Indeed, in our specific case we canshow—along the lines in
(Micchelli and Pontil, 2004)—that the regularizer (24) is convex inλ andu. This approach is
rather general and can be adapted also for learning the matrixQ in the kernel in Equation (25)
which in our experiment we estimated by our “ad hoc” PCA approach.

• Bounds on the generalization error.Yet another important question is how to bound the
generalization error for multi-task learning. Recently developed bounds relying on the notion
of algorithmic stability or Rademacher complexity should be easily applicable to ourcontext.
This should highlight the role played by the matricesB` in Equation (10). Intuitively, if
B` = B0 we should have a simple (low-complexity) model whereas if theB` are orthogonal
a more complex model. More specifically, this analysis should say how the generalization
error, when using the kernel (22), depends onλ.

• Computational considerations.A drawback of our proposed multi-task kernel method is that
its computational complexity time isO(p(mn)) which is worst than the complexity of solving
n independent kernel methods, this beingnO(p(m)). The functionp depends on the loss
function used and, typically,p(m) = ma with a a positive constant. For example for the
square lossa= 3. Future work will focus on the study of efficient decomposition methods for
solving the multi-task SVM or RN. This decomposition should exploit the structureprovided
by the matricesB` in the kernel (10). For example, if we use the kernel (22) and the tasks
share the same input examples it is possible to show that the linear system ofmnEquations
(15) can be reduced to solvingn+1 systems ofmequations, which is essentially the same as
solvingn independent ridge regression problems.

• Multi-task feature selection.Continuing on the discussion above, we observe that if we re-
strict the matrixQ to be diagonal then learningQ corresponds to a form of feature selection
across tasks. Other feature selection formulations where the tasks may share only some of
their features should also be possible. See also the recent work by Jebara (2004) for related
work on this direction.

• Online multi-task learning.An interesting problem deserving of investigation is the question
of how to learn a set of tasks online where at each instance of time a set of examples for anew
task is sampled. This problem is valuable in applications where an environment is explored
and new data/tasks are provided during this exploration. For example, the environment could
be a market of customers in our application above, or a set of scenes in computer vision which
contains different objects we want to recognize.

• Multi-task learning extensions.Finally it would be interesting to extent the framework pre-
sented here to other learning problems beyond classification and regression. Two example
which come to mind are kernel density estimation, see, for example, (Vapnik, 1998), or one-
class SVM (Tax and Duin, 1999).

634



LEARNING MULTIPLE TASKS WITH KERNEL METHODS

Acknowledgments

The authors would like to thank Phillip Cartwright and Simon Trusler from Research International
for their help with this data set.

References

G. M. Allenby and P. E. Rossi. Marketing models of consumer heterogeneity. Journal of Econo-
metrics, 89, p. 57–78, 1999.

R. K. Ando and T. Zhang. A Framework for Learning Predictive Structures from Multiple Tasks
and Unlabeled Data. Technical Report RC23462, IBM T.J. Watson Research Center, 2004.

N. Arora G.M Allenby, and J. Ginter. A hierarchical Bayes model of primary and secondary de-
mand.Marketing Science, 17,1, p. 29–44, 1998.

N. Aronszajn. Theory of reproducing kernels.Trans. Amer. Math. Soc., 686, pp. 337–404, 1950.

B. Bakker and T. Heskes. Task clustering and gating for Bayesian multi–task learning. Journal of
Machine Learning Research, 4: 83–99, 2003.

J. Baxter. A Bayesian/information theoretic model of learning to learn via multipletask sampling.
Machine Learning, 28, pp. 7–39, 1997.

J. Baxter. A model for inductive bias learning.Journal of Artificial Intelligence Research, 12, p.
149–198, 2000.

S. Ben-David, J. Gehrke, and R. Schuller. A theoretical framework for learning from a pool of
disparate data sources. Proceedings of Knowledge Discovery and Datamining (KDD), 2002.

S. Ben-David and R. Schuller. Exploiting task relatedness for multiple task learning. Proceedings
of Computational Learning Theory (COLT), 2003.

L. Breiman and J.H Friedman. Predicting multivariate responses in multiple linear regression.Royal
Statistical Society Series B, 1998.

P. J. Brown and J. V. Zidek. Adaptive multivariate ridge regression.The Annals of Statistics, Vol. 8,
No. 1, p. 64–74, 1980.

R. Caruana. Multi–task learning.Machine Learning, 28, p. 41–75, 1997.

F. R. K. Chung.Spectral Graph TheoryCBMS Series, AMS, Providence, 1997.

T. Evgeniou, M. Pontil, and T. Poggio. Regularization networks and support vector machines.
Advances in Computational Mathematics, 13:1–50, 2000.

T. Evgeniou, C. Boussios, and G. Zacharia. Generalized robust conjoint estimation. Marketing
Science, 2005 (forthcoming).

T. Evgeniou and M. Pontil. Regularized multi-task learning. Proceedings ofthe 10th Conference on
‘Knowledge Discovery and Data Mining, Seattle, WA, August 2004.

635



EVGENIOU, M ICCHELLI AND PONTIL

F. Girosi.Demographic Forecasting. PhD Thesis, Harvard University, 2003.

W. Greene.Econometric Analysis. Prentice Hall, fifth edition, 2002.

B. Heisele, T. Serre, M. Pontil, T. Vetter, and T. Poggio. Categorization by learning and combining
object parts. InAdvances in Neural Information Processing Systems 14, Vancouver, Canada, Vol.
2, 1239–1245, 2002.

T. Heskes. Empirical Bayes for learning to learn. Proceedings of ICML–2000, ed. Langley, P., pp.
367–374, 2000.

T. Jebara. Multi-Task Feature and Kernel Selection for SVMs. International Conference on Machine
Learning, ICML, July 2004.

M. I. Jordan and R. A. Jacobs. Hierarchical mixtures of experts and the EM algorithm. Neural
Computation, 1993.

G. R. G. Lanckriet, N. Cristianini, P. Bartlett, L. El Ghaoui, and M. I. Jordan. Learning the kernel
matrix with semi-definite programming.Journal of Machine Learning Research, 5, pp. 27–72,
2004.

G. R. G. Lanckriet, T. De Bie, N. Cristianini, M. I. Jordan, and W. S. Noble. A framework for
genomic data fusion and its application to membrane protein prediction. Technical Report CSD–
03–1273, Division of Computer Science, University of California, Berkeley, 2003.

O. L. Mangasarian.Nonlinear Programming. Classics in Applied Mathematics. SIAM, 1994.

C. A. Micchelli and M. Pontil. Learning the kernel via regularization. Research Note RN/04/11,
Dept of Computer Science, UCL, September, 2004.

C. A. Micchelli and M. Pontil. On learning vector–valued functions.Neural Computation, 17, pp.
177–204, 2005.

C. A. Micchelli and M. Pontil. Kernels for multi-task learning. Proc. of the 18–th Conf. on Neural
Information Processing Systems, 2005.

R. Rifkin, S. Mukherjee, P. Tamayo, S. Ramaswamy, C. Yeang, M. Angelo, M. Reich, T. Poggio,
T. Poggio, E. Lander, T. Golub, and J. Mesirov. An analytical method for multi-class molecular
cancer classificationSIAM Review, Vol. 45, No. 4, p. 706-723, 2003.

J. Shawe-Taylor and N. Cristianini.Kernel Methods for Pattern Analysis.Cambridge University
Press, 2004.
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