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Abstract

The approach of learning of multiple ”related” tasks simultaneously
has proven quite successful in practice; however, theoretical justi-
fication for this success has remained elusive. The starting point
of previous work on multiple task learning has been that the tasks
to be learnt jointly are somehow ”algorithmically related”, in the
sense that the results of applying a specific learning algorithm to
these tasks are assumed to be similar. We take a logical step back-
wards and offer a data generating mechanism through which our
notion of task-relatedness is defined.

We provide a formal framework for task relatedness that captures
a certain sub-domain of the wide scope of issues in which one may
apply a multiple task learning approach. Our notion of similarity
between tasks is relevant to a variety of real life multi-task learn-
ing scenarios and allows the formal derivation of strong generaliza-
tion bounds (bounds that are strictly stronger than the previously
known bounds for both the learning-to-learn and the multi-task-
learning scenarios). We provide general conditions under which
our bounds guarantee smaller sample size per task than the known
bounds for the single task learning approach.

1 Introduction

Most approaches to machine learning focus on the learning of a single isolated task.
While great success has been achieved in this type of framework, it is clear that it
neglects certain fundamental aspects of human learning. Human beings face each
new learning task equipped with knowledge gained from previous learning tasks.
There is no question that mankind would be seriously hindered if we simply threw
away the knowledge gained from one learning task before commencing another,
rather than using each learning task to become a better learner. Furthermore, hu-
man learning frequently involves approaching several learning tasks simultaneously;
in particular, humans take advantage of the opportunity to compare and contrast
similar categories in learning to classify entities into those categories. For example,



most of us probably learned the alphabet by learning several similar letters at the
same time.

It is natural to attempt to apply these observations to machine learning–what kind
of advantage is there in setting a learner to work on several tasks sequentially or
simultaneously? Intuitively, there should certainly be some advantage, especially if
the tasks are closely related in some way. And, indeed, much experimental work
[1, 5, 6] has validated this intuition. However, thus far, there has been relatively
little progress on any sort of theoretical justification for these results.

Relatedness of tasks is key to the multi task learning (MTL) approach. Obviously,
one cannot expect that information gathered through the learning of a set of tasks
will be relevant to the learning of another task that has nothing in common with
the already learned set of tasks.

Previous work on MTL (or Learning to Learn) treated the notion of relatedness
using a ’functional’ approach. Consider for example Baxter’s Learning To Learn
work, e.g., [2] (which is, to our knowledge, the most systematic theoretical analysis
of the simultaneous learning approach). In Baxter’s work the similarity between
jointly learned tasks is manifested solely through a model selection criterion, namely,
the advantages of learning tasks together relies on the assumption that the tasks
share a common optimal hypothesis class (or inductive bias).

We take a step backwards. We introduce a data generating framework through
which a notion of task relatedness is defined. Not surprisingly, by limiting the
discussion to problems that can be modelled by our data generating mechanism we
leave many potential MTL scenarios outside the scope of our discussion. However,
there are several interesting problems that can be treated within our framework.
For these problems we can reap the benefits of having a mathematical notion of
relatedness and prove sample size upper bounds for MTL learning that are far
better than any previous proven bounds.

The rest of the paper is organized as follows: Section 2 formally introduces multiple
task learning and describes our notion of task similarity, and. We state our gener-
alization error bound for this framework in section 3 and in section 4, we compare
these results for multiple task learning to the known bounds for the single task ap-
proach. We close with concluding remarks and directions for future work in section
5.

2 A Data Generation Model for Related Tasks

Formally, the typical classification learning problem is framed as follows: Given a
domain X and a random sample S drawn from some unknown distribution P on
X × {0, 1}, find a hypothesis h : X → {0, 1} which approximates P (i.e., h such
that for randomly drawn (x, b), with high probability h(x) = b). This problem is
some times referred to as ”statistical regressions”.

The multiple task learning problem is the analogous problem for multiple distri-
butions. That is, given domain X and sequence of random samples S1, . . . , Sn

drawn from some unknown distributions P1, . . . Pn, respectively, on X ×{0, 1}, find
hypotheses h1, . . . , hn : X → {0, 1} which approximate P1, . . . , Pn, respectively.

As we have mentioned previously, it is intuitive that the advantage of the multiple
task approach depends on the ”relatedness” between the different tasks. While
there has been empirical success with sets of tasks related in various ways, thus far,
no formal definition of ”relatedness” has provided any theoretical results to this



effect.

2.1 Our Notion of Relatedness Between Learning Tasks

We define a data generation mechanism which serves to determine our notion of
related tasks. Our data generation model is an extension of the agnostic learning
framework.

The basic ingredient in our definition is a set F of transformations f : X → X .
We say that tasks are F- related if, for some fixed probability distribution over
X × {0, 1}, the data in each of these tasks is generated by applying some f ∈ F to
this fixed distribution.

Definition 2.1 Let F be a set of transformations f : X → X , and let P1, P2 be
probability distributions over X ×{0, 1}. We say that P1, P2 are F-related distribu-
tions if there exists some f ∈ F such that for any T ⊆ X×{0, 1}, T is P1-measurable
iff f [T ] = {(f(x), b) | (x, b) ∈ T )} is P2 - measurable and P1(T ) = P2(f [T ]).

Note that the strength of this definition depends of the richness of the family of
transformations F . The larger this set gets, the loser is the notion of F- relatedness.
Clearly there are many examples of potential applications of simultaneous learning
that do not fit into this model of relatedness. However, there are various interesting
examples where this notion seems to provide a satisfactory mathematical model of
the similarity between the tasks of a set of related learning problems.

Typically our notion of F relatedness arises in situations where many different
sensors collect data for the same classification problem. For example, consider a set
of cameras located in different locations in the lobby of some high security building.
Assume that they are all used to automatically detect unauthorized visitors, based
on the images they record. Clearly, each of these cameras has its own bias, due to
a different hight, light conditions, angle, etc. While it may be difficult to determine
the exact bias of each camera, it may be feasible to define mathematically a set of
image transformations F such that the data distributions of images collected by of
all these recorders are F- related.

Another area in which such a notion of similarity is applicable is that of database
integration. Suppose there are several databases available, each of which obtains its
information from the same data pool, yet represents its information with a different
database schema. For the purpose of classification prediction, our results in the
next section eliminate the need for the difficult undertaking of database integration,
treating each database as one task in a multiple task learning problem.

In the following section, we show that our notion of relatedness yields a bound on
the generalization error for each task.

3 Learning F-similar Tasks

In this section, we analyze multiple task learning for F-related tasks. Formally,
given domain X , hypothesis space H on X , set of transformations F on X , and
sequence S1, . . . , Sn of samples from some sequence of F-similar distributions,
P1, . . . , Pn on X × {0, 1}, select h1, . . . , hn ∈ H which make good classification
predictions for P1, . . . , Pn.

We proceed by addressing this problem in two phases. The first phase makes use of
all of the samples to reduce the size of our hypothesis space by selecting a subspace of
H. The second phase then uses standard learning techniques to select a hypothesis



from this subspace for each task separately. The advantage of this approach is
that, generally, the first phase reduces the complexity (e.g. VC-dimension) of the
hypothesis space, thus reducing the sample complexity of the second phase.

In general, our approach to the first phase is as follows: Define a partition H into a
family of subspaces. Then choose a subspace, H, to minimize the average empirical
error over the different tasks.

Our main result is a bound on the generalization error for this approach.

We now describe explicitly our method for partitioning H. From the given hy-
pothesis space, H, we create a family, H, of hypothesis spaces consisting of sets of
hypothesis in H which are equivalent up to transformations in F . Without loss of
generality, we assume that F forms a group under function composition and that
H is closed under the action of F (i.e., for each f ∈ F and each h ∈ H, we have
h ◦ f ∈ H).

Definition 3.1 Given hypothesis space H and transformation family F on domain
X , define equivalence relation ∼F on H by:

h1 ∼F h2 iff there exists f ∈ F such that h2 = h1 ◦ f .

Now, we let our family of hypothesis spaces, H, be the family of all equivalence
classes of H under ∼F , i.e., H = H/ ∼F . In this scenario,

ErPj (h ◦ f−1
j ) = ErP (h) for any h and any 1 ≤ j ≤ n, (1)

where P is the common underlying distribution from the definition of F-similar
(definition 2.1). Using this fact, we can deduce that the equivalence classes of H
perform equally well on the different tasks in the following sense.

Definition 3.2 For any hypothesis space, H, define

ErP (H) = inf
h∈H

ErP (h).

Lemma 3.3 Let P1, P2 be F-similar tasks, and F be a group under function com-
position. If H is closed under the action of F then ErP1(H) = ErP2(H).

Proof: We need to show that

inf
h∈H

ErP1(h) = inf
h∈H

ErP2(h).

It suffices to show that for every h ∈ H there exist h′, h′′ ∈ H such that ErP2(h′) ≤
ErP1(h) and ErP1(h′′) ≤ ErP2(h).

Let P, f1, f2 be as in the definition of F-similar distributions (definition 2.1), i.e.,
Pi corresponds to P modified according to fi. Given h, let h′ = h ◦ f1 ◦ f

−1
2 and

h′′ = h ◦ f2 ◦ f
−1
1 . By equation 1, ErP2(h′) = ErP1(h) and ErP1(h′′) = ErP2(h),

so we are done.

Corollary 3.4 For any h ∈ H and any 1 ≤ j ≤ n,

ErPj ([h]∼F ) = inf
h1,...,hn∈[h]∼F

1

n

n
∑

i=1

ErPi(hi).

We are now ready to state and prove our main result, which gives an upper bound
on the sample complexity of finding a ∼F -equivalence class which is near-optimal
for each of the tasks.



Theorem 3.5 For any 0 ≤ ε, δ ≤ 1 and h ∈ H, if S1, . . . , Sn is an F-similar
sequence of samples corresponding to P1, . . . , Pn, with |Si| ≥ m for all i, where

m ≥
88

ε2

[

2dH(n) log
22

ε
+
1

n
log
4

δ

]

,

then with probability at least 1− δ, for any 1 ≤ j ≤ n,
∣

∣

∣

∣

∣

ErPj ([h]∼F )− inf
h1,...,hn∈[h]∼F

1

n

n
∑

i=1

Êr
Si

(hi)

∣

∣

∣

∣

∣

≤ ε.

Theorem 3.5 follows almost directly from theorem 3.8 and corollary 3.4.

Note that combining the standard generalization error result for single task learning
with 3.5 gives an information complexity bound for these two phases together. We
state this bound explicitly in the next section.

3.1 Background from Baxter [2]

Baxter’s generalization error bound for inductive bias depends on the following
notion of generalized VC-dimension for families of hypothesis spaces.

Notation: For function g : Y → Z and y = (y1, . . . , yn) ∈ Y n, g(y) will denote
(g(y1), . . . , g(yn)) ∈ Z

n.

Definition 3.6 For family H of hypothesis spaces, and n,m ∈ Z+,

ΠH(n,m) = max
x1,...,xn∈Xm

∣

∣

∣

∣

∣

∣

∣

















h1(x1)
...

hl(xn)






: ∃H ∈ H with h1, . . . , hn ∈ H











∣

∣

∣

∣

∣

∣

∣

.

Definition 3.7 dH(n) = max{m : ΠH(n,m) = 2
nm}.

We can now state the necessary result from [2] on multitask learning, which appears
as corollary 13 in [2]. 1

Theorem 3.8 Let H be any permissible boolean hypothesis space family2, and let
S1, . . . , Sn be a sequence of random samples from distributions P1, . . . , Pn on X ×
{0, 1}. If the number of examples m in each sample Si satisfies

m ≥
88

ε2

[

2dH(n) log
22

ε
+
1

n
log
4

δ

]

,

then with probability at least 1− δ (over the choice of S1, . . . , Sn), for any H ∈ H,
and h1, . . . , hn ∈ H,

∣

∣

∣

∣

∣

1

n

n
∑

i=1

ErPi(hi)−
1

n

n
∑

i=1

Êr
Si

(hi)

∣

∣

∣

∣

∣

≤ ε.

1Note that although [2] only states that 1
n

∑n

i=1 ErPi(hi) ≤
1
n

∑n

i=1 Êr
Si
(hi) + ε, it is

clear from the proofs in [2] that this stronger form holds.
2Permissibility, discussed in [4] is a ”weak measure-theoretic condition satisfied by

almost all ’real-world’ hypothesis space families” ([2], Appendix D). Throughout this paper
we shall assume that all our classes are permissible.



4 Multiple Task Learning Versus the Single Task Approach

We have provided upper bounds on the information complexity of multiple task
learning where the tasks are related via some set of transformations, F . We now
address the question of how this compares to the information complexity of single
task learning.

In the following, let D =VC-dim(H), dmax = maxh∈HVC-dim([h]∼F ).

The standard single task learning result [7] guarantees that for a single sample S0

sampled from distribution P0, |S0| ≥

(64/ε2)[log(4/δ) + 2D log(12/ε)] (2)

is sufficient to ensure that with probability at least 1− δ,
∣

∣

∣
ErP0(h)− Êr

S0

(h)
∣

∣

∣
≤ ε.

Analogously, the results in this paper guarantee that for n F-similar tasks, the total
number of examples needed is at most

n×max

(

352

ε2

[

2dH(n) log
44

ε
+
1

n
log
8

δ

]

,

(

256

ε2

)[

2dmax log
24

ε
+ log

8

δ

])

< n×
352

ε2

[

2dH(n) log
44

ε
+
8

11
log
8

δ

]

. (3)

It is clear that if n is relatively large, then this bound for the total number examples
required for the multitask approach is not an improvement over the single task
approach. This is not surprising. However, the number of examples needed per
task is at most 1

n th of this quantity. Thus, if dH(n) ¿ D, then the information
complexity per task is less for learning n tasks than for learning a single data task.
This means that if the ∼F -equivalence classes of H are sufficiently less rich than
H itself, then one can compensate for insufficient training data for a task by using
additional tasks.

Now, in order to compare the per task information complexity advantage of multiple
task learning, we must first compare dH(n) and V C-dim(H).

4.1 Analysis of dH(n)

It is easy to see that dmax ≤ dH(n) ≤ D. Thus, the best we can hope for is
dH(n) = dmax. The following theorem gives a general scenario in which this bound
is attained.

Theorem 4.1 If there exists M such that |h| ≤M for all h ∈ H, then there exists
n0 such that for all n ≥ n0,

dH(n) = max
h∈H

VC-dim([h]∼F ).

Proof: Assume dH(n) ≥ m, and let x1, . . . , xn be such that
∣

∣

∣

∣

∣

∣

∣

















h ◦ f1(x1)
...

h ◦ fn(xn)






: f1 . . . fn ∈ F , h ∈ H











∣

∣

∣

∣

∣

∣

∣

= 2nm



Consider h0 ∈ H and f1, . . . , fn such that






h0 ◦ f1(x1)
...

h0 ◦ fn(xn)






=







1 . . . 1
...
. . .

...
1 . . . 1







Note that for each i, there exists Si ⊆ h0 such that xi is some permutation of
{f−1

i (z) : z ∈ Si}.

Say |h0| = K. Then if n >
(

(

K
m

)

− 1
)

2m, then there exists S ⊆ h0 and i1, . . . i2m

such that Sij
= S for 1 ≤ j ≤ 2m. Let σ1, . . . σ2m be the corresponding permuta-

tions.

Finally, letting v1, . . . , v2m be an enumeration of all vectors of length m over {0, 1},
letting N be any m× n matrix over {0, 1} whose i th

j row is σj(vij
), and letting h∗

and f ′1, . . . , f
′
n be such that







h∗ ◦ f ′1(x1)
...

h∗ ◦ f ′n(xn)






= N,

we see that [h∗]∼F shatters S, so m ≤ VC-dim([h∗]∼F ).

To eliminate the dependence on |h0| = K, we set n0 =
(

(

M
M/2

)

− 1
)

2M , noting that

n0 ≥
(

(

K
m

)

− 1
)

2m for all K,m ≤M .

Ben-David, et. al. [3] provide the following further results on dH∼F
(n).

Theorem 4.2 If F is finite and n
log(n) ≥ VC-dim(H), then dH∼F

(n) ≤ 2 log(|F|)

Theorem 4.3 If ∼F is of finite index k, and n ≥ log k
4d log d , then

dH∼F (n) ≤
log k

n + 4d log d, where

d = max

(

max
H∈H/∼F

VC-dim(H), 3

)

.

4.2 When Multiple Task Learning is Provably Advantageous

As we observed earlier, if dH(n) ¿ D, then the multiple task approach provides a
provable information gain. Observe that dH(n) < D/8 is sufficient to ensure that
1/n times the quantity in equation 3 is less than the quantity in equation 2. The
analysis in section 4.1 provides some cases where this holds. In particular, theorem
4.3 gives us this guarantee for sufficiently large n, provided that (dmax) log(dmax) <
D/8. Additionally, theorem 4.2 gives us the following corollary.

Corollary 4.4 If F is finite, then given a sequence of F-similar tasks, the multi-
ple task approach offers an information complexity advantage over the single task
approach for any hypothesis space H with V C-dim(H) ≤ 16 log(|F|). 3

3Assuming F is closed under function composition and inverse, and H is closed under
the action of F .



5 Conclusions and Future Work

We have presented a useful notion of relatedness between tasks for multiple task
learning. Our notion of relatedness provides a natural model for learning situations
in which data for the same classification task is collected by a set of similar yet
different recording devices. We derived generalization error bounds for learning of
multiple tasks related in this manner, and provided general conditions under which
these bounds guarantee better generalization than the known bounds for the single
task approach. This is a small but significant step towards the goal of a full theory
of multiple task learning. Due to the restriction to a special type of relatedness of
tasks, we have been able to obtain sample size bounds which are significantly better
than previously proven bounds for the learning to learn scenario.

Hopefully, this work will stimulate future work in several directions. There is room
for a more thorough understanding of the conditions under which multi-task learn-
ing is advantageous over the single task approach in our scenario. It would also
be fruitful to relax the requirements on the set of transformations through which
the tasks are related, allowing these transformations to be arbitrary rather than
bijections, and perhaps even allowing the actual transformations between the tasks
to be merely approximated by the set of known transformations. Finally, the quest
for more general notions of similarity between tasks remains the key to a thorough
understanding of multiple task learning.

We believe that this work provides convincing evidence that a theoretical under-
standing of multiple task learning is a promising research endeavor worth pursuing.
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