
B NOTES ON LANGUAGES
AND ALGORITHMS

B.1 DEFINING LANGUAGES WITH BACKUS–NAUR FORM (BNF)

In this book, we define several languages, including the languages of propositional logic
(page 243), first-order logic (page 293), and a subset of English (page 899). A formal lan-
guage is defined as a set of strings where each string is a sequence of symbols. The languages
we are interested in consist of an infinite set of strings, so we need a concise way to charac-
terize the set. We do that with agrammar. The particular type of grammar we use is called a
context-free grammar, because each expression has the same form in any context. WewriteCONTEXT­FREE

GRAMMAR

our grammars in a formalism calledBackus–Naur form (BNF). There are four componentsBACKUS–NAUR
FORM (BNF)

to a BNF grammar:

• A set ofterminal symbols. These are the symbols or words that make up the strings ofTERMINAL SYMBOL

the language. They could be letters (A, B, C, . . .) or words (a, aardvark, abacus,. . .),
or whatever symbols are appropriate for the domain.

• A set ofnonterminal symbols that categorize subphrases of the language. For exam-NONTERMINAL
SYMBOL

ple, the nonterminal symbolNounPhrase in English denotes an infinite set of strings
including “you” and “the big slobbery dog.”

• A start symbol, which is the nonterminal symbol that denotes the complete set ofSTART SYMBOL

strings of the language. In English, this isSentence; for arithmetic, it might beExpr ,
and for programming languages it isProgram .

• A set of rewrite rules, of the formLHS → RHS , whereLHS is a nonterminal
symbol andRHS is a sequence of zero or more symbols. These can be either terminal
or nonterminal symbols, or the symbolǫ, which is used to denote the empty string.

A rewrite rule of the form

Sentence → NounPhrase VerbPhrase

means that whenever we have two strings categorized as aNounPhrase and aVerbPhrase,
we can append them together and categorize the result as aSentence. As an abbreviation,
the two rules (S → A) and (S → B) can be written (S → A | B).

1060

Section B.2. Describing Algorithms with Pseudocode 1061

Here is a BNF grammar for simple arithmetic expressions:

Expr → Expr Operator Expr | (Expr) | Number

Number → Digit | Number Digit

Digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
Operator → + | − | ÷ | ×

We cover languages and grammars in more detail in Chapter 22.Be aware that other books
use slightly different notations for BNF; for example, you might see〈Digit〉 instead ofDigit

for a nonterminal, ‘word’ instead ofword for a terminal, or::= instead of→ in a rule.

B.2 DESCRIBINGALGORITHMS WITH PSEUDOCODE

The algorithms in this book are described in pseudocode. Most of the pseudocode should be
familiar to users of languages like Java, C++, or Lisp. In some places we use mathematical
formulas or ordinary English to describe parts that would otherwise be more cumbersome. A
few idiosyncrasies should be noted.

• Persistent variables: We use the keywordpersistent to say that a variable is given an
initial value the first time a function is called and retains that value (or the value given to
it by a subsequent assignment statement) on all subsequent calls to the function. Thus,
persistent variables are like global variables in that theyoutlive a single call to their
function, but they are accessible only within the function.The agent programs in the
book use persistent variables formemory. Programs with persistent variables can be
implemented asobjects in object-oriented languages such as C++, Java, Python, and
Smalltalk. In functional languages, they can be implemented by functional closures
over an environment containing the required variables.
• Functions as values: Functions and procedures have capitalized names, and variables

have lowercase italic names. So most of the time, a function call looks like FN(x).
However, we allow the value of a variable to be a function; forexample, if the value of
the variablef is the square root function, thenf (9) returns 3.
• for each: The notation “for each x in c do” means that the loop is executed with the

variablex bound to successive elements of the collectionc.
• Indentation is significant: Indentation is used to mark the scope of a loop or condi-

tional, as in the language Python, and unlike Java and C++ (which use braces) or Pascal
and Visual Basic (which useend).
• Destructuring assignment: The notation “x , y← pair ” means that the right-hand side

must evaluate to a two-element tuple, and the first element isassigned tox and the
second toy. The same idea is used in “for each x , y in pairs do” and can be used to
swap two variables: “x , y← y , x ”
• Generators andyield: the notation “generator G(x) yields numbers” defines G as a

generator function. This is best understood by an example. The code fragment shown in

1062 Appendix B. Notes on Languages and Algorithms

generatorPOWERS-OF-2() yields ints
i← 1
while true do

yield i

i← 2 × i

for p in POWERS-OF-2() do
PRINT(p)

Figure B.1 Example of a generator function and its invocation within a loop.

Figure B.1 prints the numbers 1, 2, 4, . . . , and never stops. The call to POWERS-OF-2
returns a generator, which in turn yields one value each timethe loop code asks for the
next element of the collection. Even though the collection is infinite, it is enumerated
one element at a time.

• Lists: [x, y, z] denotes a list of three elements.[first |rest] denotes a list formed by
addingfirst to the listrest . In Lisp, this is thecons function.

• Sets: {x, y, z} denotes a set of three elements.{x : p(x)} denotes the set of all elements
x for which p(x) is true.

• Arrays start at 1 : Unless stated otherwise, the first index of an array is 1 as inusual
mathematical notation, not 0, as in Java and C.

B.3 ONLINE HELP

Most of the algorithms in the book have been implemented in Java, Lisp, and Python at our
online code repository:

aima.cs.berkeley.edu

The same Web site includes instructions for sending comments, corrections, or suggestions
for improving the book, and for joining discussion lists.

