## Manipulators



 $\begin{array}{rl} \mbox{Configuration of robot specified by 6 numbers} \\ \Rightarrow & \mbox{6 degrees of freedom (DOF)} \end{array}$ 

6 is the minimum number required to position end-effector arbitrarily. For dynamical systems, add velocity for each DOF.

Chapter 25 1

Chapter 25 2

#### Outline

Robotics

Chapter 25

Robots, Effectors, and Sensors

Localization and Mapping

Motion Planning

Motor Control

## Non-holonomic robots

(x, y)

A car has more DOF (3) than controls (2), so is non-holonomic; cannot generally transition between two infinitesimally close configurations

Chapter 25 5

Chapter 25 4





Range finders: sonar (land, underwater), laser range finder, radar (aircraft), tactile sensors,  $\mathsf{GPS}$ 

Sensors



Imaging sensors: cameras (visual, infrared) Proprioceptive sensors: shaft decoders (joints, wheels), inertial sensors, force sensors, torque sensors

## Localization—Where Am I?

Compute current location and orientation (pose) given observations:



## Localization contd.

Can also use extended Kalman filter for simple cases:



Assumes that landmarks are *identifiable*—otherwise, posterior is multimodal



Assume Gaussian noise in motion prediction, sensor range measurements

#### Mapping

Localization: given map and observed landmarks, update pose distribution

Mapping: given pose and observed landmarks, update map distribution

SLAM: given observed landmarks, update pose and map distribution

Probabilistic formulation of SLAM: add landmark locations  $L_1, \ldots, L_k$  to the state vector, proceed as for localization

Chapter 25 11

Chapter 25 10

# Localization contd.

#### Can use particle filtering to produce approximate position estimate





Chapter 25 7

Chapter 25 8

# 3D Mapping example





Chapter 25 13

Chapter 25 14

#### Cell decomposition example



Problem: may be no path in pure freespace cells Solution: recursive decomposition of mixed (free+obstacle) cells

## Motion Planning

Idea: plan in configuration space defined by the robot's DOFs





Solution is a point trajectory in free C-space

#### Skeletonization: Voronoi diagram

Voronoi diagram: locus of points equidistant from obstacles



Problem: doesn't scale well to higher dimensions

Chapter 25 17

Chapter 25 16

#### Configuration space planning

Basic problem:  $\infty^d$  states! Convert to finite state space.

#### Cell decomposition:

divide up space into simple cells, each of which can be traversed "easily" (e.g., convex)

#### Skeletonization:

identify finite number of easily connected points/lines that form a graph such that any two points are connected by a path on the graph

# Skeletonization: Probabilistic Roadmap

A probabilistic roadmap is generated by generating random points in C-space and keeping those in freespace; create graph by joining pairs by straight lines



Problem: need to generate enough points to ensure that every start/goal pair is connected through the graph

#### Motor control

Can view the motor control problem as a search problem in the dynamic rather than kinematic state space:

- state space defined by  $x_1, x_2, \ldots, \dot{x_1}, \dot{x_2}, \ldots$
- continuous, high-dimensional (Sarcos humanoid: 162 dimensions)

Deterministic control: many problems are exactly solvable esp. if linear, low-dimensional, exactly known, observable

Simple regulatory control laws are effective for specified motions

Stochastic optimal control: very few problems exactly solvable  $\Rightarrow$  approximate/adaptive methods

## Simple learning algorithm: Stochastic gradient

Minimize  $E_{\theta}[y^2]$  by gradient descent:

$$\begin{split} \nabla_{\theta_0} E_{\theta}[y^2] \;&=\; \nabla_{\theta_0} \int P_{\theta_0}(\theta) F(\theta)^2 d\theta \\ \;&=\; \int \frac{\nabla_{\theta_0} P_{\theta_0}(\theta)}{P_{\theta_0}(\theta)} F(\theta)^2 P_{\theta_0}(\theta) d\theta \\ \;&=\; E_{\theta}[\frac{\nabla_{\theta_0} P_{\theta_0}(\theta)}{P_{\theta_0}(\theta)} y^2] \end{split}$$

Given samples  $(\theta_j, y_j)$ ,  $j = 1, \ldots, N$ , we have

$$\nabla_{\theta_0} \hat{E}_{\theta}[y^2] = \frac{1}{N} \sum_{j=1}^N \frac{\nabla_{\theta_0} P_{\theta_0}(\theta_j)}{P_{\theta_0}(\theta_j)} y_j^2$$

For Gaussian noise with covariance  $\Sigma,$  i.e.,  $P_{\theta_0}(\theta)=N(\theta_0,\Sigma),$  we obtain

$$\nabla_{\theta_0} \hat{E}_{\theta}[y^2] = \frac{1}{N} \sum_{j=1}^N \Sigma^{-1}(\theta_j - \theta_0) y_j^2$$

Chapter 25 22

#### Biological motor control

Motor control systems are characterized by massive redundancy

Infinitely many trajectories achieve any given task

E.g., 3-link arm moving in plane throwing at a target simple 12-parameter controller, one degree of freedom at target 11-dimensional continuous space of optimal controllers

Idea: if the arm is noisy, only "one" optimal policy minimizes error at target

I.e., noise-tolerance might explain actual motor behaviour

Harris & Wolpert (Nature, 1998): signal-dependent noise explains eye saccade velocity profile perfectly







Suppose a controller has "intended" control parameters  $\theta_0$  which are corrupted by noise, giving  $\theta$  drawn from  $P_{\theta_0}$ 

Output (e.g., distance from target)  $y = F(\theta)$ ;





Chapter 25 19

Chapter 25 20

Chapter 25 23





| Summary |  |
|---------|--|

The rubber hits the road

Mobile robots and manipulators

Degrees of freedom to define robot configuration

Localization and mapping as probabilistic inference problems (require good sensor and motion models)

Motion planning in configuration space requires some method for finitization

25

26