
Learning from Observations

Chapter 18, Sections 1–3

Chapter 18, Sections 1–3 1

Outline

♦ Learning agents

♦ Inductive learning

♦ Decision tree learning

♦ Measuring learning performance

Chapter 18, Sections 1–3 2

Learning

Learning is essential for unknown environments,
i.e., when designer lacks omniscience

Learning is useful as a system construction method,
i.e., expose the agent to reality rather than trying to write it down

Learning modifies the agent’s decision mechanisms to improve performance

Chapter 18, Sections 1–3 3

Learning agents

Performance standard

Agent

E
n

viro
n

m
en

t
Sensors

Effectors

Performance
 element

changes

knowledge
learning
 goals

 Problem
 generator

feedback

 Learning
 element

Critic

experiments

Chapter 18, Sections 1–3 4

Learning element

Design of learning element is dictated by
♦ what type of performance element is used
♦ which functional component is to be learned
♦ how that functional compoent is represented
♦ what kind of feedback is available

Example scenarios:

Performance element

Alpha−beta search

Logical agent

Simple reflex agent

Component

Eval. fn.

Transition model

Transition model

Representation

Weighted linear function

Successor−state axioms

Neural net

Dynamic Bayes netUtility−based agent

Percept−action fn

Feedback

Outcome

Outcome

Win/loss

Correct action

Supervised learning: correct answers for each instance
Reinforcement learning: occasional rewards

Chapter 18, Sections 1–3 5

Inductive learning (a.k.a. Science)

Simplest form: learn a function from examples (tabula rasa)

f is the target function

An example is a pair x, f(x), e.g.,
O O X

X
X

, +1

Problem: find a(n) hypothesis h
such that h ≈ f
given a training set of examples

(This is a highly simplified model of real learning:

– Ignores prior knowledge

– Assumes a deterministic, observable “environment”

– Assumes examples are given

– Assumes that the agent wants to learn f—why?)

Chapter 18, Sections 1–3 6

Inductive learning method

Construct/adjust h to agree with f on training set
(h is consistent if it agrees with f on all examples)

E.g., curve fitting:

x

f(x)

Chapter 18, Sections 1–3 7

Inductive learning method

Construct/adjust h to agree with f on training set
(h is consistent if it agrees with f on all examples)

E.g., curve fitting:

x

f(x)

Chapter 18, Sections 1–3 8

Inductive learning method

Construct/adjust h to agree with f on training set
(h is consistent if it agrees with f on all examples)

E.g., curve fitting:

x

f(x)

Chapter 18, Sections 1–3 9

Inductive learning method

Construct/adjust h to agree with f on training set
(h is consistent if it agrees with f on all examples)

E.g., curve fitting:

x

f(x)

Chapter 18, Sections 1–3 10

Inductive learning method

Construct/adjust h to agree with f on training set
(h is consistent if it agrees with f on all examples)

E.g., curve fitting:

x

f(x)

Chapter 18, Sections 1–3 11

Inductive learning method

Construct/adjust h to agree with f on training set
(h is consistent if it agrees with f on all examples)

E.g., curve fitting:

x

f(x)

Ockham’s razor: maximize a combination of consistency and simplicity

Chapter 18, Sections 1–3 12

Attribute-based representations

Examples described by attribute values (Boolean, discrete, continuous, etc.)
E.g., situations where I will/won’t wait for a table:

Example Attributes Target

Alt Bar Fri Hun Pat Price Rain Res Type Est WillWait

X1 T F F T Some $$$ F T French 0–10 T

X2 T F F T Full $ F F Thai 30–60 F

X3 F T F F Some $ F F Burger 0–10 T

X4 T F T T Full $ F F Thai 10–30 T

X5 T F T F Full $$$ F T French >60 F

X6 F T F T Some $$ T T Italian 0–10 T

X7 F T F F None $ T F Burger 0–10 F

X8 F F F T Some $$ T T Thai 0–10 T

X9 F T T F Full $ T F Burger >60 F

X10 T T T T Full $$$ F T Italian 10–30 F

X11 F F F F None $ F F Thai 0–10 F

X12 T T T T Full $ F F Burger 30–60 T

Classification of examples is positive (T) or negative (F)

Chapter 18, Sections 1–3 13

Decision trees

One possible representation for hypotheses
E.g., here is the “true” tree for deciding whether to wait:

No Yes

No Yes

No Yes

No Yes

No Yes

No Yes

None Some Full

>60 30−60 10−30 0−10

No Yes
Alternate?

Hungry?

Reservation?

Bar? Raining?

Alternate?

Patrons?

Fri/Sat?

WaitEstimate?F T

F T

T

T

F T

TFT

TF

Chapter 18, Sections 1–3 14

Expressiveness

Decision trees can express any function of the input attributes.
E.g., for Boolean functions, truth table row → path to leaf:

FT

A

B

F T

B

A B A xor B

F F F
F T T
T F T
T T F

F

F F

 T

 T T

Trivially, there is a consistent decision tree for any training set
w/ one path to leaf for each example (unless f nondeterministic in x)
but it probably won’t generalize to new examples

Prefer to find more compact decision trees

Chapter 18, Sections 1–3 15

Hypothesis spaces

How many distinct decision trees with n Boolean attributes??

Chapter 18, Sections 1–3 16

Hypothesis spaces

How many distinct decision trees with n Boolean attributes??

= number of Boolean functions

Chapter 18, Sections 1–3 17

Hypothesis spaces

How many distinct decision trees with n Boolean attributes??

= number of Boolean functions
= number of distinct truth tables with 2n rows

Chapter 18, Sections 1–3 18

Hypothesis spaces

How many distinct decision trees with n Boolean attributes??

= number of Boolean functions
= number of distinct truth tables with 2n rows = 22

n

Chapter 18, Sections 1–3 19

Hypothesis spaces

How many distinct decision trees with n Boolean attributes??

= number of Boolean functions
= number of distinct truth tables with 2n rows = 22

n

E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616 trees

Chapter 18, Sections 1–3 20

Hypothesis spaces

How many distinct decision trees with n Boolean attributes??

= number of Boolean functions
= number of distinct truth tables with 2n rows = 22

n

E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616 trees

How many purely conjunctive hypotheses (e.g., Hungry ∧ ¬Rain)??

Chapter 18, Sections 1–3 21

Hypothesis spaces

How many distinct decision trees with n Boolean attributes??

= number of Boolean functions
= number of distinct truth tables with 2n rows = 22

n

E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616 trees

How many purely conjunctive hypotheses (e.g., Hungry ∧ ¬Rain)??

Each attribute can be in (positive), in (negative), or out
⇒ 3n distinct conjunctive hypotheses

More expressive hypothesis space
– increases chance that target function can be expressed
– increases number of hypotheses consistent w/ training set
⇒ may get worse predictions

Chapter 18, Sections 1–3 22

Decision tree learning

Aim: find a small tree consistent with the training examples

Idea: (recursively) choose “most significant” attribute as root of (sub)tree

function DTL(examples, attributes, default) returns a decision tree

if examples is empty then return default

else if all examples have the same classification then return the classification

else if attributes is empty then return Mode(examples)

else

best←Choose-Attribute(attributes, examples)

tree← a new decision tree with root test best

for each value vi of best do

examplesi←{elements of examples with best = vi}

subtree←DTL(examplesi,attributes− best,Mode(examples))

add a branch to tree with label vi and subtree subtree

return tree

Chapter 18, Sections 1–3 23

Choosing an attribute

Idea: a good attribute splits the examples into subsets that are (ideally) “all
positive” or “all negative”

None Some Full

Patrons?

French Italian Thai Burger

Type?

Patrons? is a better choice—gives information about the classification

Chapter 18, Sections 1–3 24

Information

Information answers questions

The more clueless I am about the answer initially, the more information is
contained in the answer

Scale: 1 bit = answer to Boolean question with prior 〈0.5, 0.5〉

Information in an answer when prior is 〈P1, . . . , Pn〉 is

H(〈P1, . . . , Pn〉) = Σn
i =1
− Pi log2 Pi

(also called entropy of the prior)

Chapter 18, Sections 1–3 25

Information contd.

Suppose we have p positive and n negative examples at the root
⇒ H(〈p/(p+n), n/(p+n)〉) bits needed to classify a new example

E.g., for 12 restaurant examples, p = n = 6 so we need 1 bit

An attribute splits the examples E into subsets Ei, each of which (we hope)
needs less information to complete the classification

Let Ei have pi positive and ni negative examples
⇒ H(〈pi/(pi+ni), ni/(pi+ni)〉) bits needed to classify a new example
⇒ expected number of bits per example over all branches is

Σi
pi + ni

p + n
H(〈pi/(pi + ni), ni/(pi + ni)〉)

For Patrons?, this is 0.459 bits, for Type this is (still) 1 bit

⇒ choose the attribute that minimizes the remaining information needed

Chapter 18, Sections 1–3 26

Example contd.

Decision tree learned from the 12 examples:

No Yes
Fri/Sat?

None Some Full

Patrons?

No Yes
Hungry?

Type?

French Italian Thai Burger

F T

T F

F

T

F T

Substantially simpler than “true” tree—a more complex hypothesis isn’t jus-
tified by small amount of data

Chapter 18, Sections 1–3 27

Performance measurement

How do we know that h ≈ f? (Hume’s Problem of Induction)

1) Use theorems of computational/statistical learning theory

2) Try h on a new test set of examples
(use same distribution over example space as training set)

Learning curve = % correct on test set as a function of training set size

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

%
 c

or
re

ct
 o

n
te

st
 s

et

Training set size

Chapter 18, Sections 1–3 28

Performance measurement contd.

Learning curve depends on
– realizable (can express target function) vs. non-realizable

non-realizability can be due to missing attributes
or restricted hypothesis class (e.g., thresholded linear function)

– redundant expressiveness (e.g., loads of irrelevant attributes)

% correct

of examples

1

nonrealizable

redundant

realizable

Chapter 18, Sections 1–3 29

Summary

Learning needed for unknown environments, lazy designers

Learning agent = performance element + learning element

Learning method depends on type of performance element, available
feedback, type of component to be improved, and its representation

For supervised learning, the aim is to find a simple hypothesis
that is approximately consistent with training examples

Decision tree learning using information gain

Learning performance = prediction accuracy measured on test set

Chapter 18, Sections 1–3 30

