### LEARNING FROM OBSERVATIONS

Chapter 18, Sections 1-3



Chapter 18, Sections 1–3 1

Chapter 18, Sections 1–3 2

pter 18, Sections 1–3 4

### Outline

- ♦ Learning agents
- Inductive learning  $\diamond$
- $\diamondsuit$  Decision tree learning
- Measuring learning performance  $\diamond$

## Learning element

Design of learning element is dictated by

- $\diamondsuit$  what type of performance element is used
- $\diamondsuit$  which functional component is to be learned
- $\diamondsuit$  how that functional compoent is represented
- $\diamondsuit$  what kind of feedback is available
- Example scenarios:

| Performance element | Component         | Representation           | Feedback       |  |  |
|---------------------|-------------------|--------------------------|----------------|--|--|
| Alpha-beta search   | Eval. fn.         | Weighted linear function | Win/loss       |  |  |
| Logical agent       | Transition model  | Successor-state axioms   | Outcome        |  |  |
| Utility-based agent | Transition model  | Dynamic Bayes net        | Outcome        |  |  |
| Simple reflex agent | Percept-action fn | Neural net               | Correct action |  |  |

Supervised learning: correct answers for each instance Reinforcement learning: occasional rewards

Chapter 18, Sections 1–3 5

.

### Learning

Learning is essential for unknown environments, i.e., when designer lacks omniscience

Learning is useful as a system construction method, i.e., expose the agent to reality rather than trying to write it down

Learning modifies the agent's decision mechanisms to improve performance

### Inductive learning (a.k.a. Science)

Simplest form: learn a function from examples (tabula rasa)

 $\boldsymbol{f}$  is the target function

An example is a pair 
$$x,\ f(x),\ {\rm e.g.},\ {O\ |\ O\ |\ X\over X} \ , \ +1$$

Problem: find a(n) hypothesis h

such that  $h \approx f$ 

- given a training set of examples
- (This is a highly simplified model of real learning:
  - Ignores prior knowledge
  - Assumes a deterministic, observable "environment"
  - Assumes examples are given
  - Assumes that the agent wants to learn f—why?)

# Inductive learning method

Construct/adjust h to agree with f on training set (h is consistent if it agrees with f on all examples)

### E.g., curve fitting:



Chapter 18, Sections 1–3 7

# Inductive learning method

Construct/adjust h to agree with f on training set (h is consistent if it agrees with f on all examples)





Chapter 18, Sections 1–3 10

Chapter 18, Sections 1–3 11

## Inductive learning method



### E.g., curve fitting:



Chapter 18, Sections 1–3 8

## Inductive learning method

Construct/adjust h to agree with f on training set (h is consistent if it agrees with f on all examples)

#### E.g., curve fitting:





Construct/adjust h to agree with f on training set (h is consistent if it agrees with f on all examples)

### E.g., curve fitting:



## Inductive learning method

Construct/adjust h to agree with f on training set (h is consistent if it agrees with f on all examples)

E.g., curve fitting:



Ockham's razor: maximize a combination of consistency and simplicity

# Attribute-based representations

Examples described by attribute values (Boolean, discrete, continuous, etc.) E.g., situations where I will/won't wait for a table:

| Example  | Attributes |     |     |     |      |        |      |     |         |       | Target   |
|----------|------------|-----|-----|-----|------|--------|------|-----|---------|-------|----------|
| . 1      | Alt        | Bar | Fri | Hun | Pat  | Price  | Rain | Res | Type    | Est   | WillWait |
| $X_1$    | Т          | F   | F   | Т   | Some | \$\$\$ | F    | Т   | French  | 0–10  | Т        |
| $X_2$    | Т          | F   | F   | Т   | Full | \$     | F    | F   | Thai    | 30–60 | F        |
| $X_3$    | F          | Т   | F   | F   | Some | \$     | F    | F   | Burger  | 0–10  | Т        |
| $X_4$    | Т          | F   | Т   | Т   | Full | \$     | F    | F   | Thai    | 10-30 | Т        |
| $X_5$    | Т          | F   | Т   | F   | Full | \$\$\$ | F    | Т   | French  | >60   | F        |
| $X_6$    | F          | Т   | F   | Т   | Some | \$\$   | Т    | Т   | Italian | 0–10  | Т        |
| $X_7$    | F          | Т   | F   | F   | None | \$     | Т    | F   | Burger  | 0–10  | F        |
| $X_8$    | F          | F   | F   | Т   | Some | \$\$   | Т    | Т   | Thai    | 0–10  | Т        |
| $X_9$    | F          | Т   | Т   | F   | Full | \$     | Т    | F   | Burger  | >60   | F        |
| $X_{10}$ | Т          | Т   | Т   | Т   | Full | \$\$\$ | F    | Т   | Italian | 10-30 | F        |
| $X_{11}$ | F          | F   | F   | F   | None | \$     | F    | F   | Thai    | 0–10  | F        |
| $X_{12}$ | Т          | Т   | Т   | Т   | Full | \$     | F    | F   | Burger  | 30-60 | Т        |

Classification of examples is positive (T) or negative (F)

Chapter 18, Sections 1–3 13

### Decision trees

One possible representation for hypotheses

E.g., here is the "true" tree for deciding whether to wait:



## Expressiveness

Decision trees can express any function of the input attributes. E.g., for Boolean functions, truth table row  $\to$  path to leaf:



Trivially, there is a consistent decision tree for any training set w/ one path to leaf for each example (unless f nondeterministic in x) but it probably won't generalize to new examples

Prefer to find more **compact** decision trees

## Hypothesis spaces

How many distinct decision trees with n Boolean attributes??

Chapter 18, Sections 1–3 16

Hypothesis spaces

How many distinct decision trees with n Boolean attributes??

= number of Boolean functions

Chapter 18, Sections 1–3 17

Hypothesis spaces

How many distinct decision trees with n Boolean attributes??

= number of Boolean functions

= number of distinct truth tables with  $2^n$  rows

## Hypothesis spaces

#### How many distinct decision trees with n Boolean attributes??

- = number of Boolean functions
- = number of distinct truth tables with  $2^n \mbox{ rows} = 2^{2^n}$

## Hypothesis spaces

#### How many distinct decision trees with n Boolean attributes??

- = number of Boolean functions
- = number of distinct truth tables with  $2^n \operatorname{rows} = 2^{2^n}$

E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616 trees

#### How many purely conjunctive hypotheses (e.g., $Hungry \land \neg Rain$ )??

Each attribute can be in (positive), in (negative), or out  $\Rightarrow 3^n$  distinct conjunctive hypotheses

#### More expressive hypothesis space

- increases chance that target function can be expressed 😂
- increases number of hypotheses consistent w/ training set
  - $\Rightarrow$  may get worse predictions  $\bigotimes$

Chapter 18, Sections 1–3 19

Chapter 18, Sections 1–3 20

## Hypothesis spaces

How many distinct decision trees with n Boolean attributes??

- = number of Boolean functions
- = number of distinct truth tables with  $2^n \ \mathrm{rows} = 2^{2^n}$

E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616 trees



Aim: find a small tree consistent with the training examples

Idea: (recursively) choose "most significant" attribute as root of (sub)tree



Chapter 18, Sections 1–3 23

Chapter 18, Sections 1–3 22

### Hypothesis spaces

How many distinct decision trees with n Boolean attributes??

- = number of Boolean functions
- = number of distinct truth tables with  $2^n \ \mathrm{rows} = 2^{2^n}$

E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616 trees

How many purely conjunctive hypotheses (e.g.,  $Hungry \land \neg Rain$ )??

### Choosing an attribute

Idea: a good attribute splits the examples into subsets that are (ideally) "all positive" or "all negative"  $% \left( \left( \frac{1}{2}\right) \right) =\left( \left( \frac{1}{2}\right) \right) \left( \left( \frac{1}{2}\right) \right) \left( \left( \frac{1}{2}\right) \right) \left( \left( \frac{1}{2}\right) \right) \right) \left( \left( \frac{1}{2}\right) \right) \left( \left( \frac{1}{2}\right) \right) \left( \left( \frac{1}{2}\right) \right) \left( \frac{1}{2}\right) \left( \frac{1}{2}\right) \right) \left( \frac{1}{2}\right) \left( \frac{1}$ 



Patrons? is a better choice—gives information about the classification

## Information

Information answers questions

The more clueless I am about the answer initially, the more information is contained in the answer

Scale: 1 bit = answer to Boolean question with prior  $\langle 0.5, 0.5 \rangle$ 

Information in an answer when prior is  $\langle P_1, \ldots, P_n \rangle$  is

 $H(\langle P_1,\ldots,P_n\rangle) = \sum_{i=1}^n - P_i \log_2 P_i$ 

(also called entropy of the prior)

#### Performance measurement

How do we know that  $h \approx f$ ? (Hume's **Problem of Induction**)

- 1) Use theorems of computational/statistical learning theory
- Try h on a new test set of examples (use same distribution over example space as training set)





Chapter 18, Sections 1–3 28

### Information contd.

Suppose we have p positive and n negative examples at the root  $\Rightarrow H(\langle p/(p+n), n/(p+n) \rangle)$  bits needed to classify a new example E.g., for 12 restaurant examples, p=n=6 so we need 1 bit

An attribute splits the examples E into subsets  $E_i$ , each of which (we hope) needs less information to complete the classification

- Let  $E_i$  have  $p_i$  positive and  $n_i$  negative examples
  - $\Rightarrow H(\langle p_i/(p_i+n_i), n_i/(p_i+n_i)\rangle) \text{ bits needed to classify a new example} \\\Rightarrow expected number of bits per example over all branches is$

$$\sum_{i} \frac{p_i + n_i}{p + n} H(\langle p_i / (p_i + n_i), n_i / (p_i + n_i) \rangle)$$

For Patrons?, this is 0.459 bits, for Type this is (still) 1 bit

 $\Rightarrow$  choose the attribute that minimizes the remaining information needed

Chapter 18, Sections 1–3 26

Chapter 18. Sections 1–3 25

#### Performance measurement contd.

Learning curve depends on

- realizable (can express target function) vs. non-realizable non-realizability can be due to missing attributes or restricted hypothesis class (e.g., thresholded linear function)
- redundant expressiveness (e.g., loads of irrelevant attributes)





Chapter 18, Sections 1–3 29

# Example contd.

Decision tree learned from the 12 examples:



## Summary

Learning needed for unknown environments, lazy designers

Learning agent = performance element + learning element

Learning method depends on type of performance element, available feedback, type of component to be improved, and its representation

For supervised learning, the aim is to find a simple hypothesis that is approximately consistent with training examples

Decision tree learning using information gain

Learning performance = prediction accuracy measured on test set

Substantially simpler than "true" tree—a more complex hypothesis isn't justified by small amount of data