TEMPORAL PROBABILITY MODELS

CHAPTER 15, SECTIONS 1-5

Chapter 15, Sections 1-5 1

Outline

S S0 S8 O

Time and uncertainty

Inference: filtering, prediction, smoothing
Hidden Markov models

Kalman filters (a brief mention)

Dynamic Bayesian networks

Particle filtering

Chapter 15, Sections 1-5

2

Time and uncertainty

The world changes; we need to track and predict it
Diabetes management vs vehicle diagnosis
Basic idea: copy state and evidence variables for each time step

X, = set of unobservable state variables at time ¢
e.g., BloodSugar;, StomachContents,;, etc.

E,; = set of observable evidence variables at time ¢
e.g., MeasuredBloodSugar;, PulseRate;, FoodEaten,

This assumes discrete time; step size depends on problem

Notation: X, = X, X 11,..., X1, X,

Chapter 15, Sections 1-5

Markov processes (Markov chains)

Construct a Bayes net from these variables: parents?
Markov assumption: X; depends on bounded subset of X.;_;

First-order Markov process: P (X;| X, 1) = P(X;|X;_ 1)
Second-order Markov process: P(X;| X, 1) = P(Xy|X; 9, X} 1)

o — D~ ED—~CO—~ED—E
—_— B N

Sensor Markov assumption: P(E;| X, Eg; 1) = P(E;|X;)

Stationary process: transition model P(X;|X; ;) and
sensor model P(E;|X;) fixed for all ¢

Chapter 15, Sections 1-5 4

Example

Ri_1| P(Ry)

t 0.7
f 0.3

First-order Markov assumption not exactly true in real world!

Possible fixes:
1. Increase order of Markov process
2. Augment state, e.g., add Temp;, Pressure;

Example: robot motion.
Augment position and velocity with Battery,

Chapter 15, Sections 1-5 5

Inference tasks

Filtering: P(X;|e1+)
belief state—input to the decision process of a rational agent

Prediction: P(X;.;|eq.) for k > 0
evaluation of possible action sequences;
like filtering without the evidence

Smoothing: P(Xj|ei) for 0 < k <t
better estimate of past states, essential for learning

Most likely explanation: arg maxx,, P(x1.¢|€1.)
speech recognition, decoding with a noisy channel

Chapter 15, Sections 1-5 6

Filtering

Aim: devise a recursive state estimation algorithm:

P<Xt+1\91:t+1) — f(et+17 P<Xt\91:t>)

P<Xt+1\91:t+1) — P<Xt+1‘elzta et+1)
— 04P<et+1|Xt+1a el:t>P<Xt+1|e1:t>
= OéP(et+1|Xt+1)P(Xt+1|elzt)

|.e., prediction + estimation. Prediction by summing out X;:

P(X1leri1) = OéP(et+1\Xt+1>2xtP(Xt+1\Xt> erq) P(x;|er)
= aP(er11]X41) 20 P (X1 [x1) Pxi|ery)

f1:t+1 — FORWARD(flzt, et+1) where fl:t - P(Xt|61:t)
Time and space constant (independent of ?)

Chapter 15, Sections 1-5

7

Filtering example

0.500 0.627
0.500 0.373
True 0.500 0.5!18 0.5!83
False 0.500 0.182 0.117

Umbrella,

Chapter 15, Sections 1-5 8

Smoothing

G GO GO

Divide evidence e into ey, €51

P(Xjlei) = P(Xilerr, epy14)
= aP(X|err)P(er 14| Xy, erx)
= aP(Xy|e1)P(er 1.4/ Xy)
= afi by

Backward message computed by a backwards recursion:

Plepr14|Xy) = 2x,, Plepsra| X, Xpp1) P (X541 X)
= 2ix, Pleraxp1) P (x| Xk)
= 2x;, Pleri1|Xps1) Pl€rso|Xis1) P (X1 | X

Chapter 15, Sections 1-5 9

Smoothing example

0.500
0.500

True 0.500 0.&18
False 0.500 0.182
O.!BB
0.117

}

0.690
0.410

0.627
0.373
0.%!83
0.117
O.§83
0.117

}

1.000
1.000

forward

smoothed

backward

Forward—backward algorithm: cache forward messages along the way
Time linear in ¢ (polytree inference), space O(t|f])

Chapter 15, Sections 1-5

10

Most likely explanation

Most likely sequence # sequence of most likely states!!!!

Most likely path to each x;,
= most likely path to some x; plus one more step

gla%{t P<X17 ey Xty Xt—l—llel:t—l—l)
= Plevr|Xon) mpx (P(Xpalx) max Plxa, ..., %i1,%i[en)

|dentical to filtering, except f;.; replaced by

mi; = XP%& P(X17 ceey X1, Xt|€1:t)7

l.e., my.(2) gives the probability of the most likely path to state <.
Update has sum replaced by max, giving the Viterbi algorithm:

mj. 41 = P<et+1‘Xt+1> H}(%X <P<Xt+1|Xt)m1:t)

Chapter 15, Sections 1-5

11

Viterbi example

state
space
paths

umbrella

most
likely
paths

Rain,

Rain,

<

false

false

.8182

5155

<

1818

;
=X

0491

;
X

Raing Rain,
false false
false

.0361 0334
1237 0173
M .3 M.y

Raing

false

Chapter 15, Sections 1-5

12

Hidden Markov models

X is a single, discrete variable (usually E; is too)
Domain of X;is {1,...,S5}

Transition matrix T;; = P(X;=j|X,_1=1), e.g., (0'7 0'3)

0.3 0.7

Sensor matrix Oy for each time step, diagonal elements P(e;|X;=1)
0.9 0)

e.g., with Uy =true, O = (0 0.9

Forward and backward messages as column vectors:

fl:t+1 — Oéot+1TTf1:t
bri1t = TOk b0y

Forward-backward algorithm needs time O(S5%t) and space O(St)

Chapter 15, Sections 1-5 13

Country dance algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

101 = Oéot+1TTf1:t
075_4_11f1:t—i—1 — Q/TTflzt
O/(TT)_loy;hfl:t—i—l — fl:t

Algorithm: forward pass computes f;, backward pass does f;, b,

Chapter 15, Sections 1-5 14

Country dance algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

101 = Oéot+1TTf1:t
075_4_11f1:t—i—1 — Q/TTflzt
O/(TT)_loy;hfl:t—i—l — fl:t

Algorithm: forward pass computes f;, backward pass does f;, b,

Chapter 15, Sections 1-5 15

Country dance algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

101 = Oéot+1TTf1:t
075_4_11f1:t—i—1 — Q/TTflzt
O/(TT)_loy;hfl:t—i—l — fl:t

Algorithm: forward pass computes f;, backward pass does f;, b,

Chapter 15, Sections 1-5 16

Country dance algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

101 = Oéot+1TTf1:t
075_4_11f1:t—i—1 — Q/TTflzt
O/(TT)_loy;hfl:t—i—l — fl:t

Algorithm: forward pass computes f;, backward pass does f;, b,

Chapter 15, Sections 1-5 17

Country dance algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

101 = Oéot+1TTf1:t
075_4_11f1:t—i—1 — Q/TTflzt
O/(TT)_loy;hfl:t—i—l — fl:t

Algorithm: forward pass computes f;, backward pass does f;, b,

Chapter 15, Sections 1-5 18

Country dance algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

101 = Oéot+1TTf1:t
075_4_11f1:t—i—1 — Q/TTflzt
O/(TT)_loy;hfl:t—i—l — fl:t

Algorithm: forward pass computes f;, backward pass does f;, b,

Chapter 15, Sections 1-5 19

Country dance algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

101 = Oéot+1TTf1:t
075_4_11f1:t—i—1 — Q/TTflzt
O/(TT)_loy;hfl:t—i—l — fl:t

Algorithm: forward pass computes f;, backward pass does f;, b,

Chapter 15, Sections 1-5 20

Country dance algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

101 = Oéot+1TTf1:t
075_4_11f1:t—i—1 — Q/TTflzt
O/(TT)_loy;hfl:t—i—l — fl:t

Algorithm: forward pass computes f;, backward pass does f;, b,

Chapter 15, Sections 1-5 21

Country dance algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

101 = Oéot+1TTf1:t
075_4_11f1:t—i—1 — Q/TTflzt
O/(TT)_loy;hfl:t—i—l — fl:t

Algorithm: forward pass computes f;, backward pass does f;, b,

Chapter 15, Sections 1-5 22

Country dance algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

101 = Oéot+1TTf1:t
075_4_11f1:t—i—1 — Q/TTflzt
O/(TT)_loy;hfl:t—i—l — fl:t

Algorithm: forward pass computes f;, backward pass does f;, b,

Chapter 15, Sections 1-5 23

Kalman filters

Modelling systems described by a set of continuous variables,
e.g., tracking a bird flying—X, = XY, Z X, Y. Z.
Airplanes, robots, ecosystems, economies, chemical plants, planets, ...

—

=

X -

O

Gaussian prior, linear Gaussian transition model and sensor model

Chapter 15, Sections 1-5 24

Updating (Gaussian distributions

Prediction step: if P(X;|e;;) is Gaussian, then prediction
P(Xiiler) = L, P(Xes1|xi) P(x]ers) dx

is Gaussian. If P(X, |e;;) is Gaussian, then the updated distribution
P(Xii1lernir1) = aP(erq| X)) P(Xys]ery)

is Gaussian

Hence P(X;|ey;) is multivariate Gaussian N (s, 33¢) for all ¢

General (nonlinear, non-Gaussian) process: description of posterior grows
unboundedly as t — oo

Chapter 15, Sections 1-5 25

Simple 1-D example

Gaussian random walk on X -axis, s.d. 0, sensor s.d. 0.

2 2 2 2 2\ 2
(Jt + 0x>zt+1 -+ O, [t 02 o (Ut + O-ZL’)O-Z
2 2 2 t+1 — 9 2 2
Ut+0x+az Ut+0x+az

Hi+1 =

0.45 —

0.4 -
0.35 | -
03 |
0.25
0.2
0.15
0.1
0.05

| P(x1|z1=25)

P(X)

X position

Chapter 15, Sections 1-5

26

General Kalman update

Transition and sensor models:

P(X¢i1|x) = N(Fxy, 3,)(Xe11)
P(zi|x;) = NHx, 3.)(z)

F' is the matrix for the transition; X2, the transition noise covariance
H is the matrix for the sensors; .. the sensor noise covariance

Filter computes the following update:

piy = Fuy+ Kiyi(z — HF py)
Y= [-Ki)(FEF +3,)

where Ky 1 = (FX,F' + X, H (HFS,F' +X,)H' +X.)7!
is the Kalman gain matrix

>.; and K, are independent of observation sequence, so compute offline

Chapter 15, Sections 1-5

27

2-D tracking example: filtering

12

11

10

2D filtering

— & true

* observed
filtered

10 12 14 16 18 20 22 24 26

Chapter 15, Sections 1-5

28

2-D tracking example: smoothing

12

11

10

2D smoothing

—&— true
* observed
i > smoothed
| | | | | | | | |
10 12 14 16 18 20 22 24 26
X

Chapter 15, Sections 1-5

29

Where it breaks

Cannot be applied if the transition model is nonlinear

Extended Kalman Filter models transition as locally linear around x; = p,
Fails if systems is locally unsmooth

Chapter 15, Sections 1-5 30

Dynamic Bayesian networks

Xy, E; contain arbitrarily many variables in a replicated Bayes net

P(Ry) Ry | P(Ry)

Battery Battery ;

O~

C—=C
2

Chapter 15, Sections 1-5 31

DBNs vs. HMMs

Every HMM is a single-variable DBN; every discrete DBN is an HMM

/; N

/

N

Sparse dependencies =- exponentially fewer parameters;

e.g., 20 state variables, three parents each
DBN has 20 x 2% =160 parameters, HMM has 2% x 2?0 ~ 10"?

Chapter 15, Sections 1-5

32

DBNs vs Kalman filters

Every Kalman filter model is a DBN, but few DBNs are KFs;
real world requires non-Gaussian posteriors

E.g., where are bin Laden and my keys? What's the battery charge?

BMBroken, BMBroken,

Battery

E(Battery)

r—\r—\r—\r—\r—\r—\r—\r—\?
e e S B

& / %%%%%%x%%#
P(BMBroken|...5555005555..))

-1 I I I I

15 20 25 30

Time step

o r
¥ T
E
B
E
®
23]
B
®
%
ow X
S
i<
@
o
g
tn
a1
a1
a1
o}
S
S
S
o}
S

Chapter 15, Sections 1-5 33

Exact inference in DBNs

Naive method: unroll the network and run any exact algorithm

R | FRD R | PR R, | FRY Ro | P(R) Ro [PRD Ro [PR Ry TPRD YRy FPRY
PR o] PR PR o PR o 0l Pund
T o o 1o 1 3 A :'} berd :'; berd
g— 03 . . 03 L gmm— 03| g 03 | gmm— 03| g 03 . s 03 o= ol 03 Je= =~
Rain, el Rain; Raing Yl RaIN; Rain, Raing Rain,, Raing ---»'\Ramé'\----»{.Ramz'\
RPO) R [P0 R PO) PO RPO) R PO 1Ry R 1R R
t 09 t 09 t 0.9 t 09 t 0.9 t 09 t 4y 09 1 t gy 09
f 0.2 f 0.2 f 0.2 f 0.2 f 0.2 f 0.2 .--TL""OZ" ____'f__‘_oz -
Umbrella; Umbrella, Umbrella, Umbrellag Umbrella, Umbrellag e Umbrellag™y 7 Umbrella;)

Problem: inference cost for each update grows with ¢

Rollup filtering: add slice £ + 1, “sum out” slice ¢ using variable elimination

Largest factor is O(d"™'), update cost O(d" ")
(cf. HMM update cost O(d*"))

Chapter 15, Sections 1-5 34

Likelihood weighting for DBNs

Set of weighted samples approximates the belief state

LW samples pay no attention to the evidence!
= fraction “agreeing’ falls exponentially with ¢
= number of samples requwed grows exponentially with ¢

ST 'LW(1® -
LW(mb) X
4 LW(1600) -=#-
;/ LW(l@OOO) s

0 5 10 15 20 25 30 35 40 45 50
Time step

Chapter 15, Sections 1-5

35

Particle filtering

Basic idea: ensure that the population of samples (“particles”)
tracks the high-likelihood regions of the state-space

Replicate particles proportional to likelihood for e,

Rain Rain; Rain; Rain; ,
t t+1 t+1 t+1

o000 YY) coo ®
true eo000 YY) coe e

) Y oY) YY)
false) Y Y o000

(a) Propagate (b) Weight (c) Resample

Widely used for tracking nonlinear systems, esp. in vision

Also used for simultaneous localization and mapping in mobile robots
10°-dimensional state space

Chapter 15, Sections 1-5

36

Particle filtering contd.

Assume consistent at time ¢: N(x;|ej;)/N = P(x/|e1;)
Propagate forward: populations of x;,; are
N<Xt+1|e1:t> — ZXtP<Xt+1|Xt>N(Xt‘elzt)
Weight samples by their likelihood for e, 1:
Wi(xtr1lertr1) = Plera|xep1) N(Xer1lers)

Resample to obtain populations proportional to V/:

N(xti1leri1)/N = aW(xeilerii1) = aP(er1|xe1) N (Xer1]e1)
Oép(et+1|Xt+1)thP(Xt+1’Xt)N(Xt’elzt>
= O/P(et+1’Xt+1>ZXtP(Xt+1|Xt>P(Xt’elzt>

P<Xt+1\91:t+1)

Chapter 15, Sections 1-5

37

Particle filtering performance

Approximation error of particle filtering remains bounded over time,
at least empirically—theoretical analysis is difficult

1
0.8
S
o
3 06
E
:
S 04
>
<
0.2

' ' ' ' e N **/¥¥#4ﬁ’ﬁw
LW(25) & oo™
LW(100) 2
LW(1000) = d
- LW(10000) < f p . g
ER/SOF(25) -+~ s ai <
i 5 m X :
m’rl V*D,a"’ X'X*x ’
é%%&ﬁfﬁ'é A A«Af*&g LA ,;AA Aﬁﬁi&g&&é ? Aéﬁﬁ/i*&&ﬁ A,?AﬁAA*iAAgAA
0O 5 10 15 20 25 30 35 40 45 50

Time step

Chapter 15, Sections 1-5

38

Summary

Temporal models use state and sensor variables replicated over time

Markov assumptions and stationarity assumption, so we need
— transition modelP (X,|X; 1)
— sensor model P(E;|X;)

Tasks are filtering, prediction, smoothing, most likely sequence;
all done recursively with constant cost per time step

Hidden Markov models have a single discrete state variable; used
for speech recognition

Kalman filters allow n state variables, linear Gaussian, O(n?) update
Dynamic Bayes nets subsume HMMs, Kalman filters; exact update intractable

Particle filtering is a good approximate filtering algorithm for DBNs

Chapter 15, Sections 1-5 39

