l Markov processes (Markov chains) |

Construct a Bayes net from these variables: parents?

Markov assumption: X, depends on bounded subset of X, ;

TEMPORAL PROBABILITY MODELS First-order Markov process: P(X;|X,1) = P(Xy|X;-1)

Second-order Markov process: P (XX, 1) = P(X¢|X; 2, X; 1)
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Sensor Markov assumption: P(E;|X., Ep;1) = P(E/X;)

Stationary process: transition model P(X;|X;_1) and
sensor model P (E,|X;) fixed for all ¢

I Outline | I Example |
¢ Time and uncertainty Re_a] PRY)
t 0.7
- H [ H f 03
& Inference: filtering, prediction, smoothing Reing /RBJD Reing oy
¢ Hidden Markov models =N,
0.9
¢ Kalman filters (a brief mention) 02
¢ Dynamic Bayesian networks @ Umbrella, @
< Particle filtering First-order Markov assumption not exactly true in real world!
Possible fixes:
1. Increase order of Markov process
2. Augment state, e.g., add Temp;, Pressure;
Example: robot motion.
Augment position and velocity with Battery;
I Time and uncertainty | I Inference tasks |
The world changes; we need to track and predict it Filtering: P(X;|e1.)

. . . . belief state—input to the decision process of a rational agent
Diabetes management vs vehicle diagnosis

Prediction: P (X, |e1y) for k >0

Basic idea: copy state and evidence variables for each time step evaluation of possible action sequences;

X, = set of unobservable state variables at time ¢ like filtering without the evidence
e.g., BloodSugar;, StomachContents;, etc. Smoothing: P(X|ey) for 0 < k < t
E, = set of observable evidence variables at time better estimate of past states, essential for learning

e.g., MeasuredBloodSugar,;, PulseRate;, FoodEaten, Most likely explanation: arg maxy, , P(x14|e1,)

This assumes discrete time; step size depends on problem speech recognition, decoding with a noisy channel

Notation: X, = X, Xoi1, ..., X1, Xp
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I Filtering

Aim: devise a recursive state estimation algorithm:

P(Xf+1|91:f+1) = f(er+1-P(Xf\el;f))

P(Xiilen) = P(Xiplerns e1)
= aP(e1| X1, 1) P(Xpsilers)
= aP(er1|Xi11)P(Xip1]er)

l.e., prediction + estimation. Prediction by summing out X;:

P(Xyi1leri1) = aP(ep| X)X P (X[, e1:) P(x¢]er)

aP (e[ X)) Xx P(Xi iy [x) P(xiler)

1111 = FORWARD(f}.1, €:,1) where f1, =P (X;|e.)
Time and space constant (independent of )

I Filtering example |
0.500 0.627
0.500 0.373
True 0500 o.gls odks
False  0.500 0.182 0.117

Cangy——rany——(Fan)
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I Smoothing

o ° - - o

GO ) CD

Divide evidence ey into €., €114

P(X;lers) = P(Xilenr, erp1)

= aP(Xylewr)P(er 14| Xs, err)
= aP(Xlew)P(err1|Xs)
O'fl:l.‘bl.‘ +1:t

Backward message computed by a backwards recursion:

P(ep1:4Xs) = Ex,, PlepsreXn, Xp1) P (011 | X
Yy Plepsta|xin) P (%51 | X)
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I Smoothing example |
0.500 0.627
0.500 0.373
True 0.500 0,318 0.!53 P d
False  0.500 0182 0.117 orwar
0.883 0.883
0117 0117 smoothed
0.690 1.000
0.410 1.000
Raing (Rainy) Rain,

Umbrella, Umbrella,

Forward—backward algorithm: cache forward messages along the way

Time linear in ¢ (polytree inference), space O(t|f])
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10

I Most likely explanation

Most likely sequence # sequence of most likely states!!!!

Most likely path to each x;.;
= most likely path to some x; plus one more step

:1311,&5)((, P(Xh ey Xgy Xy 1\01:/ (1)

= P(ew1|Xti1) Iyax (P(Xf—l Ix:) x g P(xi, ... «,Xr71~Xf|91;f))

Identical to filtering, except f; replaced by

my; = XIII}QiI P(xy, . X1, X/‘Cl:/>~,

l.e., my.(i) gives the probability of the most likely path to state i.

Update has sum replaced by max, giving the Viterbi algorithm:

myr = PlerXyp) max (P (X x)my)
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I Viterbi example

Rainy Rain, Raing Rain, Raing

state true true true true true
space
paths
false false false false false ‘
umbrella true true false true true
.8182 5155 .0361 .0334 .0210 |
most
likely
paths 1818 0491 1237 0173 .0024 ‘
My JLLET My My Mys

Chapter 15, Sections 1-5
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I Hidden Markov models

X, is a single, discrete variable (usually E; is too)
Domain of X, is {1,...,5}

-
Transition matrix T;; = P(X,; = j|X;_1 =1), e.g., (::; 8:)
- NS o

Sensor matrix Oy for each time step, diagonal elements P(e,| X; =1)

(C
e.g., with U, =true, O = ([]['J) ()(){))

Forward and backward messages as column vectors:

fien = a0 T iy
bii1t = TO b2y

Forward-backward algorithm needs time O(S%t) and space O(St)
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I Country dance algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:
fien = a0 T iy
O i1 = T fiy
(k/(iT[)flO:]ﬁ:rH = fiy
Algorithm: forward pass computes f;, backward pass does f;, b;

N N N N
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I Country dance algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:
flipr = 00Ty
O i1 = oT fiy
(k/(iT[)flO:]ﬁ:rH = fiy

Algorithm: forward pass computes f;, backward pass does f;, b;

586834
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I Country dance algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

fien = a0 T iy
O i1 = oT fiy
o/(TT )7107f1f1:r+1 fiy

Algorithm: forward pass computes f;, backward pass does f;, b;
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I Country dance algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:
flipr = 00Ty
O i1 = oT fiy
(k/(iT[)flO:]ﬁ:rH = fiy

Algorithm: forward pass computes f;, backward pass does f;, b;
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I Country dance algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

fien = a0 T iy
O i1 = oT fiy
(k/(iT[)flO:]ﬁ:rH = fiy

Algorithm: forward pass computes f;, backward pass does f;, b;

58683
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I Country dance algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

fien = a0 T iy
O/ \fivr = T fiy
o/(TT )710:1&[“ fiy

Algorithm: forward pass computes f;, backward pass does f;, b;

N O O
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I Country dance algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:
flipr = 00Ty
O/ \fi = T fiy
(k/(iT[)flO:]ﬁ:rH = fiy

Algorithm: forward pass computes f;, backward pass does f;, b;
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I Country dance algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:
flipr = 00Ty
O/ \fi = T fiy
(k/(iT[)flO:]ﬁ:rH = fiy

Algorithm: forward pass computes f;, backward pass does f;, b;
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I Country dance algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

fien = a0 T iy
O/ \fi = T fiy
o/(TT )710:1&[“ fiy

Algorithm: forward pass computes f;, backward pass does f;, b;

N N N
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I Country dance algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:
fin = a0 T iy
O/ \fi = T fiy
(k/(iT[)flO:]ﬁ:rH = fiy
Algorithm: forward pass computes f;, backward pass does f;, b;

N N N N
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I Kalman filters

Modelling systems described by a set of continuous variables,
e.g., tracking a bird flying—X, =XV, Z. XY, Z.

Airplanes, robots, ecosystems, economies, chemical plants, planets, ...

PY
O

Gaussian prior, linear Gaussian transition model and sensor model

Chapter 15, Sections 1-5



I Updating Gaussian distributions |

Prediction step: if P(X;|e;.) is Gaussian, then prediction
P(Xipilers) = fx, P(Xiri|xi) P(xi]er) dx;

is Gaussian. If P(X;;|e;.;) is Gaussian, then the updated distribution
P(Xiiileri1) = aP (e | X)) P(Xiiafers)

is Gaussian

Hence P(X;|e;,) is multivariate Gaussian N (g, 3;) for all ¢

General (nonlinear, non-Gaussian) process: description of posterior grows
unboundedly as ¢t — co

Chapter 15, Sections 1.5 25

I Simple 1-D example |

Gaussian random walk on X-axis, s.d. o,, sensor s.d. 0.

i+ oDanto  _ _ (of+od)o?

Hi1 = : 2 2 tH1 = 5 : :
o} + 02+ o0? o} + 0’402

0.45
04 + B
0.35 o
03
0.25
02
0.15
01
0.05

 P(x1] zl=2.5)<

P(X)

X position
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I General Kalman update |

Transition and sensor models:

P(X/»l\xf> = N(Fxhzr)(x/u)
P(z|x;) = NHx, 3.)(z)

F' is the matrix for the transition; 3, the transition noise covariance
H is the matrix for the sensors; 3. the sensor noise covariance

Filter computes the following update:

Pier = Fry+ Ki (200 — HF py)
Y = I-Kip)(FEF +3,)

where Ky, = (FE,F' + 3, ) H (HFS,F +2,)H +3,)!
is the Kalman gain matrix

3%, and K; are independent of observation sequence, so compute offline
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I 2-D tracking example: filtering |

20 filtering
12r

—&—  true
* observed
x filtered

1

10F
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I 2-D tracking example: smoothing |

2D smoothing

12

—=—  true
* observed

x smoothed
1p

10f
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I Where it breaks |

Cannot be applied if the transition model is nonlinear

Extended Kalman Filter models transition as locally linear around x; = p,
Fails if systems is locally unsmooth

Chapter 15, Sections 15 30



I Dynamic Bayesian networks

X, E; contain arbitrarily many variables in a replicated Bayes net

Chapter 15, Sections 1-5
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( DBNs vs. HMMs

Every HMM is a single-variable DBN; every discrete DBN is an HMM

sis

Sparse dependencies = exponentially fewer parameters;

e.g., 20 state variables, three parents each

DBN has 20 x 2° =160 parameters, HMM has 220 x 220 ~ 10'?

Chapter 15, Sections 1-5
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I DBNs vs Kalman filters

Every Kalman filter model is a DBN, but few DBNs are KFs;

real world requires non-Gaussian posteriors

E.g., where are bin Laden and my keys? What's the battery charge?

E(Battery)

E(Battery]..5555005555...)

-xr—)(r»x,,x“*vx--*"x
E(Battery|...5555000000..) 1

CR-R R R

P(BM Emken\.. 5555000000...
=

'

)

P(BMBroken].. 5555005555...

20 2 30
Time step
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I Exact inference in DBNs |

Naive method: unroll the network and run any exact algorithm

Problem: inference cost for each update grows with ¢
Rollup filtering: add slice ¢ + 1, “sum out” slice ¢ using variable elimination

Largest factor is O(d"*"), update cost O(d"*?)
(cf. HMM update cost O(d*"))

Chapter 15, Sections 15 31

I Likelihood weighting for DBNs |

Set of weighted samples approximates the belief state
D, D, D, <D, <D,
I I
LW samples pay no attention to the evidence!

= fraction “agreeing” falls exponentially with ¢
= number of samples required grows exponentially with ¢
1

0
0 5 10 15 20 25 30 35 40 45 50
Time step
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H Particle filtering "

Basic idea: ensure that the population of samples (“particles”)
tracks the high-likelihood regions of the state-space

Replicate particles proportional to likelihood for e;

Raing Raing Rainy 41

true ‘ ‘ ° ‘
eoo L]
o0
e |2 R
(a) Propagate (b) Weight (c) Resample

Widely used for tracking nonlinear systems, esp. in vision

Also used for simultaneous localization and mapping in mobile robots
10°-dimensional state space

Chapter 15,




I Particle filtering contd. |

Assume consistent at time t: N(x/|e1,)/N = P(x;|e,)
Propagate forward: populations of x;; are
N(xii1lers) = Yx, P(xi1]x) N (xi|er)
Weight samples by their likelihood for e;1:
Wi(xtr1leris1) = Pleri|Xer1) N(Xey1]ers)
Resample to obtain populations proportional to 1:

N(xpi1ler1)/N = aW(xp1lers1) = aP(ep|xi1) N (Xer1|err)
= aP(er|x1)Yx P(xei %) N (x]e1)
= o/ Pep1|xr1) X, P(xps1 %) P(x¢]€124)

= P(xi11lers+1)
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I Particle filtering performance |

Approximation error of particle filtering remains bounded over time,
at least empirically—theoretical analysis is difficult

LW(25) ~— -
LW(100) -+ &
LW(1000) = F <
08 r [ w(10000) ~ P § A
_ ER/SOF(25) -+ ¥ . P
g / L ¥
T 06 pod {
2 " F
> P *
< x *
X
02 Xxxx x
o G aa i ata s asansdats s adahy o bas b st binal
0 5 10 15 20 25 30 35 40 45 50
Time step
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[ Summary |

Temporal models use state and sensor variables replicated over time

Markov assumptions and stationarity assumption, so we need
— transition modelP (X;|X; ;)
— sensor model P (E;|X;)

Tasks are filtering, prediction, smoothing, most likely sequence;
all done recursively with constant cost per time step

Hidden Markov models have a single discrete state variable; used
for speech recognition

Kalman filters allow 7 state variables, linear Gaussian, O(n?) update
Dynamic Bayes nets subsume HMMs, Kalman filters; exact update intractable

Particle filtering is a good approximate filtering algorithm for DBNs
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