TEMPORAL PROBABILITY MODELS

Chapter 15, Sections 1-5

Chapter 15, Sections 1–5 1

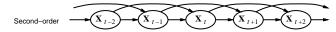
Markov processes (Markov chains)

Construct a Bayes net from these variables: parents?

Markov assumption: \mathbf{X}_t depends on **bounded** subset of $\mathbf{X}_{0:t-1}$

First-order Markov process: $\mathbf{P}(\mathbf{X}_t|\mathbf{X}_{0:t-1}) = \mathbf{P}(\mathbf{X}_t|\mathbf{X}_{t-1})$ Second-order Markov process: $\mathbf{P}(\mathbf{X}_t|\mathbf{X}_{0:t-1}) = \mathbf{P}(\mathbf{X}_t|\mathbf{X}_{t-2},\mathbf{X}_{t-1})$

First-order X_{t-2} X_{t-1} X_t X_{t+1} X_{t+2}



Sensor Markov assumption: $P(\mathbf{E}_t|\mathbf{X}_{0:t},\mathbf{E}_{0:t-1}) = P(\mathbf{E}_t|\mathbf{X}_t)$

Stationary process: transition model $P(X_t|X_{t-1})$ and sensor model $P(E_t|X_t)$ fixed for all t

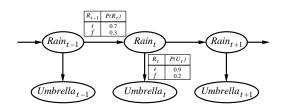
Chapter 15, Sections 1–5 4

Outline

- ♦ Time and uncertainty
- ♦ Inference: filtering, prediction, smoothing
- ♦ Hidden Markov models
- ♦ Kalman filters (a brief mention)
- ♦ Dynamic Bayesian networks
- ♦ Particle filtering

Chapter 15, Sections 1–5 2

Example



First-order Markov assumption not exactly true in real world!

Possible fixes:

- 1. Increase order of Markov process
- 2. Augment state, e.g., add $Temp_t$, $Pressure_t$

Example: robot motion.

Augment position and velocity with $Battery_t$

Chapter 15, Sections 1–5 5

Time and uncertainty

The world changes; we need to track and predict it

Diabetes management vs vehicle diagnosis

Basic idea: copy state and evidence variables for each time step

 $\mathbf{X}_t = \mathsf{set}$ of unobservable state variables at time t e.g., $BloodSugar_t, StomachContents_t$, etc.

$$\begin{split} \mathbf{E}_t &= \text{set of observable evidence variables at time } t \\ &\quad \text{e.g., } MeasuredBloodSugar_t, \ PulseRate_t, \ FoodEaten_t \end{split}$$

This assumes discrete time; step size depends on problem

Notation: $\mathbf{X}_{a:b} = \mathbf{X}_a, \mathbf{X}_{a+1}, \dots, \mathbf{X}_{b-1}, \mathbf{X}_b$

Inference tasks

Filtering: $\mathbf{P}(\mathbf{X}_t|\mathbf{e}_{1:t})$

belief state—input to the decision process of a rational agent

Prediction: $\mathbf{P}(\mathbf{X}_{t+k}|\mathbf{e}_{1:t})$ for k > 0

evaluation of possible action sequences; like filtering without the evidence

Smoothing: $P(\mathbf{X}_k | \mathbf{e}_{1:t})$ for $0 \le k < t$

better estimate of past states, essential for learning

Most likely explanation: $\arg\max_{\mathbf{x}_{1:t}} P(\mathbf{x}_{1:t}|\mathbf{e}_{1:t})$

speech recognition, decoding with a noisy channel

Chapter 15, Sections 1-5 3 Chapter 15, Sections 1-5 6

Filtering

Aim: devise a recursive state estimation algorithm:

$$\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) = f(\mathbf{e}_{t+1}, \mathbf{P}(\mathbf{X}_t|\mathbf{e}_{1:t}))$$

$$\begin{aligned} \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) &= \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t},\mathbf{e}_{t+1}) \\ &= \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1},\mathbf{e}_{1:t}) \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t}) \\ &= \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}) \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t}) \end{aligned}$$

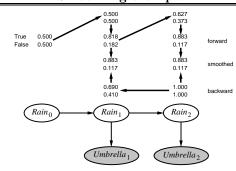
I.e., prediction + estimation. Prediction by summing out X_t :

$$\begin{aligned} \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) &= \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}) \Sigma_{\mathbf{x}_t} \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{x}_t, \mathbf{e}_{1:t}) P(\mathbf{x}_t|\mathbf{e}_{1:t}) \\ &= \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}) \Sigma_{\mathbf{x}_t} \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{x}_t) P(\mathbf{x}_t|\mathbf{e}_{1:t}) \end{aligned}$$

 $\mathbf{f}_{1:t+1} = \text{FORWARD}(\mathbf{f}_{1:t}, \mathbf{e}_{t+1}) \text{ where } \mathbf{f}_{1:t} = \mathbf{P}(\mathbf{X}_t | \mathbf{e}_{1:t})$ Time and space **constant** (independent of t)

Chapter 15, Sections 1–5 7

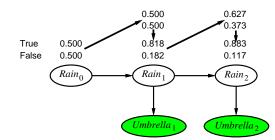
Smoothing example



Forward–backward algorithm: cache forward messages along the way Time linear in t (polytree inference), space $O(t|\mathbf{f}|)$

Chapter 15, Sections 1–5 10

Filtering example



Chapter 15, Sections 1–5 8

Most likely explanation

Most likely sequence \neq sequence of most likely states!!!!

Most likely path to each \mathbf{x}_{t+1}

= most likely path to some \mathbf{x}_t plus one more step

$$\begin{aligned} & \max_{\mathbf{X}_{1}...\mathbf{X}_{t}} \mathbf{P}(\mathbf{x}_{1},...,\mathbf{x}_{t},\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) \\ & = \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}) \max_{\mathbf{X}_{t}} \left(\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{x}_{t}) \max_{\mathbf{X}_{1}...\mathbf{X}_{t-1}} P(\mathbf{x}_{1},...,\mathbf{x}_{t-1},\mathbf{x}_{t}|\mathbf{e}_{1:t}) \right) \end{aligned}$$

Identical to filtering, except $\mathbf{f}_{1:t}$ replaced by

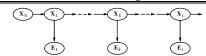
$$\mathbf{m}_{1:t} = \max_{\mathbf{x}_1...\mathbf{X}_{t-1}} \mathbf{P}(\mathbf{x}_1, \ldots, \mathbf{x}_{t-1}, \mathbf{X}_t | \mathbf{e}_{1:t}),$$

I.e., $\mathbf{m}_{1:t}(i)$ gives the probability of the most likely path to state i. Update has sum replaced by max, giving the Viterbi algorithm:

$$\mathbf{m}_{1:t+1} = \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}) \max_{\mathbf{X}^t} \left(\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{x}_t)\mathbf{m}_{1:t}\right)$$

Chapter 15, Sections 1–5 11

Smoothing



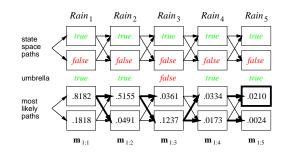
Divide evidence $\mathbf{e}_{1:t}$ into $\mathbf{e}_{1:k}$, $\mathbf{e}_{k+1:t}$:

$$\begin{aligned} \mathbf{P}(\mathbf{X}_k|\mathbf{e}_{1:t}) &= \mathbf{P}(\mathbf{X}_k|\mathbf{e}_{1:k},\mathbf{e}_{k+1:t}) \\ &= \alpha \mathbf{P}(\mathbf{X}_k|\mathbf{e}_{1:k}) \mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{X}_k,\mathbf{e}_{1:k}) \\ &= \alpha \mathbf{P}(\mathbf{X}_k|\mathbf{e}_{1:k}) \mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{X}_k) \\ &= \alpha \mathbf{f}_{1:k} \mathbf{b}_{k+1:t} \end{aligned}$$

Backward message computed by a backwards recursion:

$$\begin{split} \mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{X}_k) &= \Sigma_{\mathbf{X}_{k+1}} \mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{X}_k, \mathbf{x}_{k+1}) \mathbf{P}(\mathbf{x}_{k+1}|\mathbf{X}_k) \\ &= \Sigma_{\mathbf{X}_{k+1}} P(\mathbf{e}_{k+1:t}|\mathbf{x}_{k+1}) \mathbf{P}(\mathbf{x}_{k+1}|\mathbf{X}_k) \\ &= \Sigma_{\mathbf{X}_{k+1}} P(\mathbf{e}_{k+1}|\mathbf{x}_{k+1}) P(\mathbf{e}_{k+2:t}|\mathbf{x}_{k+1}) \mathbf{P}(\mathbf{x}_{k+1}|\mathbf{X}_k) \end{split}$$

Viterbi example



Hidden Markov models

 \mathbf{X}_t is a single, discrete variable (usually \mathbf{E}_t is too) Domain of X_t is $\{1,\ldots,S\}$

Transition matrix
$$\mathbf{T}_{ij}=P(X_t\!=\!j|X_{t-1}\!=\!i)$$
, e.g., $\begin{pmatrix} 0.7 & 0.3 \\ 0.3 & 0.7 \end{pmatrix}$

Sensor matrix O_t for each time step, diagonal elements $P(e_t|X_t\!=\!i)$

e.g., with
$$U_1\!=\!true$$
, $\mathbf{O}_1=\left(egin{array}{cc} 0.9 & 0 \\ 0 & 0.2 \end{array} \right)$

Forward and backward messages as column vectors:

$$\mathbf{f}_{1:t+1} = \alpha \mathbf{O}_{t+1} \mathbf{T}^{\top} \mathbf{f}_{1:t}$$
$$\mathbf{b}_{k+1:t} = \mathbf{T} \mathbf{O}_{k+1} \mathbf{b}_{k+2:t}$$

Forward-backward algorithm needs time ${\cal O}(S^2t)$ and space ${\cal O}(St)$

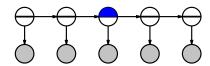
Chapter 15, Sections 1–5 13

Country dance algorithm

Can avoid storing all forward messages in smoothing by running forward algorithm backwards:

$$\begin{aligned} \mathbf{f}_{1:t+1} &= \alpha \mathbf{O}_{t+1} \mathbf{T}^{\top} \mathbf{f}_{1:t} \\ \mathbf{O}_{t+1}^{-1} \mathbf{f}_{1:t+1} &= \alpha \mathbf{T}^{\top} \mathbf{f}_{1:t} \\ \alpha'(\mathbf{T}^{\top})^{-1} \mathbf{O}_{t+1}^{-1} \mathbf{f}_{1:t+1} &= \mathbf{f}_{1:t} \end{aligned}$$

Algorithm: forward pass computes f_t , backward pass does f_i , b_i



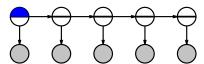
Chapter 15, Sections 1–5 16

Country dance algorithm

Can avoid storing all forward messages in smoothing by running forward algorithm backwards:

$$\begin{aligned} \mathbf{f}_{1:t+1} &= \alpha \mathbf{O}_{t+1} \mathbf{T}^{\top} \mathbf{f}_{1:t} \\ \mathbf{O}_{t+1}^{-1} \mathbf{f}_{1:t+1} &= \alpha \mathbf{T}^{\top} \mathbf{f}_{1:t} \\ \alpha'(\mathbf{T}^{\top})^{-1} \mathbf{O}_{t+1}^{-1} \mathbf{f}_{1:t+1} &= \mathbf{f}_{1:t} \end{aligned}$$

Algorithm: forward pass computes f_t , backward pass does f_i , b_i



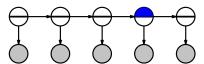
Chapter 15, Sections 1–5 14

Country dance algorithm

Can avoid storing all forward messages in smoothing by running forward algorithm backwards:

$$\begin{aligned} \mathbf{f}_{1:t+1} &= \alpha \mathbf{O}_{t+1} \mathbf{T}^{\top} \mathbf{f}_{1:t} \\ \mathbf{O}_{t+1}^{-1} \mathbf{f}_{1:t+1} &= \alpha \mathbf{T}^{\top} \mathbf{f}_{1:t} \\ \alpha' (\mathbf{T}^{\top})^{-1} \mathbf{O}_{t+1}^{-1} \mathbf{f}_{1:t+1} &= \mathbf{f}_{1:t} \end{aligned}$$

Algorithm: forward pass computes f_t , backward pass does f_i , b_i



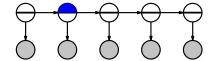
Chapter 15, Sections 1–5 17

Country dance algorithm

Can avoid storing all forward messages in smoothing by running forward algorithm backwards:

$$\begin{aligned} \mathbf{f}_{1:t+1} &= \alpha \mathbf{O}_{t+1} \mathbf{T}^{\top} \mathbf{f}_{1:t} \\ \mathbf{O}_{t+1}^{-1} \mathbf{f}_{1:t+1} &= \alpha \mathbf{T}^{\top} \mathbf{f}_{1:t} \\ \alpha' (\mathbf{T}^{\top})^{-1} \mathbf{O}_{t+1}^{-1} \mathbf{f}_{1:t+1} &= \mathbf{f}_{1:t} \end{aligned}$$

Algorithm: forward pass computes \mathbf{f}_t , backward pass does \mathbf{f}_i , \mathbf{b}_i

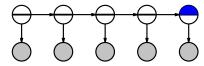


Country dance algorithm

Can avoid storing all forward messages in smoothing by running forward algorithm backwards:

$$\begin{aligned} \mathbf{f}_{1:t+1} &= \alpha \mathbf{O}_{t+1} \mathbf{T}^{\top} \mathbf{f}_{1:t} \\ \mathbf{O}_{t+1}^{-1} \mathbf{f}_{1:t+1} &= \alpha \mathbf{T}^{\top} \mathbf{f}_{1:t} \\ \alpha' (\mathbf{T}^{\top})^{-1} \mathbf{O}_{t+1}^{-1} \mathbf{f}_{1:t+1} &= \mathbf{f}_{1:t} \end{aligned}$$

Algorithm: forward pass computes \mathbf{f}_t , backward pass does \mathbf{f}_i , \mathbf{b}_i

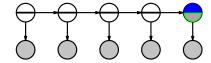


Country dance algorithm

Can avoid storing all forward messages in smoothing by running forward algorithm backwards:

$$\begin{aligned} \mathbf{f}_{1:t+1} &= \alpha \mathbf{O}_{t+1} \mathbf{T}^{\top} \mathbf{f}_{1:t} \\ \mathbf{O}_{t+1}^{-1} \mathbf{f}_{1:t+1} &= \alpha \mathbf{T}^{\top} \mathbf{f}_{1:t} \\ \alpha' (\mathbf{T}^{\top})^{-1} \mathbf{O}_{t+1}^{-1} \mathbf{f}_{1:t+1} &= \mathbf{f}_{1:t} \end{aligned}$$

Algorithm: forward pass computes f_t , backward pass does f_i , b_i



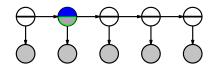
Chapter 15, Sections 1–5 19

Country dance algorithm

Can avoid storing all forward messages in smoothing by running forward algorithm backwards:

$$\begin{aligned} \mathbf{f}_{1:t+1} &= \alpha \mathbf{O}_{t+1} \mathbf{T}^{\top} \mathbf{f}_{1:t} \\ \mathbf{O}_{t+1}^{-1} \mathbf{f}_{1:t+1} &= \alpha \mathbf{T}^{\top} \mathbf{f}_{1:t} \\ \alpha'(\mathbf{T}^{\top})^{-1} \mathbf{O}_{t+1}^{-1} \mathbf{f}_{1:t+1} &= \mathbf{f}_{1:t} \end{aligned}$$

Algorithm: forward pass computes f_t , backward pass does f_i , b_i



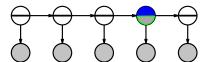
Chapter 15, Sections 1–5 22

Country dance algorithm

Can avoid storing all forward messages in smoothing by running forward algorithm backwards:

$$\begin{aligned} \mathbf{f}_{1:t+1} &= \alpha \mathbf{O}_{t+1} \mathbf{T}^{\top} \mathbf{f}_{1:t} \\ \mathbf{O}_{t+1}^{-1} \mathbf{f}_{1:t+1} &= \alpha \mathbf{T}^{\top} \mathbf{f}_{1:t} \\ \alpha'(\mathbf{T}^{\top})^{-1} \mathbf{O}_{t+1}^{-1} \mathbf{f}_{1:t+1} &= \mathbf{f}_{1:t} \end{aligned}$$

Algorithm: forward pass computes f_t , backward pass does f_i , b_i



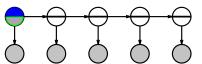
Chapter 15, Sections 1–5 20

Country dance algorithm

Can avoid storing all forward messages in smoothing by running forward algorithm backwards:

$$\begin{aligned} \mathbf{f}_{1:t+1} &= \alpha \mathbf{O}_{t+1} \mathbf{T}^{\top} \mathbf{f}_{1:t} \\ \mathbf{O}_{t+1}^{-1} \mathbf{f}_{1:t+1} &= \alpha \mathbf{T}^{\top} \mathbf{f}_{1:t} \\ \alpha'(\mathbf{T}^{\top})^{-1} \mathbf{O}_{t+1}^{-1} \mathbf{f}_{1:t+1} &= \mathbf{f}_{1:t} \end{aligned}$$

Algorithm: forward pass computes f_t , backward pass does f_i , b_i



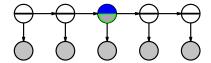
Chapter 15, Sections 1–5 23

Country dance algorithm

Can avoid storing all forward messages in smoothing by running forward algorithm backwards:

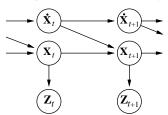
$$\begin{aligned} \mathbf{f}_{1:t+1} &= \alpha \mathbf{O}_{t+1} \mathbf{T}^{\top} \mathbf{f}_{1:t} \\ \mathbf{O}_{t+1}^{-1} \mathbf{f}_{1:t+1} &= \alpha \mathbf{T}^{\top} \mathbf{f}_{1:t} \\ \alpha' (\mathbf{T}^{\top})^{-1} \mathbf{O}_{t+1}^{-1} \mathbf{f}_{1:t+1} &= \mathbf{f}_{1:t} \end{aligned}$$

Algorithm: forward pass computes \mathbf{f}_t , backward pass does \mathbf{f}_i , \mathbf{b}_i



Kalman filters

Modelling systems described by a set of continuous variables, e.g., tracking a bird flying— $\mathbf{X}_t = X, Y, Z, \dot{X}, \dot{Y}, \dot{Z}$. Airplanes, robots, ecosystems, economies, chemical plants, planets, . . .



Gaussian prior, linear Gaussian transition model and sensor model

Updating Gaussian distributions

Prediction step: if $\mathbf{P}(\mathbf{X}_t|\mathbf{e}_{1:t})$ is Gaussian, then prediction

$$\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t}) = \int_{\mathbf{x}_t} \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{x}_t) P(\mathbf{x}_t|\mathbf{e}_{1:t}) d\mathbf{x}_t$$

is Gaussian. If $\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t})$ is Gaussian, then the updated distribution

$$\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) = \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1})\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t})$$

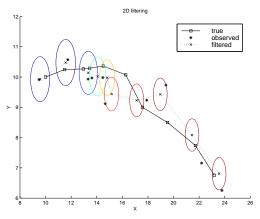
is Gaussian

Hence $\mathbf{P}(\mathbf{X}_t|\mathbf{e}_{1:t})$ is multivariate Gaussian $N(\boldsymbol{\mu}_t, \boldsymbol{\Sigma}_t)$ for all t

General (nonlinear, non-Gaussian) process: description of posterior grows ${\bf unboundedly}$ as $t\to\infty$

Chapter 15, Sections 1–5 25

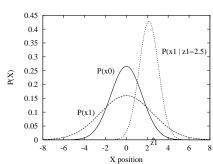
2-D tracking example: filtering



Simple 1-D example

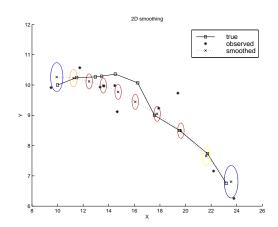
Gaussian random walk on X-axis, s.d. σ_x , sensor s.d. σ_z

$$\mu_{t+1} = \frac{(\sigma_t^2 + \sigma_x^2)z_{t+1} + \sigma_z^2 \mu_t}{\sigma_t^2 + \sigma_x^2 + \sigma_z^2} \qquad \sigma_{t+1}^2 = \frac{(\sigma_t^2 + \sigma_x^2)z_{t+1}^2}{\sigma_t^2 + \sigma_x^2}$$



Chapter 15, Sections 1–5 26

2-D tracking example: smoothing



Chapter 15, Sections 1–5 29

General Kalman update

Transition and sensor models:

$$P(\mathbf{x}_{t+1}|\mathbf{x}_t) = N(\mathbf{F}\mathbf{x}_t, \mathbf{\Sigma}_x)(\mathbf{x}_{t+1})$$

$$P(\mathbf{z}_t|\mathbf{x}_t) = N(\mathbf{H}\mathbf{x}_t, \mathbf{\Sigma}_z)(\mathbf{z}_t)$$

 ${f F}$ is the matrix for the transition; ${f \Sigma}_x$ the transition noise covariance ${f H}$ is the matrix for the sensors; ${f \Sigma}_z$ the sensor noise covariance

Filter computes the following update:

$$\begin{array}{ll} \boldsymbol{\mu}_{t+1} = & \mathbf{F}\boldsymbol{\mu}_t + \mathbf{K}_{t+1}(\mathbf{z}_{t+1} - \mathbf{H}\mathbf{F}\boldsymbol{\mu}_t) \\ \boldsymbol{\Sigma}_{t+1} = & (\mathbf{I} - \mathbf{K}_{t+1})(\mathbf{F}\boldsymbol{\Sigma}_t\mathbf{F}^\top + \boldsymbol{\Sigma}_x) \end{array}$$

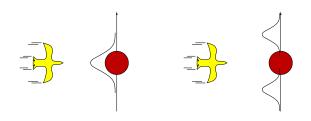
where $\mathbf{K}_{t+1} = (\mathbf{F} \mathbf{\Sigma}_t \mathbf{F}^\top + \mathbf{\Sigma}_x) \mathbf{H}^\top (\mathbf{H} (\mathbf{F} \mathbf{\Sigma}_t \mathbf{F}^\top + \mathbf{\Sigma}_x) \mathbf{H}^\top + \mathbf{\Sigma}_z)^{-1}$ is the Kalman gain matrix

 Σ_t and \mathbf{K}_t are independent of observation sequence, so compute offline

Where it breaks

Cannot be applied if the transition model is nonlinear

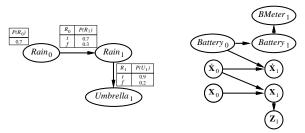
Extended Kalman Filter models transition as locally linear around $\mathbf{x}_t = \boldsymbol{\mu}_t$ Fails if systems is locally unsmooth



Chapter 15, Sections 1-5 27 Chapter 15, Sections 1-5 30

Dynamic Bayesian networks

 \mathbf{X}_t , \mathbf{E}_t contain arbitrarily many variables in a replicated Bayes net



Chapter 15, Sections 1–5 31

Exact inference in DBNs

Naive method: unroll the network and run any exact algorithm

Problem: inference cost for each update grows with t

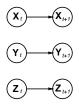
Rollup filtering: add slice t+1, "sum out" slice t using variable elimination

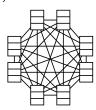
Largest factor is $O(d^{n+1})$, update cost $O(d^{n+2})$ (cf. HMM update cost $O(d^{2n})$)

Chapter 15, Sections 1–5 34

DBNs vs. HMMs

Every HMM is a single-variable DBN; every discrete DBN is an HMM



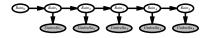


Sparse dependencies \Rightarrow exponentially fewer parameters; e.g., 20 state variables, three parents each DBN has $20\times2^3=160$ parameters, HMM has $2^{20}\times2^{20}\approx10^{12}$

Chapter 15, Sections 1–5 32

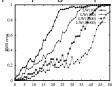
Likelihood weighting for DBNs

Set of weighted samples approximates the belief state



LW samples pay no attention to the evidence!

- \Rightarrow fraction "agreeing" falls exponentially with t
- \Rightarrow number of samples required grows exponentially with t

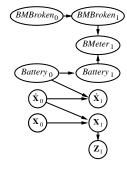


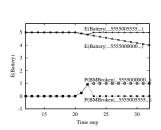
Chapter 15, Sections 1–5 35

DBNs vs Kalman filters

Every Kalman filter model is a DBN, but few DBNs are KFs; real world requires non-Gaussian posteriors

E.g., where are bin Laden and my keys? What's the battery charge?

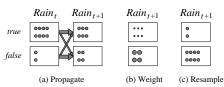




Particle filtering

Basic idea: ensure that the population of samples ("particles") tracks the high-likelihood regions of the state-space $\,$

Replicate particles proportional to likelihood for \mathbf{e}_t



Widely used for tracking nonlinear systems, esp. in vision

Also used for simultaneous localization and mapping in mobile robots $10^5\mbox{-}{\rm dimensional}$ state space

Particle filtering contd.

Assume consistent at time t: $N(\mathbf{x}_t|\mathbf{e}_{1:t})/N = P(\mathbf{x}_t|\mathbf{e}_{1:t})$

Propagate forward: populations of \mathbf{x}_{t+1} are

$$N(\mathbf{x}_{t+1}|\mathbf{e}_{1:t}) = \sum_{\mathbf{x}_t} P(\mathbf{x}_{t+1}|\mathbf{x}_t) N(\mathbf{x}_t|\mathbf{e}_{1:t})$$

Weight samples by their likelihood for e_{t+1} :

$$W(\mathbf{x}_{t+1}|\mathbf{e}_{1:t+1}) = P(\mathbf{e}_{t+1}|\mathbf{x}_{t+1})N(\mathbf{x}_{t+1}|\mathbf{e}_{1:t})$$

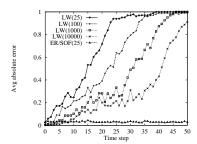
Resample to obtain populations proportional to W:

$$\begin{split} N(\mathbf{x}_{t+1}|\mathbf{e}_{1:t+1})/N &= \alpha W(\mathbf{x}_{t+1}|\mathbf{e}_{1:t+1}) = \alpha P(\mathbf{e}_{t+1}|\mathbf{x}_{t+1})N(\mathbf{x}_{t+1}|\mathbf{e}_{1:t}) \\ &= \alpha P(\mathbf{e}_{t+1}|\mathbf{x}_{t+1}) \Sigma_{\mathbf{x}_t} P(\mathbf{x}_{t+1}|\mathbf{x}_t)N(\mathbf{x}_t|\mathbf{e}_{1:t}) \\ &= \alpha' P(\mathbf{e}_{t+1}|\mathbf{x}_{t+1}) \Sigma_{\mathbf{x}_t} P(\mathbf{x}_{t+1}|\mathbf{x}_t) P(\mathbf{x}_t|\mathbf{e}_{1:t}) \\ &= P(\mathbf{x}_{t+1}|\mathbf{e}_{1:t+1}) \end{split}$$

Chapter 15, Sections 1–5 37

Particle filtering performance

Approximation error of particle filtering remains bounded over time, at least empirically—theoretical analysis is difficult



Chapter 15, Sections 1–5 38

Summary

Temporal models use state and sensor variables replicated over time

Markov assumptions and stationarity assumption, so we need

- transition model $\mathbf{P}(\mathbf{X}_t|\mathbf{X}_{t-1})$
- sensor model $\mathbf{P}(\mathbf{E}_t|\mathbf{X}_t)$

Tasks are filtering, prediction, smoothing, most likely sequence; all done recursively with constant cost per time step

Hidden Markov models have a single discrete state variable; used for speech recognition

Kalman filters allow n state variables, linear Gaussian, $O(n^3)$ update

Dynamic Bayes nets subsume HMMs, Kalman filters; exact update intractable

Particle filtering is a good approximate filtering algorithm for DBNs