FIRST-ORDER LOGIC

Chapter 8

Chapter 8 1

First-order logic

Whereas propositional logic assumes world contains **facts**, first-order logic (like natural language) assumes the world contains

- Objects: people, houses, numbers, theories, Ronald McDonald, colors, baseball games, wars, centuries . . .
- Relations: red, round, bogus, prime, multistoried ...,
 brother of, bigger than, inside, part of, has color, occurred after, owns, comes between, ...
- Functions: father of, best friend, third inning of, one more than, end of

Chanta 8

Outline

- ♦ Why FOL?
- \diamondsuit Syntax and semantics of FOL
- ♦ Fun with sentences
- ♦ Wumpus world in FOL

|--|

Language	Ontological	Epistemological
	Commitment	Commitment
Propositional logic	facts	true/false/unknown
First-order logic	facts, objects, relations	true/false/unknown
Temporal logic	facts, objects, relations, times	true/false/unknown
Probability theory	facts	degree of belief
Fuzzy logic	$facts + degree \ of \ truth$	known interval value

Chapter 8 2 Chapter 8 5

Pros and cons of propositional logic

- Propositional logic is declarative: pieces of syntax correspond to facts
- Propositional logic allows partial/disjunctive/negated information (unlike most data structures and databases)
- Propositional logic is **compositional**: meaning of $B_{1,1} \wedge P_{1,2}$ is derived from meaning of $B_{1,1}$ and of $P_{1,2}$
- Meaning in propositional logic is context-independent (unlike natural language, where meaning depends on context)
- Propositional logic has very limited expressive power (unlike natural language)

E.g., cannot say "pits cause breezes in adjacent squares" except by writing one sentence for each square

Syntax of FOL: Basic elements

 $\begin{array}{ll} \mathsf{Equality} & = \\ \mathsf{Quantifiers} & \forall \ \exists \end{array}$

Chapter 8 G

Atomic sentences

Atomic sentence = $predicate(term_1, ..., term_n)$ or $term_1 = term_2$

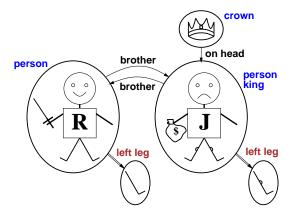
> Term = $function(term_1, ..., term_n)$ or constant or variable

 $\begin{aligned} \textbf{E.g.,} & \ Brother(KingJohn, RichardTheLionheart) \\ & > (Length(LeftLegOf(Richard)), Length(LeftLegOf(KingJohn))) \end{aligned}$

Chapter 8 7

Chapter 8 8

Models for FOL: Example



_

Complex sentences

Complex sentences are made from atomic sentences using connectives

$$\neg S, \quad S_1 \wedge S_2, \quad S_1 \vee S_2, \quad S_1 \ \Rightarrow \ S_2, \quad S_1 \ \Leftrightarrow \ S_2$$

E.g. $Sibling(KingJohn, Richard) \Rightarrow Sibling(Richard, KingJohn) > (1, 2) \lor \le (1, 2) > (1, 2) \land \neg > (1, 2)$

Truth example

Consider the interpretation in which $Richard \rightarrow Richard$ the Lionheart $John \rightarrow$ the evil King John $Brother \rightarrow$ the brotherhood relation

Under this interpretation, Brother(Richard, John) is true just in case Richard the Lionheart and the evil King John are in the brotherhood relation in the model

Chapter 8 11

Truth in first-order logic

Sentences are true with respect to a model and an interpretation

Model contains ≥ 1 objects (domain elements) and relations among them

Interpretation specifies referents for

constant symbols \rightarrow objects predicate symbols \rightarrow relations function symbols \rightarrow functional relations

An atomic sentence $predicate(term_1,\ldots,term_n)$ is true iff the objects referred to by $term_1,\ldots,term_n$ are in the relation referred to by predicate

Models for FOL: Lots!

Entailment in propositional logic can be computed by enumerating models

We can enumerate the FOL models for a given KB vocabulary:

For each number of domain elements n from 1 to ∞ For each k-ary predicate P_k in the vocabulary
For each possible k-ary relation on n objects
For each constant symbol C in the vocabulary
For each choice of referent for C from n objects

Computing entailment by enumerating FOL models is not easy!

Chapter 8 9 Chapter 8 12

Universal quantification

 $\forall \langle variables \rangle \langle sentence \rangle$

Everyone at Berkeley is smart:

```
\forall x \ At(x, Berkeley) \Rightarrow Smart(x)
```

 $\forall x \ P$ is true in a model m iff P is true with x being each possible object in the model

Roughly speaking, equivalent to the conjunction of instantiations of P

```
 \begin{array}{l} (At(KingJohn, Berkeley) \Rightarrow Smart(KingJohn)) \\ \wedge \ (At(Richard, Berkeley) \Rightarrow Smart(Richard)) \\ \wedge \ (At(Berkeley, Berkeley) \Rightarrow Smart(Berkeley)) \\ \wedge \ \dots \end{array}
```

Chapter 8 13

Another common mistake to avoid

Typically, \wedge is the main connective with \exists

Common mistake: using \Rightarrow as the main connective with \exists :

```
\exists x \ At(x, Stanford) \Rightarrow Smart(x)
```

is true if there is anyone who is not at Stanford!

Chapter 8 16

A common mistake to avoid

Typically, $\ \Rightarrow\$ is the main connective with \forall

Common mistake: using \land as the main connective with \forall :

 $\forall x \ At(x, Berkeley) \land Smart(x)$

means "Everyone is at Berkeley and everyone is smart"

Chapter 8 14

Properties of quantifiers

```
\forall x \ \forall y is the same as \forall y \ \forall x (why??)
```

 $\exists x \exists y$ is the same as $\exists y \exists x \text{ (why??)}$

 $\exists\, x\;\;\forall\, y\quad\text{is } \mathbf{not} \text{ the same as }\forall\, y\;\;\exists\, x$

 $\exists \, x \; \, \forall \, y \; \; Loves(x,y)$

"There is a person who loves everyone in the world"

 $\forall y \ \exists x \ Loves(x,y)$

"Everyone in the world is loved by at least one person"

Quantifier duality: each can be expressed using the other

 $\forall x \ Likes(x, IceCream)$ $\neg \exists x \ \neg Likes(x, IceCream)$

 $\exists x \ Likes(x, Broccoli)$ $\neg \forall x \ \neg Likes(x, Broccoli)$

....

Existential quantification

 $\exists \, \langle variables \rangle \ \, \langle sentence \rangle$

Someone at Stanford is smart:

 $\exists \, x \ \, At(x, Stanford) \land Smart(x)$

 $\exists x \ P \quad \text{is true in a model } m \text{ iff } P \text{ is true with } x \text{ being } \\ \mathbf{some} \text{ possible object in the model}$

Roughly speaking, equivalent to the disjunction of instantiations of P

```
 \begin{array}{l} (At(KingJohn,Stanford) \wedge Smart(KingJohn)) \\ \vee \ (At(Richard,Stanford) \wedge Smart(Richard)) \\ \vee \ (At(Stanford,Stanford) \wedge Smart(Stanford)) \\ \vee \ \dots \end{array}
```

Fun with sentences

Brothers are siblings

Chapter 8 15 Chapter 8 15

Fun with sentences

Brothers are siblings

 $\forall x, y \; Brother(x, y) \Rightarrow Sibling(x, y).$

"Sibling" is symmetric

Chapter 8 20

Fun with sentences

Brothers are siblings

Brothers are signings

 $\forall x, y \; Brother(x, y) \Rightarrow Sibling(x, y).$

"Sibling" is symmetric

 $\forall x, y \ Sibling(x, y) \Leftrightarrow Sibling(y, x).$

One's mother is one's female parent

Fun with sentences

Brothers are siblings

 $\forall x, y \; Brother(x, y) \Rightarrow Sibling(x, y).$

"Sibling" is symmetric

 $\forall x, y \ Sibling(x, y) \Leftrightarrow Sibling(y, x).$

One's mother is one's female parent

 $\forall x, y \; Mother(x, y) \Leftrightarrow (Female(x) \land Parent(x, y)).$

A first cousin is a child of a parent's sibling

 $\forall x,y \ \textit{FirstCousin}(x,y) \ \Leftrightarrow \ \exists \, p,ps \ \textit{Parent}(p,x) \land \textit{Sibling}(ps,p) \land \textit{Parent}(ps,y)$

Chapter 8

Equality

 $term_1 = term_2$ is true under a given interpretation if and only if $term_1$ and $term_2$ refer to the same object

E.g., 1=2 and $\forall x \ \times (Sqrt(x),Sqrt(x))=x$ are satisfiable 2=2 is valid

E.g., definition of (full) Sibling in terms of Parent:

 $\forall x, y \; Sibling(x, y) \Leftrightarrow [\neg(x = y) \land \exists \, m, f \; \neg(m = f) \land \\ Parent(m, x) \land Parent(f, x) \land Parent(m, y) \land Parent(f, y)]$

Chapter 8 23

Fun with sentences

Brothers are siblings

 $\forall \, x,y \;\; Brother(x,y) \; \Rightarrow \; Sibling(x,y).$

"Sibling" is symmetric

 $\forall \, x,y \; \, Sibling(x,y) \; \Leftrightarrow \; Sibling(y,x).$

One's mother is one's female parent

 $\forall \, x,y \;\; Mother(x,y) \; \Leftrightarrow \; (Female(x) \land Parent(x,y)).$

A first cousin is a child of a parent's sibling

Interacting with FOL KBs

Suppose a wumpus-world agent is using an FOL KB and perceives a smell and a breeze (but no glitter) at $t=5\colon$

$$\begin{split} Tell(KB, Percept([Smell, Breeze, None], 5)) \\ Ask(KB, \exists \, a \, \, Action(a, 5)) \end{split}$$

I.e., does $K\!B$ entail any particular actions at t=5?

Answer: Yes, $\{a/Shoot\}$ \leftarrow substitution (binding list)

Given a sentence S and a substitution σ ,

 $S\sigma$ denotes the result of plugging σ into S; e.g.,

S = Smarter(x,y)

 $\sigma = \{x/Hillary, y/Bill\}$

 $S\sigma = Smarter(Hillary, Bill)$

 $Ask(KB,S) \text{ returns some/all } \sigma \text{ such that } KB \models S\sigma$

Chapter 8 21 Chapter 8 24

Knowledge base for the wumpus world

"Perception"

 $\forall b, g, t \ Percept([Smell, b, g], t) \Rightarrow Smelt(t)$ $\forall s, b, t \ Percept([s, b, Glitter], t) \Rightarrow AtGold(t)$

Reflex: $\forall t \ AtGold(t) \Rightarrow Action(Grab, t)$

Reflex with internal state: do we have the gold already? $\forall t \ AtGold(t) \land \neg Holding(Gold, t) \Rightarrow Action(Grab, t)$

 $\begin{aligned} Holding(Gold,t) \text{ cannot be observed} \\ \Rightarrow \text{keeping track of change is essential} \end{aligned}$

Chapter 8 25

Deducing hidden properties

Properties of locations:

 $\forall x, t \ At(Agent, x, t) \land Smelt(t) \Rightarrow Smelly(x)$ $\forall x, t \ At(Agent, x, t) \land Breeze(t) \Rightarrow Breezy(x)$

Squares are breezy near a pit:

Diagnostic rule—infer cause from effect

 $\forall y \ Breezy(y) \Rightarrow \exists x \ Pit(x) \land Adjacent(x,y)$

Causal rule—infer effect from cause

 $\forall x, y \ Pit(x) \land Adjacent(x, y) \Rightarrow Breezy(y)$

Neither of these is complete—e.g., the causal rule doesn't say whether squares far away from pits can be breezy

Definition for the Breezy predicate:

 $\forall y \ Breezy(y) \Leftrightarrow [\exists x \ Pit(x) \land Adjacent(x,y)]$

Chapter 8

Keeping track of change

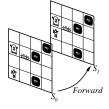
Facts hold in situations, rather than eternally E.g., Holding(Gold, Now) rather than just Holding(Gold)

Situation calculus is one way to represent change in FOL:

Adds a situation argument to each non-eternal predicate E.g., Now in Holding(Gold, Now) denotes a situation

Situations are connected by the Result function

Result(a,s) is the situation that results from doing a in s



Describing actions I

"Effect" axiom—describe changes due to action

 $\forall s \ AtGold(s) \Rightarrow Holding(Gold, Result(Grab, s))$

"Frame" axiom—describe non-changes due to action

 $\forall s \ HaveArrow(s) \Rightarrow HaveArrow(Result(Grab, s))$

Frame problem: find an elegant way to handle non-change

- (a) representation—avoid frame axioms
- (b) inference—avoid repeated "copy-overs" to keep track of state

Qualification problem: true descriptions of real actions require endless caveats—what if gold is slippery or nailed down or \dots

Ramification problem: real actions have many secondary consequences—what about the dust on the gold, wear and tear on gloves, . . .

Chapter 8 2

Describing actions II

Successor-state axioms solve the representational frame problem

Each axiom is "about" a predicate (not an action per se):

P true afterwards \Leftrightarrow [an action made P true

∨ P true already and no action made P false

For holding the gold:

 $\forall \, a, s \; Holding(Gold, Result(a, s)) \; \Leftrightarrow \\ [(a = Grab \land AtGold(s)) \\ \lor (Holding(Gold, s) \land a \neq Release)]$

Chapter 8 2

Making plans

Initial condition in KB:

 $At(Agent, [1, 1], S_0)$ $At(Gold, [1, 2], S_0)$

Query: $Ask(KB, \exists s \ Holding(Gold, s))$

i.e., in what situation will I be holding the gold?

Answer: $\{s/Result(Grab, Result(Forward, S_0))\}$ i.e., go forward and then grab the gold

This assumes that the agent is interested in plans starting at S_0 and that S_0 is the only situation described in the ${\rm KB}$

Chapter 8 27 Chapter 8 30

Making plans: A better way

Represent plans as action sequences $[a_1, a_2, \dots, a_n]$

PlanResult(p,s) is the result of executing p in s

Then the query $Ask(KB,\exists\, p\ Holding(Gold,PlanResult(p,S_0)))$ has the solution $\{p/[Forward,Grab]\}$

Definition of PlanResult in terms of Result:

```
 \forall s \ PlanResult([],s) = s \\ \forall a,p,s \ PlanResult([a|p],s) = PlanResult(p,Result(a,s))
```

Planning systems are special-purpose reasoners designed to do this type of inference more efficiently than a general-purpose reasoner

Chapter 8

Summary

First-order logic:

- objects and relations are semantic primitives
- syntax: constants, functions, predicates, equality, quantifiers

Increased expressive power: sufficient to define wumpus world

Situation calculus:

- conventions for describing actions and change in FOL
- ${\sf -}$ can formulate planning as inference on a situation calculus ${\sf KB}$

Chapter 8 32