GAME PLAYING

CHAPTER 6
Outline

◊ Games

◊ Perfect play
 – minimax decisions
 – $\alpha-\beta$ pruning

◊ Resource limits and approximate evaluation

◊ Games of chance

◊ Games of imperfect information
Games vs. search problems

“Unpredictable” opponent ⇒ solution is a \textit{strategy}
specifying a move for every possible opponent reply

Time limits ⇒ unlikely to find goal, must approximate

Plan of attack:

• Computer considers possible lines of play (Babbage, 1846)
• Algorithm for perfect play (Zermelo, 1912; Von Neumann, 1944)
• Finite horizon, approximate evaluation (Zuse, 1945; Wiener, 1948; Shannon, 1950)
• First chess program (Turing, 1951)
• Machine learning to improve evaluation accuracy (Samuel, 1952–57)
• Pruning to allow deeper search (McCarthy, 1956)
Types of games

<table>
<thead>
<tr>
<th>perfect information</th>
<th>deterministic</th>
<th>chance</th>
</tr>
</thead>
<tbody>
<tr>
<td>chess, checkers, go, othello</td>
<td>backgammon, monopoly</td>
<td></td>
</tr>
<tr>
<td>imperfect information</td>
<td>battleships, blind tictactoe</td>
<td>bridge, poker, scrabble, nuclear war</td>
</tr>
</tbody>
</table>
Game tree (2-player, deterministic, turns)

MAX (X)

MIN (O)

MAX (X)

MIN (O)

TERMINAL

Utility

-1 0 +1

Chapter 6
Minimax

Perfect play for deterministic, perfect-information games

Idea: choose move to position with highest minimax value
 = best achievable payoff against best play

E.g., 2-ply game:

```
MAX

3
/  \
A_1  A_2
/    /  \
A_11 A_12 A_13
/    /  \
3 12 8

MIN

3
/  \
A_2  A_3
/    /  \
A_21 A_22 A_23
/    /  \
3 4 6

A_31 A_32 A_33
/    /  \
14 5 2
```
Minimax algorithm

```
function Minimax-Decision(state) returns an action
    inputs: state, current state in game
    return the a in Actions(state) maximizing Min-Value(Result(a, state))

function Max-Value(state) returns a utility value
    if Terminal-Test(state) then return Utility(state)
    v ← −∞
    for a, s in Successors(state) do v ← Max(v, Min-Value(s))
    return v

function Min-Value(state) returns a utility value
    if Terminal-Test(state) then return Utility(state)
    v ← ∞
    for a, s in Successors(state) do v ← Min(v, Max-Value(s))
    return v
```
Properties of minimax

Complete??
Properties of minimax

Complete?? Only if tree is finite (chess has specific rules for this).

NB a finite strategy can exist even in an infinite tree!

Optimal??
Properties of minimax

Complete? Yes, if tree is finite (chess has specific rules for this)

Optimal? Yes, against an optimal opponent. Otherwise?

Time complexity?
Properties of minimax

Complete?? Yes, if tree is finite (chess has specific rules for this)

Optimal?? Yes, against an optimal opponent. Otherwise??

Time complexity?? $O(b^m)$

Space complexity??
Properties of minimax

Complete?? Yes, if tree is finite (chess has specific rules for this)

Optimal?? Yes, against an optimal opponent. Otherwise??

Time complexity?? $O(b^m)$

Space complexity?? $O(bm)$ (depth-first exploration)

For chess, $b \approx 35$, $m \approx 100$ for “reasonable” games
 \Rightarrow exact solution completely infeasible

But do we need to explore every path?
\(\alpha - \beta \) pruning example

MAX

MIN

\[
\begin{array}{c}
3 \\
12 \\
8 \\
\end{array}
\]

\[\geq 3\]
α–β pruning example

MAX

MIN

$3 \geq 3$

$12 \leq 2$

$8 \times$

$2 \times$
\(\alpha-\beta\) pruning example

\[
\begin{array}{c}
\text{MAX} \\
\text{MIN}
\end{array}
\]

\[
\begin{array}{c}
3 \\
12 \\
8 \\
2 \\
14
\end{array}
\]

\[
\begin{array}{c}
\geq 3 \\
\leq 2 \\
\leq 14
\end{array}
\]

\[
\begin{array}{c}
\times \\
\times
\end{array}
\]
α−β pruning example
\(\alpha - \beta\) pruning example
Why is it called $\alpha-\beta$?

α is the best value (to MAX) found so far off the current path
If V is worse than α, MAX will avoid it \Rightarrow prune that branch
Define β similarly for MIN
The $\alpha-\beta$ algorithm

function ALPHA-BETA-DECISION$(state)$ **returns** an action

return the a in ACTIONS$(state)$ maximizing MIN-VALUE(Result$(a, state)$)

function MAX-VALUE$(state, \alpha, \beta)$ **returns** a utility value

inputs: $state$, current state in game

α, the value of the best alternative for MAX along the path to $state$

β, the value of the best alternative for MIN along the path to $state$

if TERMINAL-TEST$(state)$ then return Utility$(state)$

$v \leftarrow -\infty$

for a, s in SUCCESSORS$(state)$ do

$v \leftarrow MAX(v, MIN-VALUE(s, \alpha, \beta))$

if $v \geq \beta$ then return v

$\alpha \leftarrow MAX(\alpha, v)$

return v

function MIN-VALUE$(state, \alpha, \beta)$ **returns** a utility value

same as MAX-VALUE but with roles of α, β reversed
Properties of $\alpha-\beta$

Pruning does not affect final result

Good move ordering improves effectiveness of pruning

With “perfect ordering,” time complexity $= O(b^{m/2})$

\Rightarrow doubles solvable depth

A simple example of the value of reasoning about which computations are relevant (a form of metareasoning)

Unfortunately, 35^{50} is still impossible!
Resource limits

Standard approach:

- Use **Cutoff-Test** instead of **Terminal-Test**
 e.g., depth limit (perhaps add quiescence search)
- Use **Eval** instead of **Utility**
 i.e., **evaluation function** that estimates desirability of position

Suppose we have 100 seconds, explore 10^4 nodes/second
 \[\Rightarrow 10^6 \text{ nodes per move} \approx 35^{8/2} \]
 \[\Rightarrow \alpha-\beta \text{ reaches depth 8} \Rightarrow \text{pretty good chess program} \]
Evaluation functions

For chess, typically linear weighted sum of features

\[\text{Eval}(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s) \]

e.g., \(w_1 = 9 \) with
\[f_1(s) = (\text{number of white queens}) - (\text{number of black queens}), \text{ etc.} \]
Digression: Exact values don’t matter

Behaviour is preserved under any \textcolor{red}{monotonic} transformation of Eval.

Only the order matters:

\begin{itemize}
\item Payoff in deterministic games acts as an \textcolor{red}{ordinal utility} function.
\end{itemize}
Deterministic games in practice

Checkers: Chinook ended 40-year-reign of human world champion Marion Tinsley in 1994. Used an endgame database defining perfect play for all positions involving 8 or fewer pieces on the board, a total of 443,748,401,247 positions.

Othello: human champions refuse to compete against computers, who are too good.

Go: human champions refuse to compete against computers, who are too bad. In go, $b > 300$, so most programs use pattern knowledge bases to suggest plausible moves.
Nondeterministic games: backgammon

Chapter 6
Nondeterministic games in general

In nondeterministic games, chance introduced by dice, card-shuffling

Simplified example with coin-flipping:
Algorithm for nondeterministic games

\textsc{Expectiminimax} gives perfect play

Just like \textsc{minimax}, except we must also handle chance nodes:

\ldots

\begin{verbatim}
if \textit{state} is a \textsc{Max} node then
 return the highest \textsc{Expectiminimax-Value of Successors}(\textit{state})
\end{verbatim}

\begin{verbatim}
if \textit{state} is a \textsc{Min} node then
 return the lowest \textsc{Expectiminimax-Value of Successors}(\textit{state})
\end{verbatim}

\begin{verbatim}
if \textit{state} is a chance node then
 return average of \textsc{Expectiminimax-Value of Successors}(\textit{state})
\end{verbatim}

\ldots
Nondeterministic games in practice

Dice rolls increase b: 21 possible rolls with 2 dice
Backgammon \approx 20 legal moves (can be 6,000 with 1-1 roll)

$$\text{depth} \ 4 = 20 \times (21 \times 20)^3 \approx 1.2 \times 10^9$$

As depth increases, probability of reaching a given node shrinks
\Rightarrow value of lookahead is diminished

$\alpha-\beta$ pruning is much less effective

TDGammon uses depth-2 search + very good Eval
\approx world-champion level
Digression: Exact values DO matter

Behaviour is preserved only by positive linear transformation of E_{VAL}

Hence E_{VAL} should be proportional to the expected payoff
Games of imperfect information

E.g., card games, where opponent’s initial cards are unknown

Typically we can calculate a probability for each possible deal

Seems just like having one big dice roll at the beginning of the game*

Idea: compute the minimax value of each action in each deal,
then choose the action with highest expected value over all deals*

Special case: if an action is optimal for all deals, it’s optimal.*

GIB, current best bridge program, approximates this idea by
1) generating 100 deals consistent with bidding information
2) picking the action that wins most tricks on average
Example

Four-card bridge/whist/hearts hand, MAX to play first

Chapter 6
Example

Four-card bridge/whist/hearts hand, MAX to play first
Four-card bridge/whist/heart hand, MAX to play first

MAX

MIN

MAX

MIN

MAX

MIN

MAX

MIN

MAX

MIN

Chapter 6
Commonsense example

Road A leads to a small heap of gold pieces
Road B leads to a fork:
 take the left fork and you’ll find a mound of jewels;
 take the right fork and you’ll be run over by a bus.
Commonsense example

Road A leads to a small heap of gold pieces
Road B leads to a fork:
 take the left fork and you’ll find a mound of jewels;
 take the right fork and you’ll be run over by a bus.

Road A leads to a small heap of gold pieces
Road B leads to a fork:
 take the left fork and you’ll be run over by a bus;
 take the right fork and you’ll find a mound of jewels.
Commonsense example

Road A leads to a small heap of gold pieces
Road B leads to a fork:
 take the left fork and you’ll find a mound of jewels;
 take the right fork and you’ll be run over by a bus.

Road A leads to a small heap of gold pieces
Road B leads to a fork:
 take the left fork and you’ll be run over by a bus;
 take the right fork and you’ll find a mound of jewels.

Road A leads to a small heap of gold pieces
Road B leads to a fork:
 guess correctly and you’ll find a mound of jewels;
 guess incorrectly and you’ll be run over by a bus.
Proper analysis

* Intuition that the value of an action is the average of its values in all actual states is **WRONG**

With partial observability, value of an action depends on the information state or belief state the agent is in

Can generate and search a tree of information states

Leads to rational behaviors such as
 ◊ Acting to obtain information
 ◊ Signalling to one’s partner
 ◊ Acting randomly to minimize information disclosure
Summary

Games are fun to work on! (and dangerous)

They illustrate several important points about AI

◊ perfection is unattainable ⇒ must approximate
◊ good idea to think about what to think about
◊ uncertainty constrains the assignment of values to states
◊ optimal decisions depend on information state, not real state

Games are to AI as grand prix racing is to automobile design