Artificial Intelligence: A Modern Approach

AIMA Python file: probability.py

"""Probability models. (Chapter 13-15)
"""

from utils import *
from logic import extend
import agents
import bisect, random


class DTAgent(agents.Agent): "A decision-theoretic agent. [Fig. 13.1]" def __init__(self, belief_state): agents.Agent.__init__(self) def program(percept): belief_state.observe(action, percept) program.action = argmax(belief_state.actions(), belief_state.expected_outcome_utility) return program.action program.action = None self.program = program
class
ProbDist: """A discrete probability distribution. You name the random variable in the constructor, then assign and query probability of values. >>> P = ProbDist('Flip'); P['H'], P['T'] = 0.5, 0.5; P['H'] 0.5 """ def __init__(self, varname='?'): update(self, prob={}, varname=varname, values=[]) def __getitem__(self, val): "Given a value, return P(value)." return self.prob[val] def __setitem__(self, val, p): "Set P(val) = p" if val not in self.values: self.values.append(val) self.prob[val] = p def normalize(self): "Make sure the probabilities of all values sum to 1." total = sum(self.prob.values()) if not (1.0-epsilon < total < 1.0+epsilon): for val in self.prob: self.prob[val] /= total return self epsilon = 0.001 class JointProbDist(ProbDist): """A discrete probability distribute over a set of variables. >>> P = JointProbDist(['X', 'Y']); P[1, 1] = 0.25 >>> P[1, 1] 0.25 """ def __init__(self, variables): update(self, prob={}, variables=variables, vals=DefaultDict([])) def __getitem__(self, values): "Given a tuple or dict of values, return P(values)." if isinstance(values, dict): values = tuple([values[var] for var in self.variables]) return self.prob[values] def __setitem__(self, values, p): """Set P(values) = p. Values can be a tuple or a dict; it must have a value for each of the variables in the joint. Also keep track of the values we have seen so far for each variable.""" if isinstance(values, dict): values = [values[var] for var in self.variables] self.prob[values] = p for var,val in zip(self.variables, values): if val not in self.vals[var]: self.vals[var].append(val) def values(self, var): "Return the set of possible values for a variable." return self.vals[var] def __repr__(self): return "P(%s)" % self.variables
def
enumerate_joint_ask(X, e, P): """Return a probability distribution over the values of the variable X, given the {var:val} observations e, in the JointProbDist P. Works for Boolean variables only. [Fig. 13.4]""" Q = ProbDist(X) ## A probability distribution for X, initially empty Y = [v for v in P.variables if v != X and v not in e] for xi in P.values(X): Q[xi] = enumerate_joint(Y, extend(e, X, xi), P) return Q.normalize() def enumerate_joint(vars, values, P): "As in Fig 13.4, except x and e are already incorporated in values." if not vars: return P[values] Y = vars[0]; rest = vars[1:] return sum([enumerate_joint(rest, extend(values, Y, y), P) for y in P.values(Y)])
class
BayesNet: def __init__(self, nodes=[]): update(self, nodes=[], vars=[]) for node in nodes: self.add(node) def add(self, node): self.nodes.append(node) self.vars.append(node.variable) def observe(self, var, val): self.evidence[var] = val class BayesNode: def __init__(self, variable, parents, cpt): if isinstance(parents, str): parents = parents.split() update(self, variable=variable, parents=parents, cpt=cpt) node = BayesNode T, F = True, False burglary = BayesNet([ node('Burglary', '', .001), node('Earthquake', '', .002), node('Alarm', 'Burglary Earthquake', { (T, T):.95, (T, F):.94, (F, T):.29, (F, F):.001}), node('JohnCalls', 'Alarm', {T:.90, F:.05}), node('MaryCalls', 'Alarm', {T:.70, F:.01}) ])
def
elimination_ask(X, e, bn): "[Fig. 14.10]" factors = [] for var in reverse(bn.vars): factors.append(Factor(var, e)) if is_hidden(var, X, e): factors = sum_out(var, factors) return pointwise_product(factors).normalize() def pointwise_product(factors): pass def sum_out(var, factors): pass
def
prior_sample(bn): x = {} for xi in bn.vars: x[xi.var] = xi.sample([x])

AI: A Modern Approach by Stuart Russell and Peter NorvigModified: Jul 18, 2005