
CHAPTER 1
INTRODUCTION

Axon

Cell body or Soma

Nucleus

Dendrite

Synapses

Axonal arborization

Axon from another cell

Synapse

Figure 1.1 The parts of a nerve cell or neuron. Each neuron consists of a cell body, or soma,

that contains a cell nucleus. Branching out from the cell body are a number of fibers called

dendrites and a single long fiber called the axon. The axon stretches out for a long distance,

much longer than the scale in this diagram indicates. Typically, an axon is 1 cm long (100

times the diameter of the cell body), but can reach up to 1 meter. A neuron makes connec-

tions with 10 to 100,000 other neurons at junctions called synapses. Signals are propagated

from neuron to neuron by a complicated electrochemical reaction. The signals control brain

activity in the short term and also enable long-term changes in the connectivity of neurons.

These mechanisms are thought to form the basis for learning in the brain. Most information

processing goes on in the cerebral cortex, the outer layer of the brain. The basic organi-

zational unit appears to be a column of tissue about 0.5 mm in diameter, containing about

20,000 neurons and extending the full depth of the cortex (about 4 mm in humans).

2 Chapter 1 Introduction

Supercomputer Personal Computer Human Brain

Computational units 106 GPUs + CPUs 8 CPU cores 106 columns

1015 transistors 1010 transistors 1011 neurons

Storage units 1016 bytes RAM 1010 bytes RAM 1011 neurons

1017 bytes disk 1012 bytes disk 1014 synapses

Cycle time 10−9 sec 10−9 sec 10−3 sec

Operations/sec 1018 1010 1017

Figure 1.2 A crude comparison of a leading supercomputer, Summit (?); a typical personal

computer of 2019; and the human brain. Human brain power has not changed much in

thousands of years, whereas supercomputers have improved from megaFLOPs in the 1960s

to gigaFLOPs in the 1980s, teraFLOPs in the 1990s, petaFLOPs in 2008, and exaFLOPs in

2018 (1 exaFLOP = 1018 floating point operations per second).

Figure 1.3 A scene from the blocks world. SHRDLU (?) has just completed the command

“Find a block which is taller than the one you are holding and put it in the box.”

CHAPTER 2
INTELLIGENT AGENTS

Agent Sensors

Actuators

E
n
v
iro

n
m

en
t

Percepts

Actions

?

Figure 2.1 Agents interact with environments through sensors and actuators.

A B

Figure 2.2 A vacuum-cleaner world with just two locations. Each location can be clean or

dirty, and the agent can move left or right and can clean the square that it occupies. Different

versions of the vacuum world allow for different rules about what the agent can perceive,

whether its actions always succeed, and so on.

4 Chapter 2 Intelligent Agents

Percept sequence Action

[A,Clean] Right

[A,Dirty] Suck

[B,Clean] Left

[B,Dirty] Suck

[A,Clean], [A,Clean] Right

[A,Clean], [A,Dirty] Suck
...

...

[A,Clean], [A,Clean], [A,Clean] Right

[A,Clean], [A,Clean], [A,Dirty] Suck
...

...

Figure 2.3 Partial tabulation of a simple agent function for the vacuum-cleaner world shown

in Figure ??. The agent cleans the current square if it is dirty, otherwise it moves to the other

square. Note that the table is of unbounded size unless there is a restriction on the length of

possible percept sequences.

Agent Type Performance
Measure

Environment Actuators Sensors

Taxi driver Safe, fast,

legal,

comfortable

trip, maximize

profits,

minimize

impact on

other road

users

Roads, other

traffic, police,

pedestrians,

customers,

weather

Steering,

accelerator,

brake, signal,

horn, display,

speech

Cameras, radar,

speedometer, GPS, engine

sensors, accelerometer,

microphones, touchscreen

Figure 2.4 PEAS description of the task environment for an automated taxi driver.

5

Agent Type Performance
Measure

Environment Actuators Sensors

Medical

diagnosis system

Healthy patient,

reduced costs

Patient, hospital,

staff

Display of

questions, tests,

diagnoses,

treatments

Touchscreen/voice

entry of

symptoms and

findings

Satellite image

analysis system

Correct

categorization of

objects, terrain

Orbiting satellite,

downlink,

weather

Display of scene

categorization

High-resolution

digital camera

Part-picking

robot

Percentage of

parts in correct

bins

Conveyor belt

with parts; bins

Jointed arm and

hand

Camera, tactile

and joint angle

sensors

Refinery

controller

Purity, yield,

safety

Refinery, raw

materials,

operators

Valves, pumps,

heaters, stirrers,

displays

Temperature,

pressure, flow,

chemical sensors

Interactive

English tutor

Student’s score

on test

Set of students,

testing agency

Display of

exercises,

feedback, speech

Keyboard entry,

voice

Figure 2.5 Examples of agent types and their PEAS descriptions.

Task Environment Observable Agents Deterministic Episodic Static Discrete

Crossword puzzle Fully Single Deterministic Sequential Static Discrete

Chess with a clock Fully Multi Deterministic Sequential Semi Discrete

Poker Partially Multi Stochastic Sequential Static Discrete

Backgammon Fully Multi Stochastic Sequential Static Discrete

Taxi driving Partially Multi Stochastic Sequential Dynamic Continuous

Medical diagnosis Partially Single Stochastic Sequential Dynamic Continuous

Image analysis Fully Single Deterministic Episodic Semi Continuous

Part-picking robot Partially Single Stochastic Episodic Dynamic Continuous

Refinery controller Partially Single Stochastic Sequential Dynamic Continuous

English tutor Partially Multi Stochastic Sequential Dynamic Discrete

Figure 2.6 Examples of task environments and their characteristics.

6 Chapter 2 Intelligent Agents

function TABLE-DRIVEN-AGENT(percept) returns an action

persistent: percepts , a sequence, initially empty

table , a table of actions, indexed by percept sequences, initially fully specified

append percept to the end of percepts

action← LOOKUP(percepts , table)

return action

Figure 2.7 The TABLE-DRIVEN-AGENT program is invoked for each new percept and re-

turns an action each time. It retains the complete percept sequence in memory.

function REFLEX-VACUUM-AGENT([location ,status]) returns an action

if status = Dirty then return Suck

else if location = A then return Right

else if location = B then return Left

Figure 2.8 The agent program for a simple reflex agent in the two-location vacuum environ-

ment. This program implements the agent function tabulated in Figure ??.

Agent

E
n
v
iro

n
m

en
t

Sensors

What action I
should do nowCondition-action rules

Actuators

What the world
is like now

Figure 2.9 Schematic diagram of a simple reflex agent. We use rectangles to denote the

current internal state of the agent’s decision process, and ovals to represent the background

information used in the process.

7

function SIMPLE-REFLEX-AGENT(percept) returns an action

persistent: rules, a set of condition–action rules

state← INTERPRET-INPUT(percept)

rule←RULE-MATCH(state, rules)

action← rule.ACTION

return action

Figure 2.10 A simple reflex agent. It acts according to a rule whose condition matches the

current state, as defined by the percept.

Agent

E
n
v
iro

n
m

en
t

Sensors

How the world evolves

What my actions do

Condition-action rules

Actuators

What the world
is like now

IWhat action
should do now

State

Figure 2.11 A model-based reflex agent.

function MODEL-BASED-REFLEX-AGENT(percept) returns an action

persistent: state, the agent’s current conception of the world state

transition model , a description of how the next state depends on

the current state and action

sensor model , a description of how the current world state is reflected

in the agent’s percepts

rules, a set of condition–action rules

action , the most recent action, initially none

state←UPDATE-STATE(state,action ,percept , transition model , sensor model)

rule←RULE-MATCH(state, rules)

action← rule.ACTION

return action

Figure 2.12 A model-based reflex agent. It keeps track of the current state of the world,

using an internal model. It then chooses an action in the same way as the reflex agent.

8 Chapter 2 Intelligent Agents

Agent

E
n
v
iro

n
m

en
t

Sensors

What action I
should do now

State

How the world evolves

What my actions do

Actuators

What the world
is like now

What it will be like
 if I do action A

Goals

Figure 2.13 A model-based, goal-based agent. It keeps track of the world state as well as

a set of goals it is trying to achieve, and chooses an action that will (eventually) lead to the

achievement of its goals.

Agent

E
n
v
iro

n
m

en
t

Sensors

How happy I will be
in such a state

State

How the world evolves

What my actions do

Utility

Actuators

What action I
should do now

What it will be like
if I do action A

What the world
is like now

Figure 2.14 A model-based, utility-based agent. It uses a model of the world, along with a

utility function that measures its preferences among states of the world. Then it chooses the

action that leads to the best expected utility, where expected utility is computed by averaging

over all possible outcome states, weighted by the probability of the outcome.

9

Performance standard

Agent

E
n
v
iro

n
m

en
t

Sensors

Performance
element

changes

knowledge

learning
 goals

Problem
generator

feedback

 Learning
element

Critic

Actuators

Figure 2.15 A general learning agent. The “performance element” box represents what we

have previously considered to be the whole agent program. Now, the “learning element” box

gets to modify that program to improve its performance.

B C

(a) Atomic (b) Factored (c) Structured

B C

Figure 2.16 Three ways to represent states and the transitions between them. (a) Atomic

representation: a state (such as B or C) is a black box with no internal structure; (b) Factored

representation: a state consists of a vector of attribute values; values can be Boolean, real-

valued, or one of a fixed set of symbols. (c) Structured representation: a state includes

objects, each of which may have attributes of its own as well as relationships to other objects.

CHAPTER 3
SOLVING PROBLEMS BY SEARCHING

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Drobeta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Figure 3.1 A simplified road map of part of Romania, with road distances in miles.

11

R

L

S S

S S

R

L

R

L

R

L

S

SS

S

L

L

LL R

R

R

R

Figure 3.2 The state-space graph for the two-cell vacuum world. There are 8 states and three

actions for each state: L = Left, R = Right, S = Suck.

2

Start State Goal State

1

3 4

6 7

5

1

2

3

4

6

7

8

5

8

Figure 3.3 A typical instance of the 8-puzzle.

12 Chapter 3 Solving Problems by Searching

Rimnicu Vilcea Lugoj

ZerindSibiu

Arad Fagaras Oradea

Timisoara

AradArad Oradea

Arad

Arad Fagaras Oradea AradArad LugojRimnicu Vilcea Oradea

Zerind

Arad

Sibiu Timisoara

Lugoj AradArad OradeaRimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

Figure 3.4 Three partial search trees for finding a route from Arad to Bucharest. Nodes

that have been expanded are lavender with bold letters; nodes on the frontier that have been

generated but not yet expanded are in green; the set of states corresponding to these two

types of nodes are said to have been reached. Nodes that could be generated next are shown

in faint dashed lines. Notice in the bottom tree there is a cycle from Arad to Sibiu to Arad;

that can’t be an optimal path, so search should not continue from there.

Figure 3.5 A sequence of search trees generated by a graph search on the Romania problem

of Figure ??. At each stage, we have expanded every node on the frontier, extending every

path with all applicable actions that don’t result in a state that has already been reached.

Notice that at the third stage, the topmost city (Oradea) has two successors, both of which

have already been reached by other paths, so no paths are extended from Oradea.

13

(a) (b) (c)

Figure 3.6 The separation property of graph search, illustrated on a rectangular-grid prob-

lem. The frontier (green) separates the interior (lavender) from the exterior (faint dashed).

The frontier is the set of nodes (and corresponding states) that have been reached but not yet

expanded; the interior is the set of nodes (and corresponding states) that have been expanded;

and the exterior is the set of states that have not been reached. In (a), just the root has been

expanded. In (b), the top frontier node is expanded. In (c), the remaining successors of the

root are expanded in clockwise order.

function BEST-FIRST-SEARCH(problem, f) returns a solution node or failure

node←NODE(STATE=problem .INITIAL)

frontier← a priority queue ordered by f , with node as an element

reached← a lookup table, with one entry with key problem .INITIAL and value node

while not IS-EMPTY(frontier) do

node← POP(frontier)

if problem .IS-GOAL(node.STATE) then return node

for each child in EXPAND(problem , node) do

s← child .STATE

if s is not in reached or child .PATH-COST < reached [s].PATH-COST then

reached [s]← child

add child to frontier

return failure

function EXPAND(problem ,node) yields nodes

s←node .STATE

for each action in problem .ACTIONS(s) do

s ′← problem .RESULT(s ,action)

cost←node.PATH-COST + problem .ACTION-COST(s ,action , s ′)

yield NODE(STATE=s ′, PARENT=node, ACTION=action , PATH-COST=cost)

Figure 3.7 The best-first search algorithm, and the function for expanding a node. The data

structures used here are described in Section ??. See Appendix B for yield.

14 Chapter 3 Solving Problems by Searching

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

Figure 3.8 Breadth-first search on a simple binary tree. At each stage, the node to be ex-

panded next is indicated by the triangular marker.

function BREADTH-FIRST-SEARCH(problem) returns a solution node or failure

node←NODE(problem .INITIAL)

if problem .IS-GOAL(node.STATE) then return node

frontier← a FIFO queue, with node as an element

reached←{problem .INITIAL}
while not IS-EMPTY(frontier) do

node← POP(frontier)

for each child in EXPAND(problem , node) do

s← child .STATE

if problem .IS-GOAL(s) then return child

if s is not in reached then

add s to reached

add child to frontier

return failure

function UNIFORM-COST-SEARCH(problem) returns a solution node, or failure

return BEST-FIRST-SEARCH(problem , PATH-COST)

Figure 3.9 Breadth-first search and uniform-cost search algorithms.

Sibiu Fagaras

Pitesti

Rimnicu Vilcea

Bucharest

99

80

97

101

211

Figure 3.10 Part of the Romania state space, selected to illustrate uniform-cost search.

15

✕
✕

✕
✕

✕
✕

✕

✕

✕
✕

✕
✕

✕
✕

✕
✕

✕
✕

✕

✕

✕

✕

✕

✕
✕

✕
✕

✕
✕

✕
✕

✕

✕
✕

✕
✕

✕

✕

✕

✕

✕

✕
✕

✕
✕

✕
✕

✕
✕

✕

✕
✕

✕
✕

✕

✕

✕

✕

✕

✕

✕

✕

✕

✕
✕

✕
✕

✕

✕

✕

✕

✕

✕
✕

✕
✕

✕

✕
✕

✕
✕

✕

✕

✕

✕

✕

✕

✕

✕

✕

✕
✕

✕
✕

✕

✕

✕

✕

✕
✕

✕
✕

✕

✕
✕

✕
✕

✕

✕

✕

✕

✕

✕

✕

✕

✕

✕
✕

✕
✕

✕

✕

✕

✕

✕
✕

✕
✕

✕

✕
✕

✕
✕

✕

✕
✕

✕
✕

✕

✕

✕

✕

✕

✕
✕

✕
✕

✕

✕

✕

✕

✕

✕

✕

✕

✕
✕

✕
✕

✕
✕

✕
✕

✕
✕

✕
✕

✕

✕
✕

✕
✕

✕
✕

✕

✕
✕

✕
✕

✕
✕

✕

✕
✕

✕
✕

✕
✕

✕

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

Figure 3.11 A dozen steps (left to right, top to bottom) in the progress of a depth-first search

on a binary tree from start state A to goal M. The frontier is in green, with a triangle marking

the node to be expanded next. Previously expanded nodes are lavender, and potential future

nodes have faint dashed lines. Expanded nodes with no descendants in the frontier (very faint

lines) can be discarded.

16 Chapter 3 Solving Problems by Searching

function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution node or failure

for depth = 0 to∞ do

result←DEPTH-LIMITED-SEARCH(problem ,depth)

if result 6= cutoff then return result

function DEPTH-LIMITED-SEARCH(problem , ℓ) returns a node or failure or cutoff

frontier← a LIFO queue (stack) with NODE(problem .INITIAL) as an element

result← failure

while not IS-EMPTY(frontier) do

node← POP(frontier)

if problem .IS-GOAL(node.STATE) then return node

if DEPTH(node) > ℓ then

result← cutoff

else if not IS-CYCLE(node) do

for each child in EXPAND(problem , node) do

add child to frontier

return result

Figure 3.12 Iterative deepening and depth-limited tree-like search. Iterative deepening re-

peatedly applies depth-limited search with increasing limits. It returns one of three different

types of values: either a solution node; or failure , when it has exhausted all nodes and proved

there is no solution at any depth; or cutoff , to mean there might be a solution at a deeper depth

than ℓ. This is a tree-like search algorithm that does not keep track of reached states, and

thus uses much less memory than best-first search, but runs the risk of visiting the same state

multiple times on different paths. Also, if the IS-CYCLE check does not check all cycles,

then the algorithm may get caught in a loop.

17

✕
✕

✕
✕

✕
✕

✕

✕
✕

✕
✕

✕
✕

✕

✕
✕

✕

✕

✕
✕

✕

✕

✕
✕

✕
✕

✕
✕

✕

✕

✕

✕

✕

✕

✕
✕

✕
✕

✕
✕

✕

✕

✕

✕

✕

✕

✕
✕

✕
✕

✕

✕
✕

✕
✕

✕

✕
✕

✕
✕

✕

✕ ✕

✕
✕

✕

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

✕
✕

✕

✕
✕

✕
✕

✕

✕

✕

✕

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

✕
✕

✕

✕
✕

✕
✕

✕

✕

✕

✕

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

✕
✕

✕

✕
✕

✕
✕

✕

✕

✕

✕

✕
✕

✕

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

✕
✕

✕

✕
✕

✕
✕

✕

✕

✕

✕

✕
✕

✕

✕

✕

✕

✕
✕

✕
✕

✕

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕✕ ✕ ✕ ✕ ✕ ✕ ✕

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕✕ ✕ ✕ ✕ ✕ ✕ ✕

✕
✕

✕

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕✕ ✕ ✕ ✕ ✕ ✕ ✕

✕
✕

✕
✕

✕
✕

✕

✕

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕✕ ✕ ✕ ✕ ✕ ✕ ✕

✕
✕

✕
✕

✕
✕

✕

✕

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕✕ ✕ ✕ ✕ ✕ ✕ ✕

✕
✕

✕
✕

✕
✕

✕

✕

✕
✕

✕

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕✕ ✕ ✕ ✕ ✕ ✕ ✕

✕
✕

✕
✕

✕
✕

✕

✕

✕
✕

✕

✕

✕

✕

✕

✕

✕
✕

✕
✕

✕

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕✕ ✕ ✕ ✕ ✕ ✕ ✕

✕
✕

✕
✕

✕
✕

✕

✕

✕
✕

✕

✕

✕

✕

✕

✕

✕
✕

✕
✕

✕

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕✕ ✕ ✕ ✕ ✕ ✕ ✕

✕
✕

✕
✕

✕
✕

✕

✕

✕
✕

✕

✕

✕

✕

✕

✕

✕
✕

✕
✕

✕

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕✕ ✕ ✕ ✕ ✕ ✕ ✕

✕
✕

✕
✕

✕
✕

✕

✕

✕
✕

✕

✕

✕

✕

✕

✕

✕
✕

✕
✕

✕

✕
✕

✕

A

B C

D E F G

A

B C B C

A A

B C

A

B C

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

limit: 0

limit: 1

limit: 2

limit: 3

Figure 3.13 Four iterations of iterative deepening search for goal M on a binary tree, with

the depth limit varying from 0 to 3. Note the interior nodes form a single path. The triangle

marks the node to expand next; green nodes with dark outlines are on the frontier; the very

faint nodes provably can’t be part of a solution with this depth limit.

18 Chapter 3 Solving Problems by Searching

function BIBF-SEARCH(problemF , fF , problemB , fB) returns a solution node, or failure

nodeF ←NODE(problemF .INITIAL) // Node for a start state

nodeB←NODE(problemB .INITIAL) // Node for a goal state

frontierF ← a priority queue ordered by fF , with nodeF as an element

frontierB← a priority queue ordered by fB , with nodeB as an element

reachedF ← a lookup table, with one key nodeF .STATE and value nodeF
reachedB← a lookup table, with one key nodeB .STATE and value nodeB
solution← failure

while not TERMINATED(solution , frontierF , frontierB) do

if fF (TOP(frontierF)) < fB(TOP(frontierB)) then

solution← PROCEED(F , problemF frontierF , reachedF , reachedB , solution)

else solution← PROCEED(B , problemB , frontierB , reachedB , reachedF , solution)

return solution

function PROCEED(dir , problem , frontier , reached , reached2, solution) returns a solution

// Expand node on frontier; check against the other frontier in reached2.

// The variable “dir” is the direction: either F for forward or B for backward.

node← POP(frontier)

for each child in EXPAND(problem , node) do

s← child .STATE

if s not in reached or PATH-COST(child) < PATH-COST(reached [s]) then

reached [s]← child

add child to frontier

if s is in reached2 then

solution2← JOIN-NODES(dir , child , reached2[s]))

if PATH-COST(solution2) < PATH-COST(solution) then

solution← solution2

return solution

Figure 3.14 Bidirectional best-first search keeps two frontiers and two tables of reached

states. When a path in one frontier reaches a state that was also reached in the other half of

the search, the two paths are joined (by the function JOIN-NODES) to form a solution. The

first solution we get is not guaranteed to be the best; the function TERMINATED determines

when to stop looking for new solutions.

19

Criterion
Breadth- Uniform- Depth- Depth- Iterative Bidirectional

First Cost First Limited Deepening (if applicable)

Complete? Yes1 Yes1,2 No No Yes1 Yes1,4

Optimal cost? Yes3 Yes No No Yes3 Yes3,4

Time O(bd) O(b1+⌊C∗/ǫ⌋) O(bm) O(bℓ) O(bd) O(bd/2)

Space O(bd) O(b1+⌊C∗/ǫ⌋) O(bm) O(bℓ) O(bd) O(bd/2)

Figure 3.15 Evaluation of search algorithms. b is the branching factor; m is the maximum

depth of the search tree; d is the depth of the shallowest solution, or is m when there is

no solution; ℓ is the depth limit. Superscript caveats are as follows: 1 complete if b is

finite, and the state space either has a solution or is finite. 2 complete if all action costs are

≥ ǫ > 0; 3 cost-optimal if action costs are all identical; 4 if both directions are breadth-first

or uniform-cost.

Urziceni

Neamt
Oradea

Zerind

Timisoara

Mehadia

Sibiu

Pitesti
Rimnicu Vilcea

Vaslui

Bucharest

Giurgiu
Hirsova

Eforie

Arad

Lugoj

Drobeta
Craiova

Fagaras

Iasi

 0
160
242
161

77
151

366

244
226

176

241

253
329
80

199

380
234

374

100
193

Figure 3.16 Values of hSLD—straight-line distances to Bucharest.

20 Chapter 3 Solving Problems by Searching

Rimnicu Vilcea

Zerind

Arad

S����

Arad F������ O�����

T�	��
���

��
�� B��������

3�� 3��

3�� 3�� 1�3

�23 0

Rimnicu Vilcea

Arad

S����

Arad F������ O�����

T�	��
���

3��

Zerind

3��

3�� 1�� 3�� 1�3

Zerind

Arad

S���� T�	��
���

�23 3�� 3��

Arad

3��

(a) The initial state

(b) After expanding Arad

(c) After expanding Sibiu

(d) After expanding Fagaras

Figure 3.17 Stages in a greedy best-first tree-like search for Bucharest with the straight-line

distance heuristic hSLD . Nodes are labeled with their h-values.

21

(a) The initial state

(b) After expanding Arad

(c) After expanding Sibiu

Arad

����� ����� !"!

447=118+329

Zerind

449=75+374393=140+253

Arad

366=0+366

(d) After expanding Rimnicu Vilcea

(e) After expanding Fagaras

(f) After expanding Pitesti

Zerind

Arad

Arad

Timisoara

Rimnicu VilceaFagaras Oradea

Sibiu

447=118+329 449=75+374

646=280+366 413=220+193415=239+176 671=291+380

Zerind

Arad

TimisoaraSibiu

447=118+329 449=75+374

Rimnicu Vilcea

Craiova Pitesti Sibiu

526=366+160 553=300+253417=317+100

Zerind

Arad

Arad

Timisoara

Sibiu Bucharest

Oradea

Sibiu

Fagaras

Craiova Pitesti Sibiu

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253417=317+100

671=291+380

Zerind

Arad

Arad

Timisoara

Sibiu Bucharest

Oradea

Sibiu

Craiova Sibiu

Bucharest Craiova Rimnicu Vilcea

418=418+0

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253

615=455+160 607=414+193

671=291+380

Pitesti

Rimnicu Vilcea

Fagaras Rimnicu Vilcea

Arad Fagaras Oradea

646=280+366 415=239+176 671=291+380

Figure 3.18 Stages in an A∗ search for Bucharest. Nodes are labeled with f = g + h. The h
values are the straight-line distances to Bucharest taken from Figure ??.

22 Chapter 3 Solving Problems by Searching

Gn#

n$

n

h(n$)

h(n)

c(n, a, n$)

Figure 3.19 Triangle inequality: If the heuristic h is consistent, then the single number h(n)
will be less than the sum of the cost c(n, a, a′) of the action from n to n′ plus the heuristic

estimate h(n′).

O

Z

A

T

L

M

D
C

R

F

P

G

B
U

H

E

V

I

N

380

400

420

S

Figure 3.20 Map of Romania showing contours at f = 380, f = 400, and f = 420, with

Arad as the start state. Nodes inside a given contour have f = g + h costs less than or equal

to the contour value.

23

(a) (b)

Figure 3.21 Two searches on the same grid: (a) an A∗ search and (b) a weighted A∗ search

with weight W = 2. The gray bars are obstacles, the purple line is the path from the green

start to red goal, and the small dots are states that were reached by each search. On this

particular problem, weighted A∗ explores 7 times fewer states and finds a path that is 5%

more costly.

function RECURSIVE-BEST-FIRST-SEARCH(problem) returns a solution or failure

solution , fvalue←RBFS(problem , NODE(problem .INITIAL),∞)

return solution

function RBFS(problem ,node , f limit) returns a solution or failure , and a new f -cost limit

if problem .IS-GOAL(node.STATE) then return node

successors← LIST(EXPAND(node))

if successors is empty then return failure ,∞
for each s in successors do // update f with value from previous search

s .f ←max(s .PATH-COST + h(s), node.f))
while true do

best← the node in successors with lowest f -value

if best .f > f limit then return failure , best .f
alternative← the second-lowest f -value among successors

result , best .f←RBFS(problem , best ,min(f limit , alternative))
if result 6= failure then return result , best .f

Figure 3.22 The algorithm for recursive best-first search.

24 Chapter 3 Solving Problems by Searching

Zerind

Arad

Arad %&'()'

C&'*+,' -*.*/

0/45'&)67 C&'*+,' Rimnicu Vilcea

8'9'&'6

-*.*/

Zerind

Arad

Arad

-*.*/ 0/45'&)67

Rimnicu Vilcea%&'()'

Zerind

Arad

Arad

:*;*6+'&'

:*;*6+'&'

:*;*6+'&'

8'9'&'6 %&'()' Rimnicu Vilcea

C&'*+,' P*7)67* -*.*/

<=< =>? <@>

?A< ??D

<=< <@>

=?E?G>

<=< <@>

?A< ??D

=>H <>? <E@

==@ ==G

==@

==@ ==G

==G

D<<

DGD

D<<

DGD

=>D

=>D =>@=>?

D<<

DGD

=>? =?E =>@

-*.*/

-*.*/

Rimnicu Vilcea

8'9'&'6

==@

=>?

==@

==@

=>@

IJK LMNQR QUVJWXYWZ LRJX[\Y]Y^[

and Rimnicu Vilcea

I_K LMNQR `aYN_bYWZ]J_c Nd eYfWY_^ gYh_QJ
and expanding Pitesti

I]K LMNQR ^WaYWXYWZ]J_c Nd \Y]Y^

and expanding Fagaras

==@

==@

i

i

i

=>@

=>@

P*7)67*

Figure 3.23 Stages in an RBFS search for the shortest route to Bucharest. The f -limit value

for each recursive call is shown on top of each current node, and every node is labeled with

its f -cost. (a) The path via Rimnicu Vilcea is followed until the current best leaf (Pitesti)

has a value that is worse than the best alternative path (Fagaras). (b) The recursion unwinds

and the best leaf value of the forgotten subtree (417) is backed up to Rimnicu Vilcea; then

Fagaras is expanded, revealing a best leaf value of 450. (c) The recursion unwinds and the

best leaf value of the forgotten subtree (450) is backed up to Fagaras; then Rimnicu Vilcea is

expanded. This time, because the best alternative path (through Timisoara) costs at least 447,

the expansion continues to Bucharest.

25

f2=10

f=9=4+5

f2=16

f=9=8+1

f2=14

f=9=7+2

f2=12

f=8=6+2

f2=14

f=8=7+1

f2=10

f=10=4+6

4

1 1 1

4

E

F

C

A 2

B D

GoalStart

66

Figure 3.24 Bidirectional search maintains two frontiers: on the left, nodes A and B are

successors of Start; on the right, node F is an inverse successor of Goal. Each node is labeled

with f = g + h values and the f2 = max(2g, g + h) value. (The g values are the sum of the

action costs as shown on each arrow; the h values are arbitrary and cannot be derived from

anything in the figure.) The optimal solution, Start-A-F-Goal, has cost C∗ =4+ 2+ 4=10,

so that means that a meet-in-the-middle bidirectional algorithm should not expand any node

with g > C∗

2 =5; and indeed the next node to be expanded would be A or F (each with

g=4), leading us to an optimal solution. If we expanded the node with lowest f cost first,

then B and C would come next, and D and E would be tied with A, but they all have g > C∗

2
and thus are never expanded when f2 is the evaluation function.

2

Start State Goal State

1

3 4

6 7

5

1

2

3

4

6

7

8

5

8

Figure 3.25 A typical instance of the 8-puzzle. The shortest solution is 26 actions long.

26 Chapter 3 Solving Problems by Searching

Search Cost (nodes generated) Effective Branching Factor

d BFS A∗(h1) A∗(h2) BFS A∗(h1) A∗(h2)

6 128 24 19 2.01 1.42 1.34

8 368 48 31 1.91 1.40 1.30

10 1033 116 48 1.85 1.43 1.27

12 2672 279 84 1.80 1.45 1.28

14 6783 678 174 1.77 1.47 1.31

16 17270 1683 364 1.74 1.48 1.32

18 41558 4102 751 1.72 1.49 1.34

20 91493 9905 1318 1.69 1.50 1.34

22 175921 22955 2548 1.66 1.50 1.34

24 290082 53039 5733 1.62 1.50 1.36

26 395355 110372 10080 1.58 1.50 1.35

28 463234 202565 22055 1.53 1.49 1.36

Figure 3.26 Comparison of the search costs and effective branching factors for 8-puzzle

problems using breadth-first search, A∗ with h1 (misplaced tiles), and A∗ with h2 (Manhattan

distance). Data are averaged over 100 puzzles for each solution length d from 6 to 28.

Start State Goal State

1

2

3

4

6

8

5

21

3 6

7 8

54

Figure 3.27 A subproblem of the 8-puzzle instance given in Figure ??. The task is to get tiles

1, 2, 3, 4, and the blank into their correct positions, without worrying about what happens to

the other tiles.

27

Figure 3.28 A Web service providing driving directions, computed by a search algorithm.

CHAPTER 4
SEARCH IN COMPLEX

ENVIRONMENTS

current
state

objective function

state space

global maximum

local maximum

“flat” local maximum

shoulder

Figure 4.1 A one-dimensional state-space landscape in which elevation corresponds to the

objective function. The aim is to find the global maximum.

function HILL-CLIMBING(problem) returns a state that is a local maximum

current← problem .INITIAL

while true do

neighbor← a highest-valued successor state of current

if VALUE(neighbor) ≤ VALUE(current) then return current

current←neighbor

Figure 4.2 The hill-climbing search algorithm, which is the most basic local search tech-

nique. At each step the current node is replaced by the best neighbor.

29

Figure 4.3 (a) The 8-queens problem: place 8 queens on a chess board so that no queen

attacks another. (A queen attacks any piece in the same row, column, or diagonal.) This

position is almost a solution, except for the two queens in the fourth and seventh columns

that attack each other along the diagonal. (b) An 8-queens state with heuristic cost estimate

h=17. The board shows the value of h for each possible successor obtained by moving a

queen within its column. There are 8 moves that are tied for best, with h=12. The hill-

climbing algorithm will pick one of these.

function SIMULATED-ANNEALING(problem , schedule) returns a solution state

current← problem .INITIAL

for t = 1 to∞ do

T← schedule(t)

if T = 0 then return current

next← a randomly selected successor of current

∆E←VALUE(current) – VALUE(next)

if ∆E > 0 then current←next

else current←next only with probability e−∆E/T

Figure 4.4 The simulated annealing algorithm, a version of stochastic hill climbing where

some downhill moves are allowed. The schedule input determines the value of the “temper-

ature” T as a function of time.

30 Chapter 4 Search in Complex Environments

(a)

Initial Population

(b)

Fitness Function

(c)

Selection

(d)

Crossover

(e)

Mutation

24

23

20

11

29%

31%

26%

14%

32752411

24748552

32752411

24415124

32748552

24752411

32752124

24415411

24748552

32752411

24415124

32543213

32252124

24752411

32748152

24415417

Figure 4.5 A genetic algorithm, illustrated for digit strings representing 8-queens states. The

initial population in (a) is ranked by a fitness function in (b) resulting in pairs for mating in

(c). They produce offspring in (d), which are subject to mutation in (e).

+ =

Figure 4.6 The 8-queens states corresponding to the first two parents in Figure ??(c) and the

first offspring in Figure ??(d). The green columns are lost in the crossover step and the red

columns are retained. (To interpret the numbers in Figure ??: row 1 is the bottom row, and 8

is the top row.)

31

function GENETIC-ALGORITHM(population ,fitness) returns an individual

repeat

weights←WEIGHTED-BY(population , fitness)

population2 ← empty list

for i = 1 to SIZE(population) do

parent1 , parent2←WEIGHTED-RANDOM-CHOICES(population ,weights , 2)

child←REPRODUCE(parent1 ,parent2)

if (small random probability) then child←MUTATE(child)

add child to population2

population← population2

until some individual is fit enough, or enough time has elapsed

return the best individual in population , according to fitness

function REPRODUCE(parent1 ,parent2) returns an individual

n← LENGTH(parent1)

c← random number from 1 to n

return APPEND(SUBSTRING(parent1 , 1, c), SUBSTRING(parent2 , c + 1,n))

Figure 4.7 A genetic algorithm. Within the function, population is an ordered list of indi-

viduals, weights is a list of corresponding fitness values for each individual, and fitness is a

function to compute these values.

1 2

87

5 6

3 4

Figure 4.8 The eight possible states of the vacuum world; states 7 and 8 are goal states.

32 Chapter 4 Search in Complex Environments

LeftSuck

RightSuck

RightSuck

6

GOAL

8

GOAL

7

1

2 5

1

LOOP

5

LOOP

5

LOOP

Left Suck

1

LOOP GOAL

8 4

Figure 4.9 The first two levels of the search tree for the erratic vacuum world. State nodes

are OR nodes where some action must be chosen. At the AND nodes, shown as circles, every

outcome must be handled, as indicated by the arc linking the outgoing branches. The solution

found is shown in bold lines.

function AND-OR-SEARCH(problem) returns a conditional plan, or failure

return OR-SEARCH(problem ,problem .INITIAL, [])

function OR-SEARCH(problem , state ,path) returns a conditional plan, or failure

if problem .IS-GOAL(state) then return the empty plan

if IS-CYCLE(path) then return failure

for each action in problem .ACTIONS(state) do

plan←AND-SEARCH(problem , RESULTS(state,action), [state] + path])
if plan 6= failure then return [action] + plan]

return failure

function AND-SEARCH(problem , states ,path) returns a conditional plan, or failure

for each si in states do

plan i←OR-SEARCH(problem , si,path)

if plan i = failure then return failure

return [if s1 then plan1 else if s2 then plan2 else . . . if sn−1 then plann−1 else plann]

Figure 4.10 An algorithm for searching AND–OR graphs generated by nondeterministic en-

vironments. A solution is a conditional plan that considers every nondeterministic outcome

and makes a plan for each one.

33

Suck Right

6

1

2 5

Right

Figure 4.11 Part of the search graph for a slippery vacuum world, where we have shown

(some) cycles explicitly. All solutions for this problem are cyclic plans because there is no

way to move reliably.

2

4

1

3

2

4

1

3

1

3

(b)(a)

Figure 4.12 (a) Predicting the next belief state for the sensorless vacuum world with the

deterministic action, Right . (b) Prediction for the same belief state and action in the slippery

version of the sensorless vacuum world.

34 Chapter 4 Search in Complex Environments

L

R

S

L

R

S

L R

S

LR

S
L

R

S

L R

S
L

R

S

11 3

5 7

2 4

6 8

2 3

4 5 6

7 8

4 5

7 8

5 3

7

6 4

8

4

8

5

7

6

8

8 7

3

7

Figure 4.13 The reachable portion of the belief-state space for the deterministic, sensorless

vacuum world. Each rectangular box corresponds to a single belief state. At any given point,

the agent has a belief state but does not know which physical state it is in. The initial belief

state (complete ignorance) is the top center box.

35

2

4

4

1

2

4

1

3

2

1

3 3

(b)

(a)

4

2

1

3

Right

[A,Dirty]

[B,Dirty]

[B,Clean]

Right
[B,Dirty]

[B,Clean]

Figure 4.14 Two examples of transitions in local-sensing vacuum worlds. (a) In the deter-

ministic world, Right is applied in the initial belief state, resulting in a new predicted belief

state with two possible physical states; for those states, the possible percepts are [R,Dirty]
and [R,Clean], leading to two belief states, each of which is a singleton. (b) In the slippery

world, Right is applied in the initial belief state, giving a new belief state with four physi-

cal states; for those states, the possible percepts are [L,Dirty], [R,Dirty], and [R,Clean],
leading to three belief states as shown.

7

5

1

3

4 2

Suck

jB,Dirty] jB,Clean]

Right

jA,Clean]

Figure 4.15 The first level of the AND–OR search tree for a problem in the local-sensing

vacuum world; Suck is the first action in the solution.

36 Chapter 4 Search in Complex Environments

7

5

6

2 1

3

6

4

8

2 [B,Dirty]Right[A,Clean]

7

5

Suck

Figure 4.16 Two prediction–update cycles of belief-state maintenance in the kindergarten

vacuum world with local sensing.

(a) Possible locations of robot after E1 = 1011

(b) Possible locations of robot after E1 = 1011, E2 = 1010

Figure 4.17 Possible positions of the robot, ⊙, (a) after one observation, E1 =1011, and

(b) after moving one square and making a second observation, E2 =1010. When sensors are

noiseless and the transition model is accurate, there is only one possible location for the robot

consistent with this sequence of two observations.

37

G

S1

2

3

1 2 3

Figure 4.18 A simple maze problem. The agent starts at S and must reach G but knows

nothing of the environment.

S

G

S

G

A

A

S G

(a) (b)

Figure 4.19 (a) Two state spaces that might lead an online search agent into a dead end.

Any given agent will fail in at least one of these spaces. (b) A two-dimensional environment

that can cause an online search agent to follow an arbitrarily inefficient route to the goal.

Whichever choice the agent makes, the adversary blocks that route with another long, thin

wall, so that the path followed is much longer than the best possible path.

38 Chapter 4 Search in Complex Environments

function ONLINE-DFS-AGENT(problem , s ′) returns an action

s , a, the previous state and action, initially null

persistent: result , a table mapping (s, a) to s′, initially empty

untried , a table mapping s to a list of untried actions

unbacktracked , a table mapping s to a list of states never backtracked to

if problem .IS-GOAL(s ′) then return stop

if s ′ is a new state (not in untried) then untried[s ′]← problem .ACTIONS(s ′)

if s is not null then

result[s ,a]← s ′

add s to the front of unbacktracked [s ′]

if untried[s ′] is empty then

if unbacktracked [s ′] is empty then return stop

else a← an action b such that result[s ′, b] = POP(unbacktracked [s ′])

else a← POP(untried[s ′])

s← s ′

return a

Figure 4.20 An online search agent that uses depth-first exploration. The agent can safely

explore only in state spaces in which every action can be “undone” by some other action.

S G

Figure 4.21 An environment in which a random walk will take exponentially many steps to

find the goal.

39

1
2

1 11 1 11

1 1 11 1 11

1 1 11 1 11

2

2

3

4

4

4

3

3

3

1 1 11 1 11
3

1 1 11 1 11
5

3

5

5

4

(a)

(b)

(c)

(d)

(e)

8 9

8

9

8 9

8

9

8 9

44

34

Figure 4.22 Five iterations of LRTA∗ on a one-dimensional state space. Each state is labeled

with H(s), the current cost estimate to reach a goal, and every link has an action cost of 1.

The red state marks the location of the agent, and the updated cost estimates at each iteration

have a double circle.

function LRTA*-AGENT(problem , s ′, h) returns an action

s , a, the previous state and action, initially null

persistent: result , a table mapping (s, a) to s′, initially empty

H , a table mapping s to a cost estimate, initially empty

if IS-GOAL(s ′) then return stop

if s ′ is a new state (not in H) then H [s ′]←h(s ′)

if s is not null then

result[s ,a]← s ′

H [s]← min
b∈ACTIONS(s)

LRTA*-COST(s , b, result[s , b],H)

a← argmin
b∈ACTIONS(s)

LRTA*-COST(problem , s ′, b, result [s ′, b],H)

s← s ′

return a

function LRTA*-COST(problem , s ,a, s ′,H) returns a cost estimate

if s ′ is undefined then return h(s)
else return problem .ACTION-COST(s, a, s′) + H [s′]

Figure 4.23 LRTA∗-AGENT selects an action according to the values of neighboring states,

which are updated as the agent moves about the state space.

CHAPTER 5
ADVERSARIAL SEARCH AND GAMES

XX

XX

X

X

X

XX

X X
k

kX k

k

X kX k

X

.

. . .

. . .

. . .

XX

�l 0 ml

XX

X Xk

X XkX Xk
k
k

X

X Xk

kk
k k X X

MAX (X)

MIN (k)

MAX (X)

MIN (k)

TERMINAL

Utility

Figure 5.1 A (partial) game tree for the game of tic-tac-toe. The top node is the initial state,

and MAX moves first, placing an X in an empty square. We show part of the tree, giving

alternating moves by MIN (O) and MAX (X), until we eventually reach terminal states, which

can be assigned utilities according to the rules of the game.

41

MAX A

B C D

3 no p o q r nq s o

3 o o

3

a1
at

a3

b1

bt

b3 c1

ct

c3 d1

dt

d3

MIN

Figure 5.2 A two-ply game tree. The △ nodes are “MAX nodes,” in which it is MAX’s turn

to move, and the ▽ nodes are “MIN nodes.” The terminal nodes show the utility values for

MAX; the other nodes are labeled with their minimax values. MAX’s best move at the root is

a1, because it leads to the state with the highest minimax value, and MIN’s best reply is b1,

because it leads to the state with the lowest minimax value.

function MINIMAX-SEARCH(game , state) returns an action

player← game .TO-MOVE(state)

value , move←MAX-VALUE(game , state)

return move

function MAX-VALUE(game , state) returns a (utility , move) pair

if game.IS-TERMINAL(state) then return game .UTILITY(state, player), null

v←−∞
for each a in game .ACTIONS(state) do

v2 , a2 ←MIN-VALUE(game, game .RESULT(state, a))

if v2 > v then

v , move← v2 , a

return v , move

function MIN-VALUE(game, state) returns a (utility , move) pair

if game.IS-TERMINAL(state) then return game .UTILITY(state, player), null

v←+∞
for each a in game .ACTIONS(state) do

v2 , a2 ←MAX-VALUE(game, game .RESULT(state, a))

if v2 < v then

v , move← v2 , a

return v , move

Figure 5.3 An algorithm for calculating the optimal move using minimax—the move that

leads to a terminal state with maximum utility, under the assumption that the opponent plays

to minimize utility. The functions MAX-VALUE and MIN-VALUE go through the whole

game tree, all the way to the leaves, to determine the backed-up value of a state and the move

to get there.

42 Chapter 5 Adversarial Search and Games

uv wvxy

A

z

{

A

X

(1, 2, 6)

(1, 2, 6)

(1, 2, 6) (6, 1, 2) (0, 5, 2)

(0, 5, 2)

(5, 4, 5)

(1, 2, 6) (4, 2, 3) (6, 1, 2) (7, 4, 1) (5, 1, 1) (0, 5, 2) (7, 7, 1) (5, 4, 5)

Figure 5.4 The first three ply of a game tree with three players (A, B, C). Each node is

labeled with values from the viewpoint of each player. The best move is marked at the root.

43

(a) |}~

|�~ |�~

|�~ |�~

3 3 ��

3 �� � 3 �� � �

3 �� � � �� 3 �� � � �� � �

A

B

A

B

A

B C D

A

B C D

A

B

A

B C

��∞� �∞]

��∞� ��

��� �∞]

��� �� ��∞� ��

��� ��

��� ���

��∞� �� ��∞� ���

��� ��

��� �� ��� ��

��� �∞]

��� ��

��∞� ��

��∞� �∞]

��∞� ��

Figure 5.5 Stages in the calculation of the optimal decision for the game tree in Figure ??.

At each point, we show the range of possible values for each node. (a) The first leaf below B
has the value 3. Hence, B, which is a MIN node, has a value of at most 3. (b) The second leaf

below B has a value of 12; MIN would avoid this move, so the value of B is still at most 3.

(c) The third leaf below B has a value of 8; we have seen all B’s successor states, so the

value of B is exactly 3. Now we can infer that the value of the root is at least 3, because

MAX has a choice worth 3 at the root. (d) The first leaf below C has the value 2. Hence,

C, which is a MIN node, has a value of at most 2. But we know that B is worth 3, so MAX

would never choose C. Therefore, there is no point in looking at the other successor states

of C. This is an example of alpha–beta pruning. (e) The first leaf below D has the value 14,

so D is worth at most 14. This is still higher than MAX’s best alternative (i.e., 3), so we need

to keep exploring D’s successor states. Notice also that we now have bounds on all of the

successors of the root, so the root’s value is also at most 14. (f) The second successor of D
is worth 5, so again we need to keep exploring. The third successor is worth 2, so now D is

worth exactly 2. MAX’s decision at the root is to move to B, giving a value of 3.

44 Chapter 5 Adversarial Search and Games

������

��������

������

��������

�

�

�

�

�

��

Figure 5.6 The general case for alpha–beta pruning. If m or m′ is better than n for Player,

we will never get to n in play.

function ALPHA-BETA-SEARCH(game , state) returns an action

player← game .TO-MOVE(state)

value , move←MAX-VALUE(game , state,−∞,+∞)

return move

function MAX-VALUE(game , state,α,β) returns a (utility , move) pair

if game .IS-TERMINAL(state) then return game .UTILITY(state, player), null

v←−∞
for each a in game.ACTIONS(state) do

v2 , a2←MIN-VALUE(game, game .RESULT(state, a),α,β)

if v2 > v then

v , move← v2 , a

α←MAX(α, v)

if v ≥ β then return v , move

return v , move

function MIN-VALUE(game, state,α,β) returns a (utility , move) pair

if game .IS-TERMINAL(state) then return game .UTILITY(state, player), null

v←+∞
for each a in game.ACTIONS(state) do

v2 , a2←MAX-VALUE(game, game .RESULT(state, a),α,β)

if v2 < v then

v , move← v2 , a

β←MIN(β, v)

if v ≤ α then return v , move

return v , move

Figure 5.7 The alpha–beta search algorithm. Notice that these functions are the same as the

MINIMAX-SEARCH functions in Figure ??, except that we maintain bounds in the variables

α and β, and use them to cut off search when a value is outside the bounds.

45

(b) White to move(a) White to move

Figure 5.8 Two chess positions that differ only in the position of the rook at lower right.

In (a), Black has an advantage of a knight and two pawns, which should be enough to win

the game. In (b), White will capture the queen, giving it an advantage that should be strong

enough to win.

a b c d e f g h

8

7

6

5

4

3

2

1

Figure 5.9 The horizon effect. With Black to move, the black bishop is surely doomed. But

Black can forestall that event by checking the white king with its pawns, encouraging the

king to capture the pawns. This pushes the inevitable loss of the bishop over the horizon, and

thus the pawn sacrifices are seen by the search algorithm as good moves rather than bad ones.

46 Chapter 5 Adversarial Search and Games

���

 ¡�¢£ ����¡ ��¢ ��¢

¢�¤£�£�£�¥¤¢� £

£��¡� ����

¢¦����

 ���

����¡

¢� £ �£�¥¢

£��¦§

¢¦����

���� ���

£�£ ¢�¤

��¢��¢ ¦�¢¥

¢¦����

£��¦§ ���� ���

¢�¤£�£�£�¥¢¢� £

 ¦�¢¥ ����¡ ��¢ ��¢

���

(a) Selection (b) Expansion
and simulation

(c) Backpropagation

black wins

Figure 5.10 One iteration of the process of choosing a move with Monte Carlo tree search

(MCTS) using the upper confidence bounds applied to trees (UCT) selection metric, shown

after 100 iterations have already been done. In (a) we select moves, all the way down the

tree, ending at the leaf node marked 27/35 (for 27 wins for black out of 35 playouts). In (b)

we expand the selected node and do a simulation (playout), which ends in a win for black. In

(c), the results of the simulation are back-propagated up the tree.

function MONTE-CARLO-TREE-SEARCH(state) returns an action

tree←NODE(state)

while IS-TIME-REMAINING() do

leaf ← SELECT(tree)

child← EXPAND(leaf)

result← SIMULATE(child)

BACK-PROPAGATE(result , child)

return the move in ACTIONS(state) whose node has highest number of playouts

Figure 5.11 The Monte Carlo tree search algorithm. A game tree, tree, is initialized, and

then we repeat a cycle of SELECT / EXPAND / SIMULATE / BACK-PROPAGATE until we run

out of time, and return the move that led to the node with the highest number of playouts.

47

1 2 3 4 5 6 7 8 9 10 11 12

24 23 22 21 20 19 18 17 16 15 14 13

0

25

Figure 5.12 A typical backgammon position. The goal of the game is to move all one’s

pieces off the board. Black moves clockwise toward 25, and White moves counterclockwise

toward 0. A piece can move to any position unless multiple opponent pieces are there; if there

is one opponent, it is captured and must start over. In the position shown, Black has rolled

6–5 and must choose among four legal moves: (5–11,5–10), (5–11,19–24), (5–10,10–16),

and (5–11,11–16), where the notation (5–11,11–16) means move one piece from position 5

to 11, and then move a piece from 11 to 16.

48 Chapter 5 Adversarial Search and Games

CHANCE

MIN

MAX

CHANCE

MAX

. . .

. . .

B

¨

. . .

©ª©
©«¬­

©ª®
©«©¯

°±²³´µ¶·

©ª®
©«©¯

......

.........

......

©ª©
©«¬­

...

......

...

C

. . .

©«©¯
­ª¸ ­ª­

©«¬­

©«©¯
­ª¸ ­ª­

©«¬­

¹ º¨¨º¨

Figure 5.13 Schematic game tree for a backgammon position.

CHANCE

MIN

MAX

» » 3 3 1 1 ¼ ¼

» 3 1 ¼

½¾ .1 ½¾ .1

»½¿ 1.3

»À »À ÁÀ ÁÀ 1 1 ¼ÀÀ ¼ÀÀ

»À ÁÀ 1 ¼ÀÀ

½¾ .1 ½¾ .1

»¿ ¼À½¾

a1 aÂ a1 aÂ

Figure 5.14 An order-preserving transformation on leaf values changes the best move.

49

a

1

Ã

3

4

db c

ÄÅÆ Ç

“Illegal”“OK”

Rc3 ?

“OK” “Check”

Figure 5.15 Part of a guaranteed checkmate in the KRK endgame, shown on a reduced

board. In the initial belief state, Black’s king is in one of three possible locations. By a

combination of probing moves, the strategy narrows this down to one. Completion of the

checkmate is left as an exercise.

MAX

ÈÈ 100

ÈÈ 1000 1000 1000 100 101 ÉÊË 100

MIN

Figure 5.16 A two-ply game tree for which heuristic minimax may make an error.

CHAPTER 6
CONSTRAINT SATISFACTION

PROBLEMS

Western
Australia

Northern
Territory

South
Australia

Queensland

New

South

Wales

Victoria

Tasmania

Q
NT

WA

SA

V

NSW

T

(a) (b)

Figure 6.1 (a) The principal states and territories of Australia. Coloring this map can be

viewed as a constraint satisfaction problem (CSP). The goal is to assign colors to each re-

gion so that no neighboring regions have the same color. (b) The map-coloring problem

represented as a constraint graph.

51

T W O

F O U R

T W O

F T U W R O

C3 C2 C1

Figure 6.2 (a) A cryptarithmetic problem. Each letter stands for a distinct digit; the aim is

to find a substitution of digits for letters such that the resulting sum is arithmetically correct,

with the added restriction that no leading zeroes are allowed. (b) The constraint hypergraph

for the cryptarithmetic problem, showing the Alldiff constraint (square box at the top) as

well as the column addition constraints (four square boxes in the middle). The variables C1,

C2, and C3 represent the carry digits for the three columns from right to left.

function AC-3(csp) returns false if an inconsistency is found and true otherwise

queue← a queue of arcs, initially all the arcs in csp

while queue is not empty do

(Xi, Xj)← POP(queue)

if REVISE(csp, Xi, Xj) then

if size of Di = 0 then return false

for each Xk in Xi.NEIGHBORS - {Xj} do

add (Xk, Xi) to queue

return true

function REVISE(csp, Xi, Xj) returns true iff we revise the domain of Xi

revised← false

for each x in Di do

if no value y in Dj allows (x ,y) to satisfy the constraint between Xi and Xj then

delete x from Di

revised← true

return revised

Figure 6.3 The arc-consistency algorithm AC-3. After applying AC-3, either every arc is

arc-consistent, or some variable has an empty domain, indicating that the CSP cannot be

solved. The name “AC-3” was used by the algorithm’s inventor (?) because it was the third

version developed in the paper.

52 Chapter 6 Constraint Satisfaction Problems

3 2 6

9 3 5 1

1 8 6 4

8 1 2 9

7 8

6 7 8 2

2 6 9 5

8 2 3 9

5 1 3

3 2 6

9 3 5 1

1 8 6 4

8 1 2 9

7 8

6 7 8 2

2 6 9 5

8 2 3 9

5 1 3

4 8 9 1 5 7

6 7 4 8 2

2 5 7 9 3

5 4 3 7 6

2 9 5 6 4 1 3

1 3 9 4 5

3 7 8 1 4

1 4 5 7 6

6 9 4 7 8 2

1 2 3 4 5 6 7 8 9

A

B

C

D

E

F

G

H

 I

A

B

C

D

E

F

G

H

 I

1 2 3 4 5 6 7 8 9

(a) (b)

Figure 6.4 (a) A Sudoku puzzle and (b) its solution.

function BACKTRACKING-SEARCH(csp) returns a solution or failure

return BACKTRACK(csp,{ })
function BACKTRACK(csp,assignment) returns a solution or failure

if assignment is complete then return assignment

var← SELECT-UNASSIGNED-VARIABLE(csp,assignment)

for each value in ORDER-DOMAIN-VALUES(csp, var ,assignment) do

if value is consistent with assignment then

add {var = value} to assignment

inferences← INFERENCE(csp, var ,assignment)

if inferences 6= failure then

add inferences to csp

result←BACKTRACK(csp,assignment)

if result 6= failure then return result

remove inferences from csp

remove {var = value} from assignment

return failure

Figure 6.5 A simple backtracking algorithm for constraint satisfaction problems. The

algorithm is modeled on the recursive depth-first search of Chapter ??. The functions

SELECT-UNASSIGNED-VARIABLE and ORDER-DOMAIN-VALUES, implement the general-

purpose heuristics discussed in Section ??. The INFERENCE function can optionally im-

pose arc-, path-, or k-consistency, as desired. If a value choice leads to failure (noticed

either by INFERENCE or by BACKTRACK), then value assignments (including those made by

INFERENCE) are retracted and a new value is tried.

53

Figure 6.6 Part of the search tree for the map-coloring problem in Figure ??.

Initial domains

ÌÍÎÏÐ WA=red

ÌÍÎÏÐ Q=green

ÌÍÎÏÐ V=blue

WA NT Q NSW V SA T

Figure 6.7 The progress of a map-coloring search with forward checking. WA= red is as-

signed first; then forward checking deletes red from the domains of the neighboring variables

NT and SA. After Q= green is assigned, green is deleted from the domains of NT , SA,

and NSW . After V = blue is assigned, blue is deleted from the domains of NSW and SA,

leaving SA with no legal values.

2

2

1

2

3

1

2

3

3

2

3

2

3

0

Figure 6.8 A two-step solution using min-conflicts for an 8-queens problem. At each stage,

a queen is chosen for reassignment in its column. The number of conflicts (in this case, the

number of attacking queens) is shown in each square. The algorithm moves the queen to the

min-conflicts square, breaking ties randomly.

54 Chapter 6 Constraint Satisfaction Problems

function MIN-CONFLICTS(csp,max steps) returns a solution or failure

inputs: csp, a constraint satisfaction problem

max steps , the number of steps allowed before giving up

current← an initial complete assignment for csp

for i = 1 to max steps do

if current is a solution for csp then return current

var← a randomly chosen conflicted variable from csp.VARIABLES

value← the value v for var that minimizes CONFLICTS(csp, var , v , current)

set var = value in current

return failure

Figure 6.9 The MIN-CONFLICTS local search algorithm for CSPs. The initial state may be

chosen randomly or by a greedy assignment process that chooses a minimal-conflict value

for each variable in turn. The CONFLICTS function counts the number of constraints violated

by a particular value, given the rest of the current assignment.

Figure 6.10 (a) The constraint graph of a tree-structured CSP. (b) A linear ordering of the

variables consistent with the tree with A as the root. This is known as a topological sort of

the variables.

function TREE-CSP-SOLVER(csp) returns a solution, or failure

inputs: csp, a CSP with components X, D, C

n← number of variables in X
assignment← an empty assignment

root← any variable in X
X ←TOPOLOGICALSORT(X , root)

for j = n down to 2 do

MAKE-ARC-CONSISTENT(PARENT(Xj),Xj)

if it cannot be made consistent then return failure

for i = 1 to n do

assignment [Xi]← any consistent value from Di

if there is no consistent value then return failure

return assignment

Figure 6.11 The TREE-CSP-SOLVER algorithm for solving tree-structured CSPs. If the

CSP has a solution, we will find it in linear time; if not, we will detect a contradiction.

55

Q
NT

WA

SA

V

NSW

T

Q
NT

WA

V

NSW

T

(a) (b)

Figure 6.12 (a) The original constraint graph from Figure ??. (b) After the removal of SA,

the constraint graph becomes a forest of two trees.

NT

WA

SA

Q
NT

SA

Q

SA NSW

SA

V

NSWT

Figure 6.13 A tree decomposition of the constraint graph in Figure ??(a).

CHAPTER 7
LOGICAL AGENTS

function KB-AGENT(percept) returns an action

persistent: KB , a knowledge base

t , a counter, initially 0, indicating time

TELL(KB , MAKE-PERCEPT-SENTENCE(percept , t))

action←ASK(KB , MAKE-ACTION-QUERY(t))

TELL(KB , MAKE-ACTION-SENTENCE(action , t))

t← t + 1

return action

Figure 7.1 A generic knowledge-based agent. Given a percept, the agent adds the percept

to its knowledge base, asks the knowledge base for the best action, and tells the knowledge

base that it has in fact taken that action.

PIT

1 2 3 4

1

2

3

4

START

Stench

Stench

Breeze

Gold

PIT

PIT

Breeze

Breeze

Breeze

Breeze

Breeze

Stench

Figure 7.2 A typical wumpus world. The agent is in the bottom left corner, facing east

(rightward).

57

A

B

G

P

S

W

 = Agent

 = Breeze

 = Glitter, Gold

 = Pit

 = Stench

 = Wumpus

OK = Safe square

V = Visited

A

OK

 1,1 2,1 3,1 4,1

 1,2 2,2 3,2 4,2

 1,3 2,3 3,3 4,3

 1,4 2,4 3,4 4,4

OKOK

B

P?

P?A

OK OK

OK

 1,1 2,1 3,1 4,1

 1,2 2,2 3,2 4,2

 1,3 2,3 3,3 4,3

 1,4 2,4 3,4 4,4

V

(a) (b)

Figure 7.3 The first step taken by the agent in the wumpus world. (a) The initial situation,

after percept [None,None,None,None,None]. (b) After moving to [2,1] and perceiving

[None,Breeze,None,None,None].

B P!

A

OK OK

OK

 1,1 2,1 3,1 4,1

 1,2 2,2 3,2 4,2

 1,3 2,3 3,3 4,3

 1,4 2,4 3,4 4,4

V

OK

W!

V

P!

A

OK OK

OK

 1,1 2,1 3,1 4,1

 1,2 2,2 3,2 4,2

 1,3 2,3 3,3 4,3

 1,4 2,4 3,4 4,4

V

S

OK

W!

V

V V

B

S G

P?

P?

(b)(a)

S

A

B

G

P

S

W

 = Agent

 = Breeze

 = Glitter, Gold

 = Pit

 = Stench

 = Wumpus

OK = Safe square

V = Visited

B

Figure 7.4 Two later stages in the progress of the agent. (a) After moving to [1,1] and then

[1,2], and perceiving [Stench,None,None,None,None]. (b) After moving to [2,2] and

then [2,3], and perceiving [Stench,Breeze,Glitter ,None,None].

58 Chapter 7 Logical Agents

1 2 3

1

2 PIT

1 2 3

1

2 PIT

1 2 3

1

2 PIT PIT

PIT

1 2 3

1

2 PIT

PIT

1 2 3

1

2

PIT

1 2 3

1

2 PIT

PIT

1 2 3

1

2 PIT PIT

1 2 3

1

2

1 2 3

1

2 PIT

1 2 3

1

2 PIT

PIT

1 2 3

1

2

PIT

KB a1

Breeze

Breeze

Breeze

Breeze

Breeze

Breeze

Breeze

Breeze

(a)

1 2 3

1

2 ÑÒÓ

1 2 3

1

2 ÑÒÓ ÑÒÓ

ÑÒÓ

1 2 3

ÑÒÓ

1 2 3

1

2 ÑÒÓ

ÑÒÓ

1 2 3

1

2 ÑÒÓ ÑÒÓ

1 2 3

1

2

KB

Breeze

aÔ

Breeze

Breeze

Breeze

Breeze

1 2 3

1

2 ÑÒÓ

1 2 3

1

2 ÑÒÓ

ÑÒÓ

Breeze

Breeze

1

2

Breeze

1 2 3

1

2 ÑÒÓ

1 2 3

1 2 3

1

2 ÑÒÓ

ÑÒÓ

1 2 3

1

2

αÔ

BBrerr eze

BBrerr eze

BBrerr eze

1

2

BBrerr eze

ÕÖ×

Figure 7.5 Possible models for the presence of pits in squares [1,2], [2,2], and [3,1]. The

KB corresponding to the observations of nothing in [1,1] and a breeze in [2,1] is shown by

the solid line. (a) Dotted line shows models of α1 (no pit in [1,2]). (b) Dotted line shows

models of α2 (no pit in [2,2]).

Follows

Sentences Sentence
Entails S

e
m

a
n

tic
s

S
e

m
a

n
tic

s

Representation

World

Aspects of the
 real world

Aspect of the
 real world

Figure 7.6 Sentences are physical configurations of the agent, and reasoning is a process of

constructing new physical configurations from old ones. Logical reasoning should ensure that

the new configurations represent aspects of the world that actually follow from the aspects

that the old configurations represent.

59

Sentence → AtomicSentence | ComplexSentence

AtomicSentence → True | False | P | Q | R | . . .
ComplexSentence → (Sentence)

| ¬ Sentence

| Sentence ∧ Sentence

| Sentence ∨ Sentence

| Sentence ⇒ Sentence

| Sentence ⇔ Sentence

OPERATOR PRECEDENCE : ¬,∧,∨,⇒,⇔

Figure 7.7 A BNF (Backus–Naur Form) grammar of sentences in propositional logic, along

with operator precedences, from highest to lowest.

P Q ¬P P ∧Q P ∨Q P ⇒ Q P ⇔ Q

false false true false false true true

false true true false true true false

true false false false true false false

true true false true true true true

Figure 7.8 Truth tables for the five logical connectives. To use the table to compute, for

example, the value of P ∨ Q when P is true and Q is false, first look on the left for the

row where P is true and Q is false (the third row). Then look in that row under the P ∨Q
column to see the result: true.

60 Chapter 7 Logical Agents

B1,1 B2,1 P1,1 P1,2 P2,1 P2,2 P3,1 R1 R2 R3 R4 R5 KB

false false false false false false false true true true true false false

false false false false false false true true true false true false false
...

...
...

...
...

...
...

...
...

...
...

...
...

false true false false false false false true true false true true false

false true false false false false true true true true true true true

false true false false false true false true true true true true true

false true false false false true true true true true true true true

false true false false true false false true false false true true false
...

...
...

...
...

...
...

...
...

...
...

...
...

true true true true true true true false true true false true false

Figure 7.9 A truth table constructed for the knowledge base given in the text. KB is true if

R1 through R5 are true, which occurs in just 3 of the 128 rows (the ones underlined in the

right-hand column). In all 3 rows, P1,2 is false, so there is no pit in [1,2]. On the other hand,

there might (or might not) be a pit in [2,2].

function TT-ENTAILS?(KB ,α) returns true or false

inputs: KB , the knowledge base, a sentence in propositional logic

α, the query, a sentence in propositional logic

symbols← a list of the proposition symbols in KB and α
return TT-CHECK-ALL(KB ,α, symbols ,{ })

function TT-CHECK-ALL(KB ,α, symbols ,model) returns true or false

if EMPTY?(symbols) then

if PL-TRUE?(KB ,model) then return PL-TRUE?(α,model)

else return true // when KB is false, always return true

else

P← FIRST(symbols)

rest←REST(symbols)

return (TT-CHECK-ALL(KB ,α, rest ,model ∪ {P = true})
and

TT-CHECK-ALL(KB ,α, rest ,model ∪ {P = false }))

Figure 7.10 A truth-table enumeration algorithm for deciding propositional entailment. (TT

stands for truth table.) PL-TRUE? returns true if a sentence holds within a model. The

variable model represents a partial model—an assignment to some of the symbols. The key-

word and here is an infix function symbol in the pseudocode programming language, not an

operator in proposition logic; it takes two arguments and returns true or false .

61

(α ∧ β) ≡ (β ∧ α) commutativity of ∧
(α ∨ β) ≡ (β ∨ α) commutativity of ∨

((α ∧ β) ∧ γ) ≡ (α ∧ (β ∧ γ)) associativity of ∧
((α ∨ β) ∨ γ) ≡ (α ∨ (β ∨ γ)) associativity of ∨

¬(¬α) ≡ α double-negation elimination

(α ⇒ β) ≡ (¬β ⇒ ¬α) contraposition

(α ⇒ β) ≡ (¬α ∨ β) implication elimination

(α ⇔ β) ≡ ((α ⇒ β) ∧ (β ⇒ α)) biconditional elimination

¬(α ∧ β) ≡ (¬α ∨ ¬β) De Morgan

¬(α ∨ β) ≡ (¬α ∧ ¬β) De Morgan

(α ∧ (β ∨ γ)) ≡ ((α ∧ β) ∨ (α ∧ γ)) distributivity of ∧ over ∨
(α ∨ (β ∧ γ)) ≡ ((α ∨ β) ∧ (α ∨ γ)) distributivity of ∨ over ∧

Figure 7.11 Standard logical equivalences. The symbols α, β, and γ stand for arbitrary

sentences of propositional logic.

CNFSentence → Clause1 ∧ · · · ∧ Clausen

Clause → Literal1 ∨ · · · ∨ Literalm

Fact → Symbol

Literal → Symbol | ¬Symbol

Symbol → P | Q | R | . . .
HornClauseForm → DefiniteClauseForm | GoalClauseForm

DefiniteClauseForm → Fact | (Symbol1 ∧ · · · ∧ Symbol l) ⇒ Symbol

GoalClauseForm → (Symbol1 ∧ · · · ∧ Symbol l) ⇒ False

Figure 7.12 A grammar for conjunctive normal form, Horn clauses, and definite clauses. A

CNF clause such as ¬A ∨ ¬B ∨ C can be written in definite clause form as A ∧B ⇒ C.

62 Chapter 7 Logical Agents

function PL-RESOLUTION(KB ,α) returns true or false

inputs: KB , the knowledge base, a sentence in propositional logic

α, the query, a sentence in propositional logic

clauses← the set of clauses in the CNF representation of KB ∧ ¬α
new←{}
while true do

for each pair of clauses Ci, Cj in clauses do

resolvents← PL-RESOLVE(Ci,Cj)

if resolvents contains the empty clause then return true

new←new ∪ resolvents

if new ⊆ clauses then return false

clauses← clauses ∪new

Figure 7.13 A simple resolution algorithm for propositional logic. PL-RESOLVE returns the

set of all possible clauses obtained by resolving its two inputs.

ØPÙÚÛ BÛÚÛ ØBÛÚÛ PÛÚÙ PÙÚÛ ØPÛÚÙ BÛÚÛ ØBÛÚÛ PÛÚÙ

ØPÙÚÛ ØPÛÚÙPÛÚÙ PÙÚÛ ØPÙÚÛ ØBÛÚÛ PÙÚÛ BÛÚÛ PÛÚÙ PÙÚÛ ØPÛÚÙØBÛÚÛ PÛÚÙ BÛÚÛ

^ ^ ^

^^ ^ ^ ^ ^ ^ ^

^

Figure 7.14 Partial application of PL-RESOLUTION to a simple inference in the wumpus

world to prove the query ¬P1,2. Each of the leftmost four clauses in the top row is paired

with each of the other three, and the resolution rule is applied to yield the clauses on the

bottom row. We see that the third and fourth clauses on the top row combine to yield the

clause ¬P1,2, which is then resolved with P1,2 to yield the empty clause, meaning that the

query is proven.

63

function PL-FC-ENTAILS?(KB , q) returns true or false

inputs: KB , the knowledge base, a set of propositional definite clauses

q , the query, a proposition symbol

count← a table, where count[c] is initially the number of symbols in clause c’s premise

inferred← a table, where inferred [s] is initially false for all symbols

queue← a queue of symbols, initially symbols known to be true in KB

while queue is not empty do

p← POP(queue)

if p = q then return true

if inferred [p] = false then

inferred [p]← true

for each clause c in KB where p is in c.PREMISE do

decrement count[c]

if count[c] = 0 then add c.CONCLUSION to queue

return false

Figure 7.15 The forward-chaining algorithm for propositional logic. The agenda keeps

track of symbols known to be true but not yet “processed.” The count table keeps track of

how many premises of each implication are not yet proven. Whenever a new symbol p from

the agenda is processed, the count is reduced by one for each implication in whose premise

p appears (easily identified in constant time with appropriate indexing.) If a count reaches

zero, all the premises of the implication are known, so its conclusion can be added to the

agenda. Finally, we need to keep track of which symbols have been processed; a symbol that

is already in the set of inferred symbols need not be added to the agenda again. This avoids

redundant work and prevents loops caused by implications such as P ⇒ Q and Q⇒ P .

P ⇒ Q

L ∧M ⇒ P

B ∧ L ⇒ M

A ∧ P ⇒ L

A ∧B ⇒ L

A

B

Q

P

M

L

BA

(a) (b)

Figure 7.16 (a) A set of Horn clauses. (b) The corresponding AND–OR graph.

64 Chapter 7 Logical Agents

function DPLL-SATISFIABLE?(s) returns true or false

inputs: s , a sentence in propositional logic

clauses← the set of clauses in the CNF representation of s

symbols← a list of the proposition symbols in s

return DPLL(clauses , symbols ,{ })

function DPLL(clauses , symbols ,model) returns true or false

if every clause in clauses is true in model then return true

if some clause in clauses is false in model then return false

P , value← FIND-PURE-SYMBOL(symbols , clauses ,model)

if P is non-null then return DPLL(clauses , symbols – P ,model ∪ {P=value})
P , value← FIND-UNIT-CLAUSE(clauses ,model)

if P is non-null then return DPLL(clauses , symbols – P ,model ∪ {P=value})
P← FIRST(symbols); rest←REST(symbols)

return DPLL(clauses , rest ,model ∪ {P=true}) or

DPLL(clauses , rest ,model ∪ {P=false}))

Figure 7.17 The DPLL algorithm for checking satisfiability of a sentence in propositional

logic. The ideas behind FIND-PURE-SYMBOL and FIND-UNIT-CLAUSE are described in

the text; each returns a symbol (or null) and the truth value to assign to that symbol. Like

TT-ENTAILS?, DPLL operates over partial models.

function WALKSAT(clauses ,p,max flips) returns a satisfying model or failure

inputs: clauses , a set of clauses in propositional logic

p, the probability of choosing to do a “random walk” move, typically around 0.5

max flips , number of value flips allowed before giving up

model← a random assignment of true/false to the symbols in clauses

for each i = 1 to max flips do

if model satisfies clauses then return model

clause← a randomly selected clause from clauses that is false in model

if RANDOM(0, 1) ≤ p then

flip the value in model of a randomly selected symbol from clause

else flip whichever symbol in clause maximizes the number of satisfied clauses

return failure

Figure 7.18 The WALKSAT algorithm for checking satisfiability by randomly flipping the

values of variables. Many versions of the algorithm exist.

65

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

P
(s

at
is

fia
bl

e)

Clause/symbol ratio m/n

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

 0 1 2 3 4 5 6 7 8

R
un

tim
e

Clause/symbol ratio m/n

DPLL
WalkSAT

(a) (b)

Figure 7.19 (a) Graph showing the probability that a random 3-CNF sentence with n=50
symbols is satisfiable, as a function of the clause/symbol ratio m/n. (b) Graph of the median

run time (measured in number of iterations) for both DPLL and WALKSAT on random 3-

CNF sentences. The most difficult problems have a clause/symbol ratio of about 4.3.

66 Chapter 7 Logical Agents

function HYBRID-WUMPUS-AGENT(percept) returns an action

inputs: percept , a list, [stench,breeze,glitter ,bump,scream]

persistent: KB , a knowledge base, initially the atemporal “wumpus physics”

t , a counter, initially 0, indicating time

plan , an action sequence, initially empty

TELL(KB , MAKE-PERCEPT-SENTENCE(percept , t))

TELL the KB the temporal “physics” sentences for time t

safe←{[x , y] : ASK(KB ,OK t
x,y) = true}

if ASK(KB ,Glitter t) = true then

plan← [Grab] + PLAN-ROUTE(current ,{[1,1]}, safe) + [Climb]

if plan is empty then

unvisited←{[x , y] : ASK(KB , Lt′

x,y) = false for all t′ ≤ t}
plan← PLAN-ROUTE(current ,unvisited ∩ safe , safe)

if plan is empty and ASK(KB ,HaveArrow t) = true then

possible wumpus←{[x , y] : ASK(KB ,¬Wx,y) = false}
plan← PLAN-SHOT(current ,possible wumpus, safe)

if plan is empty then // no choice but to take a risk

not unsafe←{[x , y] : ASK(KB ,¬ OK t
x,y) = false}

plan← PLAN-ROUTE(current ,unvisited ∩not unsafe, safe)

if plan is empty then

plan← PLAN-ROUTE(current ,{[1, 1]}, safe) + [Climb]
action← POP(plan)

TELL(KB , MAKE-ACTION-SENTENCE(action , t))

t← t + 1

return action

function PLAN-ROUTE(current ,goals ,allowed) returns an action sequence

inputs: current , the agent’s current position

goals , a set of squares; try to plan a route to one of them

allowed , a set of squares that can form part of the route

problem←ROUTE-PROBLEM(current , goals ,allowed)

return SEARCH(problem) // Any search algorithm from Chapter ??

Figure 7.20 A hybrid agent program for the wumpus world. It uses a propositional knowl-

edge base to infer the state of the world, and a combination of problem-solving search and

domain-specific code to choose actions. Each time HYBRID-WUMPUS-AGENT is called, it

adds the percept to the knowledge base, and then either relies on a previously-defined plan or

creates a new plan, and pops off the first step of the plan as the action to do next.

67

Figure 7.21 Depiction of a 1-CNF belief state (bold outline) as a simply representable, con-

servative approximation to the exact (wiggly) belief state (shaded region with dashed outline).

Each possible world is shown as a circle; the shaded ones are consistent with all the percepts.

function SATPLAN(init , transition, goal , T max) returns solution or failure

inputs: init , transition, goal , constitute a description of the problem

T max, an upper limit for plan length

for t = 0 to T max do

cnf ← TRANSLATE-TO-SAT(init , transition, goal , t)
model← SAT-SOLVER(cnf)

if model is not null then

return EXTRACT-SOLUTION(model)

return failure

Figure 7.22 The SATPLAN algorithm. The planning problem is translated into a CNF sen-

tence in which the goal is asserted to hold at a fixed time step t and axioms are included for

each time step up to t. If the satisfiability algorithm finds a model, then a plan is extracted by

looking at those proposition symbols that refer to actions and are assigned true in the model.

If no model exists, then the process is repeated with the goal moved one step later.

CHAPTER 8
FIRST­ORDER LOGIC

Language Ontological Commitment Epistemological Commitment

(What exists in the world) (What an agent believes about facts)

Propositional logic facts true/false/unknown

First-order logic facts, objects, relations true/false/unknown

Temporal logic facts, objects, relations, times true/false/unknown

Probability theory facts degree of belief ∈ [0, 1]
Fuzzy logic facts with degree of truth ∈ [0, 1] known interval value

Figure 8.1 Formal languages and their ontological and epistemological commitments.

R
Ü

ÝÞßà ÝÞá

on head
brother

brother

person person
king

crown

ÝÞßà ÝÞá

Figure 8.2 A model containing five objects, two binary relations (brother and on-head), three

unary relations (person, king, and crown), and one unary function (left-leg).

69

Sentence → AtomicSentence | ComplexSentence

AtomicSentence → Predicate | Predicate(Term , . . .) | Term = Term

ComplexSentence → (Sentence)

| ¬ Sentence

| Sentence ∧ Sentence

| Sentence ∨ Sentence

| Sentence ⇒ Sentence

| Sentence ⇔ Sentence

| Quantifier Variable , . . . Sentence

Term → Function(Term, . . .)

| Constant

| Variable

Quantifier → ∀ | ∃
Constant → A | X1 | John | · · ·
Variable → a | x | s | · · ·
Predicate → True | False | After | Loves | Raining | · · ·
Function → Mother | LeftLeg | · · ·

OPERATOR PRECEDENCE : ¬,=,∧,∨,⇒,⇔

Figure 8.3 The syntax of first-order logic with equality, specified in Backus–Naur form (see

page ?? if you are not familiar with this notation). Operator precedences are specified, from

highest to lowest. The precedence of quantifiers is such that a quantifier holds over everything

to the right of it.

R J R R R R RJ J J J J

Figure 8.4 Some members of the set of all models for a language with two constant symbols,

R and J , and one binary relation symbol. The interpretation of each constant symbol is shown

by a gray arrow. Within each model, the related objects are connected by arrows.

70 Chapter 8 First-Order Logic

R J

â

R

R J

R

â

R J

R

â

R J

R

â

R J

R

â

Figure 8.5 Some members of the set of all models for a language with two constant symbols,

R and J , and one binary relation symbol, under database semantics. The interpretation of the

constant symbols is fixed, and there is a distinct object for each constant symbol.

1
2

3

1

2

X1 X2

A1

A2

O1

C1

Figure 8.6 A digital circuit C1, purporting to be a one-bit full adder. The first two inputs are

the two bits to be added, and the third input is a carry bit. The first output is the sum, and

the second output is a carry bit for the next adder. The circuit contains two XOR gates, two

AND gates, and one OR gate.

CHAPTER 9
INFERENCE IN FIRST­ORDER LOGIC

function UNIFY(x , y , θ=empty) returns a substitution to make x and y identical, or failure

if θ = failure then return failure

else if x = y then return θ
else if VARIABLE?(x) then return UNIFY-VAR(x , y , θ)

else if VARIABLE?(y) then return UNIFY-VAR(y , x , θ)

else if COMPOUND?(x) and COMPOUND?(y) then

return UNIFY(ARGS(x), ARGS(y), UNIFY(OP(x), OP(y), θ))

else if LIST?(x) and LIST?(y) then

return UNIFY(REST(x), REST(y), UNIFY(FIRST(x), FIRST(y), θ))

else return failure

function UNIFY-VAR(var , x , θ) returns a substitution

if {var/val} ∈ θ for some val then return UNIFY(val , x , θ)

else if {x/val} ∈ θ for some val then return UNIFY(var , val , θ)

else if OCCUR-CHECK?(var , x) then return failure

else return add {var /x} to θ

Figure 9.1 The unification algorithm. The arguments x and y can be any expression: a

constant or variable, or a compound expression such as a complex sentence or term, or a list

of expressions. The argument θ is a substitution, initially the empty substitution, but with

{var/val} pairs added to it as we recurse through the inputs, comparing the expressions

element by element. In a compound expression such as F (A,B), OP(x) field picks out the

function symbol F and ARGS(x) field picks out the argument list (A,B).

Employs(x,y)

Employs(x,Richard) Employs(IBM,y)

Employs(IBM,Richard)

Employs(x,y)

Employs(John,John)

Employs(x,x)Employs(x,John) Employs(John,y)

(a) (b)

Figure 9.2 (a) The subsumption lattice whose lowest node is Employs(IBM ,Richard). (b)

The subsumption lattice for the sentence Employs(John , John).

72 Chapter 9 Inference in First-Order Logic

function FOL-FC-ASK(KB ,α) returns a substitution or false

inputs: KB , the knowledge base, a set of first-order definite clauses

α, the query, an atomic sentence

while true do

new←{} // The set of new sentences inferred on each iteration

for each rule in KB do

(p1 ∧ . . . ∧ pn ⇒ q)← STANDARDIZE-VARIABLES(rule)

for each θ such that SUBST(θ,p1 ∧ . . . ∧ pn) = SUBST(θ,p′
1 ∧ . . . ∧ p′

n)

for some p′
1, . . . , p

′
n in KB

q ′← SUBST(θ, q)

if q ′ does not unify with some sentence already in KB or new then

add q ′ to new

φ←UNIFY(q ′,α)

if φ is not failure then return φ
if new = { } then return false

add new to KB

Figure 9.3 A conceptually straightforward, but inefficient, forward-chaining algorithm. On

each iteration, it adds to KB all the atomic sentences that can be inferred in one step

from the implication sentences and the atomic sentences already in KB . The function

STANDARDIZE-VARIABLES replaces all variables in its arguments with new ones that have

not been used before.

Hostile(Nono)

Enemy(Nono,America)Owns(Nono,M1)Missile(M1)American(West)

Weapon(M1)

Criminal(West)

Sells(West,M1,Nono)

Figure 9.4 The proof tree generated by forward chaining on the crime example. The initial

facts appear at the bottom level, facts inferred on the first iteration in the middle level, and

facts inferred on the second iteration at the top level.

73

Q
NT

WA

SA

V

NSW

T

Diff (wa,nt) ∧Diff (wa , sa) ∧
Diff (nt , q) ∧Diff (nt , sa) ∧
Diff (q,nsw) ∧Diff (q, sa) ∧
Diff (nsw , v) ∧Diff (nsw , sa) ∧
Diff (v, sa) ⇒ Colorable()

Diff (Red ,Blue) Diff (Red ,Green)

Diff (Green ,Red) Diff (Green ,Blue)

Diff (Blue,Red) Diff (Blue,Green)

(a) (b)

Figure 9.5 (a) Constraint graph for coloring the map of Australia. (b) The map-coloring

CSP expressed as a single definite clause. Each map region is represented as a variable

whose value can be one of the constants Red , Green , or Blue (which are declared Diff).

function FOL-BC-ASK(KB , query) returns a generator of substitutions

return FOL-BC-OR(KB , query ,{ })

function FOL-BC-OR(KB , goal , θ) returns a substitution

for each rule in FETCH-RULES-FOR-GOAL(KB , goal) do

(lhs ⇒ rhs)← STANDARDIZE-VARIABLES(rule)

for each θ′ in FOL-BC-AND(KB , lhs , UNIFY(rhs , goal , θ)) do

yield θ′

function FOL-BC-AND(KB , goals , θ) returns a substitution

if θ = failure then return

else if LENGTH(goals) = 0 then yield θ
else

first ,rest← FIRST(goals), REST(goals)

for each θ′ in FOL-BC-OR(KB , SUBST(θ, first), θ) do

for each θ′′ in FOL-BC-AND(KB , rest , θ′) do

yield θ′′

Figure 9.6 A simple backward-chaining algorithm for first-order knowledge bases.

74 Chapter 9 Inference in First-Order Logic

Hostile(Nono)

Enemy(Nono,America)Owns(Nono,M1)Missile(M1)

Criminal(West)

Missile(y)

Weapon(y) Sells(West,M1,z)American(West)

ãy/M1ä å æå æå æ

ãz/Nonoäå æ

Figure 9.7 Proof tree constructed by backward chaining to prove that West is a criminal.

The tree should be read depth first, left to right. To prove Criminal (West), we have to prove

the four conjuncts below it. Some of these are in the knowledge base, and others require

further backward chaining. Bindings for each successful unification are shown next to the

corresponding subgoal. Note that once one subgoal in a conjunction succeeds, its substitution

is applied to subsequent subgoals. Thus, by the time FOL-BC-ASK gets to the last conjunct,

originally Hostile(z), z is already bound to Nono.

procedure APPEND(ax , y ,az , continuation)

trail←GLOBAL-TRAIL-POINTER()

if ax = [] and UNIFY(y ,az) then CALL(continuation)

RESET-TRAIL(trail)

a, x , z←NEW-VARIABLE(), NEW-VARIABLE(), NEW-VARIABLE()

if UNIFY(ax , [a] + x) and UNIFY(az , [a | z]) then APPEND(x , y , z , continuation)

Figure 9.8 Pseudocode representing the result of compiling the Append predicate. The

function NEW-VARIABLE returns a new variable, distinct from all other variables used so far.

The procedure CALL(continuation) continues execution with the specified continuation.

(a) (b)

A B C

A1

J4

Figure 9.9 (a) Finding a path from A to C can lead Prolog into an infinite loop. (b) A graph

in which each node is connected to two random successors in the next layer. Finding a path

from A1 to J4 requires 877 inferences.

75

path(a,c)

çèéê

ë ì/Y b

ë ì

link(a,c) path(a,Y)

link(a,Y)

link(b,c)

path(a,c)

path(a,Y) link(Y,c)

path(a,Y’) link(Y’,Y)

(a) (b)

Figure 9.10 (a) Proof that a path exists from A to C. (b) Infinite proof tree generated when

the clauses are in the “wrong” order.

íîïðñòóôõö÷ø íùðôúûõöüø íýðþþÿö÷SüS�ø íHûÿ�òþðö�ø Criminal(x) ¬Criminal(West)

¬Enemy(Nono, America)Enemy(Nono,America)

íMòÿÿòþðö÷ø Weapon(x) ¬Weapon(y) íýðþþÿöùðÿ�SüS�ø íHûÿ�òþðö�ø

Missile(M1) ¬Missile(y) íýðþþÿöùðÿ�SüS�ø íHûÿ�òþðö�ø

íMòÿÿòþðö÷ø íO�õÿö�ûõûS÷ø Sells(West,x,Nono) ¬Sells(West,M1,z) íHûÿ�òþðö�ø

¬American(West) íùðôúûõöüø íýðþþÿöùðÿ�SüS�ø íHûÿ�òþðö�øAmerican(West)

¬Missile(M1) íO�õÿö�ûõûSM1ø íHûÿ�òþðö�ûõûøMissile(M1)

¬Owns(Nono,M1) íHûÿ�òþðö�ûõûøOwns(Nono,M1)

íEõðïüö÷Sîïðñòóôø Hostile(x) ¬Hostile(Nono)

^^^ ^

^ ^ ^

^ ^ ^

^ ^

^ ^ ^

^ ^

^

^

Figure 9.11 A resolution proof that West is a criminal. At each resolution step, the literals

that unify are in bold and the clause with the positive literal is shaded blue.

76 Chapter 9 Inference in First-Order Logic

¬Loves(y, Jack) Loves(G(Jack), Jack)

¬Kills(Curiosity, Tuna)K����(Jack, Tuna� Kills(Curiosity, Tuna)¬Cat(x) Animal(x�Cat(Tuna)

¬Animal(F(Jack)) Loves(G(Jack�, Jack� Animal(F(x)) Loves(G(x�, x�¬Loves(y, x� ¬Kills(x, Tuna)

Kills(Jack, Tuna)¬Loves(y, x� ¬Animal(z) ¬Kills(x, z�Animal(Tuna) ¬Loves(x,F(x)) Loves(G(x�, x� ¬Animal(x� Loves(Jack, x)

^^

^ ^ ^ ^

^^^

Figure 9.12 A resolution proof that Curiosity killed the cat. Notice the use of factoring

in the derivation of the clause Loves(G(Jack), Jack). Notice also in the upper right, the

unification of Loves(x, F (x)) and Loves(Jack, x) can only succeed after the variables have

been standardized apart.

Any set of sentences S is representable in clausal form

Assume S is unsatisfiable, and in clausal form

Some set S� of ground instances is unsatisfiable

Resolution can find a contradiction in S�

There is a resolution proof for the contradiction in S�

Lifting lemma

Ground resolution
theorem

Herbrand’s theorem

Figure 9.13 Structure of a completeness proof for resolution.

CHAPTER 10
KNOWLEDGE REPRESENTATION

Anything

AbstractObjects

Sets Numbers RepresentationalObjects Intervals Places ProcessesPhysicalObjects

Humans

Categories Sentences Measurements Moments Things Stuff

Times Weights Animals Agents Solid Liquid Gas

GeneralizedEvents

Figure 10.1 The upper ontology of the world, showing the topics to be covered later in

the chapter. Each link indicates that the lower concept is a specialization of the upper one.

Specializations are not necessarily disjoint—a human is both an animal and an agent. We

will see in Section ?? why physical objects come under generalized events.

Meet(i, j)

Starts(i, j)

Finishes(i, j)

Equals(i, j)

Before(i, j)

After(j,i)

During(i, j)

Overlap(i, j) j

j

j

j

j

j

j

i

i

i

i

i

i

i

Figure 10.2 Predicates on time intervals.

78 Chapter 10 Knowledge Representation

time

1801
1797

1789

Figure 10.3 A schematic view of the object President(USA) for the early years.

Mammals

J	
�Mary

P�
�	��

Male
P�
�	��

F�����
P�
�	��

1

2

SubsetOf

SubsetOfSubsetOf

MemberOf MemberOf

SisterOf Legs

LegsHasMother

Figure 10.4 A semantic network with four objects (John, Mary, 1, and 2) and four categories.

Relations are denoted by labeled links.

��������

������� !

���"#

$%&�'&* N�+-.*' N�+/��%0 -�! �*Y&�

A3�45

��6364 D�756485694

D:�643

Figure 10.5 A fragment of a semantic network showing the representation of the logical

assertion Fly(Shankar ,NewYork ,NewDelhi ,Yesterday).

79

Concept → Thing | ConceptName

| And(Concept , . . .)

| All(RoleName ,Concept)

| AtLeast(Integer ,RoleName)

| AtMost(Integer ,RoleName)

| Fills(RoleName , IndividualName , . . .)

| SameAs(Path,Path)

| OneOf(IndividualName , . . .)

Path → [RoleName , . . .]

ConceptName → Adult | Female | Male | . . .
RoleName → Spouse | Daughter | Son | . . .

Figure 10.6 The syntax of descriptions in a subset of the CLASSIC language.

CHAPTER 11
AUTOMATED PLANNING

Init(At(C1, SFO) ∧ At(C2, JFK) ∧ At(P1, SFO) ∧ At(P2, JFK)
∧ Cargo(C1) ∧ Cargo(C2) ∧ Plane(P1) ∧ Plane(P2)
∧ Airport(JFK) ∧ Airport(SFO))

Goal (At(C1, JFK) ∧ At(C2, SFO))
Action(Load(c, p, a),

PRECOND: At(c, a) ∧ At(p, a) ∧ Cargo(c) ∧ Plane(p) ∧ Airport(a)
EFFECT: ¬ At(c, a) ∧ In(c, p))

Action(Unload(c, p, a),
PRECOND: In(c, p) ∧ At(p, a) ∧ Cargo(c) ∧ Plane(p) ∧ Airport(a)
EFFECT: At(c, a) ∧ ¬ In(c, p))

Action(Fly(p, from , to),
PRECOND: At(p, from) ∧ Plane(p) ∧ Airport(from) ∧ Airport(to)
EFFECT: ¬ At(p, from) ∧ At(p, to))

Figure 11.1 A PDDL description of an air cargo transportation planning problem.

Init(Tire(Flat) ∧ Tire(Spare) ∧ At(Flat ,Axle) ∧ At(Spare,Trunk))
Goal(At(Spare,Axle))
Action(Remove(obj , loc),

PRECOND: At(obj , loc)
EFFECT: ¬ At(obj , loc) ∧ At(obj ,Ground))

Action(PutOn(t , Axle),
PRECOND: Tire(t) ∧ At(t ,Ground) ∧ ¬ At(Flat ,Axle) ∧ ¬ At(Spare,Axle)
EFFECT: ¬ At(t ,Ground) ∧ At(t ,Axle))

Action(LeaveOvernight ,

PRECOND:

EFFECT: ¬ At(Spare,Ground) ∧ ¬ At(Spare,Axle) ∧ ¬ At(Spare,Trunk)
∧ ¬ At(Flat ,Ground) ∧ ¬ At(Flat ,Axle) ∧ ¬ At(Flat , Trunk))

Figure 11.2 The simple spare tire problem.

81

Start State Goal State

B A

C

A

B

C

Figure 11.3 Diagram of the blocks-world problem in Figure ??.

Init(On(A,Table) ∧ On(B,Table) ∧ On(C,A)
∧ Block (A) ∧ Block (B) ∧ Block (C) ∧ Clear (B) ∧ Clear (C) ∧ Clear (Table))

Goal (On(A,B) ∧ On(B,C))
Action(Move(b, x, y),

PRECOND: On(b, x) ∧ Clear (b) ∧ Clear (y) ∧ Block (b) ∧ Block (y) ∧
(b 6=x) ∧ (b 6=y) ∧ (x6=y),

EFFECT: On(b, y) ∧ Clear (x) ∧ ¬On(b, x) ∧ ¬Clear (y))
Action(MoveToTable (b, x),

PRECOND: On(b, x) ∧ Clear (b) ∧ Block (b) ∧ Block (x),
EFFECT: On(b,Table) ∧ Clear (x) ∧ ¬On(b, x))

Figure 11.4 A planning problem in the blocks world: building a three-block tower. One

solution is the sequence [MoveToTable(C,A),Move(B,Table, C),Move(A,Table , B)].

82 Chapter 11 Automated Planning

(a)

(b)

At(P1, A)
Fly(P1, A, B)

Fly(P2, A, B)

Fly(P1, A, B)

Fly(P2, A, B)

At(P2, A)

At(P1, B)

At(P2, A)

At(P1, A)

At(P2, B)

At(P1, B)

At(P2, B)

At(P1, B)

At(P2, A)

At(P1, A)

At(P2, B)

Figure 11.5 Two approaches to searching for a plan. (a) Forward (progression) search

through the space of ground states, starting in the initial state and using the problem’s ac-

tions to search forward for a member of the set of goal states. (b) Backward (regression)

search through state descriptions, starting at the goal and using the inverse of the actions to

search backward for the initial state.

Figure 11.6 Two state spaces from planning problems with the ignore-delete-lists heuristic.

The height above the bottom plane is the heuristic score of a state; states on the bottom plane

are goals. There are no local minima, so search for the goal is straightforward. From ? (?).

83

Refinement(Go(Home, SFO),
STEPS: [Drive(Home, SFOLongTermParking),

Shuttle(SFOLongTermParking , SFO)])
Refinement(Go(Home, SFO),

STEPS: [Taxi(Home, SFO)])

Refinement(Navigate([a, b], [x, y]),
PRECOND: a= x ∧ b= y
STEPS: [])

Refinement(Navigate([a, b], [x, y]),
PRECOND:Connected([a, b], [a− 1, b])
STEPS: [Left ,Navigate([a− 1, b], [x, y])])

Refinement(Navigate([a, b], [x, y]),
PRECOND:Connected([a, b], [a+ 1, b])
STEPS: [Right ,Navigate([a+ 1, b], [x, y])])

. . .

Figure 11.7 Definitions of possible refinements for two high-level actions: going to San

Francisco airport and navigating in the vacuum world. In the latter case, note the recursive

nature of the refinements and the use of preconditions.

function HIERARCHICAL-SEARCH(problem ,hierarchy) returns a solution or failure

frontier← a FIFO queue with [Act] as the only element

while true do

if IS-EMPTY(frontier) then return failure

plan← POP(frontier) // chooses the shallowest plan in frontier

hla← the first HLA in plan , or null if none

prefix ,suffix← the action subsequences before and after hla in plan

outcome←RESULT(problem .INITIAL, prefix)

if hla is null then // so plan is primitive and outcome is its result

if problem .IS-GOAL(outcome) then return plan

else for each sequence in REFINEMENTS(hla ,outcome,hierarchy) do

add APPEND(prefix , sequence, suffix) to frontier

Figure 11.8 A breadth-first implementation of hierarchical forward planning search. The

initial plan supplied to the algorithm is [Act]. The REFINEMENTS function returns a set of

action sequences, one for each refinement of the HLA whose preconditions are satisfied by

the specified state, outcome.

84 Chapter 11 Automated Planning

(a) (b)

Figure 11.9 Schematic examples of reachable sets. The set of goal states is shaded in purple.

Black and gray arrows indicate possible implementations of h1 and h2, respectively. (a) The

reachable set of an HLA h1 in a state s. (b) The reachable set for the sequence [h1, h2].
Because this intersects the goal set, the sequence achieves the goal.

(a) (b)

Figure 11.10 Goal achievement for high-level plans with approximate descriptions. The set

of goal states is shaded in purple. For each plan, the pessimistic (solid lines, light blue) and

optimistic (dashed lines, light green) reachable sets are shown. (a) The plan indicated by the

black arrow definitely achieves the goal, while the plan indicated by the gray arrow definitely

doesn’t. (b) A plan that possibly achieves the goal (the optimistic reachable set intersects

the goal) but does not necessarily achieve the goal (the pessimistic reachable set does not

intersect the goal). The plan would need to be refined further to determine if it really does

achieve the goal.

85

function ANGELIC-SEARCH(problem ,hierarchy , initialPlan) returns solution or fail

frontier← a FIFO queue with initialPlan as the only element

while true do

if EMPTY?(frontier) then return fail

plan← POP(frontier) // chooses the shallowest node in frontier

if REACH
+(problem .INITIAL,plan) intersects problem .GOAL then

if plan is primitive then return plan // REACH
+ is exact for primitive plans

guaranteed←REACH
−(problem .INITIAL,plan) ∩ problem .GOAL

if guaranteed 6={ } and MAKING-PROGRESS(plan , initialPlan) then

finalState← any element of guaranteed

return DECOMPOSE(hierarchy ,problem .INITIAL,plan ,finalState)

hla← some HLA in plan

prefix ,suffix← the action subsequences before and after hla in plan

outcome←RESULT(problem .INITIAL, prefix)

for each sequence in REFINEMENTS(hla ,outcome ,hierarchy) do

frontier← Insert(APPEND(prefix , sequence, suffix), frontier)

function DECOMPOSE(hierarchy , s0 ,plan , sf) returns a solution

solution← an empty plan

while plan is not empty do

action←REMOVE-LAST(plan)

si← a state in REACH
−(s0 , plan) such that sf ∈REACH

−(si ,action)
problem← a problem with INITIAL = si and GOAL = sf
solution←APPEND(ANGELIC-SEARCH(problem ,hierarchy ,action), solution)

sf ← si
return solution

Figure 11.11 A hierarchical planning algorithm that uses angelic semantics to identify and

commit to high-level plans that work while avoiding high-level plans that don’t. The predi-

cate MAKING-PROGRESS checks to make sure that we aren’t stuck in an infinite regression

of refinements. At top level, call ANGELIC-SEARCH with [Act] as the initialPlan .

w;<=> ?=@B

?=@B

r>?@Cr

S G

O

I L

c<BQCBR@QC<B

Figure 11.12 At first, the sequence “whole plan” is expected to get the agent from S to G.

The agent executes steps of the plan until it expects to be in state E, but observes that it is

actually in O. The agent then replans for the minimal repair plus continuation to reach G.

86 Chapter 11 Automated Planning

Jobs({AddEngine1 ≺AddWheels1 ≺ Inspect1},
{AddEngine2 ≺AddWheels2 ≺ Inspect2})

Resources(EngineHoists(1), WheelStations(1), Inspectors(e2), LugNuts(500))

Action(AddEngine1 , DURATION:30,
USE:EngineHoists(1))

Action(AddEngine2 , DURATION:60,
USE:EngineHoists(1))

Action(AddWheels1 , DURATION:30,
CONSUME:LugNuts(20), USE:WheelStations(1))

Action(AddWheels2 , DURATION:15,
CONSUME:LugNuts(20), USE:WheelStations(1))

Action(Inspect i, DURATION:10,
USE:Inspectors(1))

Figure 11.13 A job-shop scheduling problem for assembling two cars, with resource con-

straints. The notation A≺B means that action A must precede action B.

Start

[TUTV

AddEngine1

30

 WXZ\]^

_``abddefg
30

 WhXZi]^

10

Inspect1

WjXZk]^

Finish

[lmUlmV

10

Inspect2

[75,75]

15

AddWheels2

[60,60]

60

AddEngine2

[0,0]

AddEngine1

AddWheels1

Inspect1

AddWheels2

Inspect2AddEngine2

9080706050403020100

Figure 11.14 Top: a representation of the temporal constraints for the job-shop scheduling

problem of Figure ??. The duration of each action is given at the bottom of each rectangle.

In solving the problem, we compute the earliest and latest start times as the pair [ES ,LS],
displayed in the upper left. The difference between these two numbers is the slack of an

action; actions with zero slack are on the critical path, shown with bold arrows. Bottom: the

same solution shown as a timeline. Grey rectangles represent time intervals during which an

action may be executed, provided that the ordering constraints are respected. The unoccupied

portion of a gray rectangle indicates the slack.

87

AddEngine1

AddWheels1

Inspect1

AddWheels2

Inspect2

AddEngine2

100 110 120

EngineHoists(1)

WheelStations(1)

Inspectors(2)

9080706050403020100

Figure 11.15 A solution to the job-shop scheduling problem from Figure ??, taking into

account resource constraints. The left-hand margin lists the three reusable resources, and

actions are shown aligned horizontally with the resources they use. There are two possi-

ble schedules, depending on which assembly uses the engine hoist first; we’ve shown the

shortest-duration solution, which takes 115 minutes.

CHAPTER 12
QUANTIFYING UNCERTAINTY

function DT-AGENT(percept) returns an action

persistent: belief state, probabilistic beliefs about the current state of the world

action , the agent’s action

update belief state based on action and percept

calculate outcome probabilities for actions,

given action descriptions and current belief state

select action with highest expected utility

given probabilities of outcomes and utility information

return action

Figure 12.1 A decision-theoretic agent that selects rational actions.

Proposition Agent 1’s Agent 2 Agent 1 Agent 1 payoffs for each outcome

belief bets bets a, b a,¬b ¬a, b ¬a,¬b
a 0.4 $4 on a $6 on ¬a –$6 –$6 $4 $4

b 0.3 $3 on b $7 on ¬b –$7 $3 –$7 $3

a ∨ b 0.8 $2 on ¬(a ∨ b) $8 on a ∨ b $2 $2 $2 –$8

–$11 –$1 –$1 –$1

Figure 12.2 Because Agent 1 has inconsistent beliefs, Agent 2 is able to devise a set of

three bets that guarantees a loss for Agent 1, no matter what the outcome of a and b.

toothache ¬toothache
catch ¬catch catch ¬catch

cavity 0.108 0.012 0.072 0.008

¬cavity 0.016 0.064 0.144 0.576

Figure 12.3 A full joint distribution for the Toothache , Cavity , Catch world.

89

Weather

Toothache Catch

Cavity

decomposes

 into

WeatherToothache Catch

Cavity

decomposes

 into

Coin1 Coinn

Coin1 Coinn

(a) (b)

Figure 12.4 Two examples of factoring a large joint distribution into smaller distributions,

using absolute independence. (a) Weather and dental problems are independent. (b) Coin

flips are independent.

OK

 1,1 2,1 3,1 4,1

 1,2 2,2 3,2 4,2

 1,3 2,3 3,3 4,3

 1,4 2,4

OKOK

 3,4 4,4

B

B

1,1 2,1 3,1 4,1

1,2 2,2 3,2 4,2

 2,3 3,3 4,3

 2,4 3,4 4,4

KNOWN

FRONTIER

1,3

1,4

QUERY

OTHER

(a) (b)

Figure 12.5 (a) After finding a breeze in both [1,2] and [2,1], the agent is stuck—there is no

safe place to explore. (b) Division of the squares into Known , Frontier , and Other , for a

query about [1,3].

90 Chapter 12 Quantifying Uncertainty

OK

 1,1 2,1

 1,2

OKOK

B

B

OK

 1,1 2,1

 1,2 2,2

OKOK

B

B

OK

 1,1 2,1 3,1

 1,2

OKOK

B

B

0.2 3 0.2 5 0.04 0.2 3 0.8 5 0.16 0.8 3 0.2 5 0.16

OK

 1,1 2,1

 1,2

 1,3

OKOK

B

B

OK

 1,1 2,1 3,1

 1,2

 1,3

OKOK

B

B

0.2 3 0.2 5 0.04 0.2 3 0.8 5 0.16

(a) (b)

 2,2

 1,3 1,3

 2,2

 1,3

 3,1

 2,2 2,2

 3,1 3,1

Figure 12.6 Consistent models for the frontier variables, P2,2 and P3,1, showing

P (frontier) for each model: (a) three models with P1,3 = true showing two or three pits,

and (b) two models with P1,3 = false showing one or two pits.

CHAPTER 13
PROBABILISTIC REASONING

nopqsot
upvxqy

yzzqsp{so upq{s

Figure 13.1 A simple Bayesian network in which Weather is independent of the other three

variables and Toothache and Catch are conditionally independent, given Cavity .

|(}=~���)

����

|��=~����

����

|�J=~���|A�

���

���

A

t

f

|�M=~���|A�

���

���

A

t

f

|�A=~���|},��

���

���

�

t

f

t

f

���

���

}

t

t

f

f

�������� ����������

��������� ���������

����

Figure 13.2 A typical Bayesian network, showing both the topology and the conditional

probability tables (CPTs). In the CPTs, the letters B, E, A, J , and M stand for Burglary ,

Earthquake , Alarm , JohnCalls , and MaryCalls , respectively.

92 Chapter 13 Probabilistic Reasoning

¡¢£¤¥¦§§¨

©¦ª«¥¦§§¨

Alarm

­®ª¯§¦ª«

°¦ª±£²®¦³´

©¦ª«¥¦§§¨

µ§¦ª¶

°¦ª±£²®¦³´

­®ª¯§¦ª«

¡¢£¤¥¦§§¨

(a) (b)

1

2

4

2

4

1

2

4

8

16

Figure 13.3 Network structure and number of parameters depends on order of introduc-

tion. (a) The structure obtained with ordering M,J,A,B,E. (b) The structure obtained with

M,J,E,B,A. Each node is annotated with the number of parameters required; 13 in all for

(a) and 31 for (b). In Figure ??, only 10 parameters were required.

· · ·

· · ·¸1

¹

m̧

ºn

»¼½

º1

»1½

· · ·

· · ·1̧ m̧

ºn

»¼½

º1

»1½
¹

(a) (b)

Figure 13.4 (a) A nodeX is conditionally independent of its non-descendants (e.g., the Zijs)

given its parents (the Uis shown in the gray area). (b) A node X is conditionally independent

of all other nodes in the network given its Markov blanket (the gray area).

93

Cold Flu Malaria P (fever | ·) P (¬fever | ·)
f f f 0.0 1.0
f f t 0.9 0.1

f t f 0.8 0.2

f t t 0.98 0.02 = 0.2 × 0.1
t f f 0.4 0.6

t f t 0.94 0.06 = 0.6 × 0.1
t t f 0.88 0.12 = 0.6 × 0.2
t t t 0.988 0.012 = 0.6× 0.2× 0.1

Figure 13.5 A complete conditional probability table for ¶(Fever |Cold ,Flu,Malaria),
assuming a noisy-OR model with the the three q-values shown in bold.

¾¿ÀÁÂÃÄSubsidy

Buys

ÅÆÃÄ

Figure 13.6 A simple network with discrete variables (Subsidy and Buys) and continuous

variables (Harvest and Cost).

 0 3 6 9 12Cost c 0
 3

 6
 9

 12

Harvest h

 0
 0.1
 0.2
 0.3
 0.4

P(c | h, subsidy)

 0 3 6 9 12Cost c 0
 3

 6
 9

 12

Harvest h

 0
 0.1
 0.2
 0.3
 0.4

P(c | h, ¬subsidy)

 0 3 6 9 12Cost c 0
 3

 6
 9

 12

Harvest h

 0
 0.1
 0.2
 0.3
 0.4

P(c | h)

(a) (b) (c)

Figure 13.7 The graphs in (a) and (b) show the probability distribution over Cost as a func-

tion of Harvest size, with Subsidy true and false, respectively. Graph (c) shows the distribu-

tion P (Cost |Harvest), obtained by summing over the two subsidy cases.

94 Chapter 13 Probabilistic Reasoning

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 2 4 6 8 10 12

P
(c

)

Cost c

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12

P
(b

u
ys

 |
c)

Cost c

Logit
Probit

(a) (b)

Figure 13.8 (a) A normal (Gaussian) distribution for the cost threshold, centered on µ=6.0
with standard deviation σ=1.0. (b) Expit and probit models for the probability of buys given

cost , for the parameters µ=6.0 and σ=1.0.

ÇÈÉÊÈËÉÈÌÍÎÏ

ÐÈÈÑÇÒÓÑÏÌÒ ExtraCar

VehicleYearYearsLicensed

DrivingSkill

DrivingBehavior

OwnCarDamage

PropertyCostLiabilityCostMedicalCost

OtherCost
OwnCarCost

Theft

Ruggedness

Accident

SafetyFeatures

Airbag

CarValue

Garaged

AntiTheft

Cushioning

RiskAversion

Mileage

MakeModel

DrivingRecord

Figure 13.9 A Bayesian network for evaluating car insurance applications.

95

P(j|a)
.90

P(m|a)
.70 .01

P(m|¬a)

.05
P(j|¬a) P(j|a)

.90

P(m|a)
.70 .01

P(m|¬a)

.05
P(j |¬a)

P(b)
.001

P(e)
.002

P(¬e)
.998

P(a |b,e)
.95 .06

P(¬a|b,¬e)
.05
P(¬a|b,e)

.94
P(a |b,¬e)

Figure 13.10 The structure of the expression shown in Equation (??). The evaluation pro-

ceeds top down, multiplying values along each path and summing at the “+” nodes. Notice

the repetition of the paths for j and m.

function ENUMERATION-ASK(X , e, bn) returns a distribution over X

inputs: X , the query variable

e, observed values for variables E

bn , a Bayes net with variables vars

Q(X)← a distribution over X , initially empty

for each value xi of X do

Q(xi)← ENUMERATE-ALL(vars , exi
)

where exi
is e extended with X = xi

return NORMALIZE(Q(X))

function ENUMERATE-ALL(vars , e) returns a real number

if EMPTY?(vars) then return 1.0

V ← FIRST(vars)

if V is an evidence variable with value v in e

then return P (v | parents(V)) × ENUMERATE-ALL(REST(vars), e)

else return
∑

v P (v | parents(V)) × ENUMERATE-ALL(REST(vars), ev)

where ev is e extended with V = v

Figure 13.11 The enumeration algorithm for exact inference in Bayes nets.

96 Chapter 13 Probabilistic Reasoning

X Y f(X,Y) Y Z g(Y,Z) X Y Z h(X,Y,Z)

t t .3 t t .2 t t t .3× .2= .06
t f .7 t f .8 t t f .3× .8= .24
f t .9 f t .6 t f t .7× .6= .42
f f .1 f f .4 t f f .7× .4= .28

f t t .9× .2= .18
f t f .9× .8= .72
f f t .1× .6= .06
f f f .1× .4= .04

Figure 13.12 Illustrating pointwise multiplication: f(X,Y)× g(Y, Z) = h(X,Y, Z).

function ELIMINATION-ASK(X , e, bn) returns a distribution over X

inputs: X , the query variable

e, observed values for variables E

bn , a Bayesian network with variables vars

factors← []
for each V in ORDER(vars) do

factors← [MAKE-FACTOR(V , e)] + factors

if V is a hidden variable then factors← SUM-OUT(V , factors)

return NORMALIZE(POINTWISE-PRODUCT(factors))

Figure 13.13 The variable elimination algorithm for exact inference in Bayes nets.

¬

¬

W

Ô

Õ

Ö

×3

×1

S×2

Figure 13.14 Bayes net encoding of the 3-CNF sentence

(W ∨X ∨ Y) ∧ (¬W ∨ Y ∨ Z) ∧ (X ∨ Y ∨ ¬Z) .

97

P(C=ØÙÚ

P(S|c)

ØÛÜ

ØÙÜ

C

t

f

P(W|s,r)

ØÝÝ

ØÝÜ

Þ

t

f

t

f

ØÝÜ

ØÜÜ

S

t

t

f

f

ß(Þ|c)

ØàÜ

ØáÜ

â

t

f

ãäåæçè

Wéêëìíîî

ïðñòóôõñòöä÷õ

P(C=øùú

P(W|s+r)

øûû

øûü

øûü

øüü

S+ý

þ þ

þ ÿ

ÿ þ

ÿ ÿ

P(S+ý|c)

øü.
ø�ü

C
t

f

øü� ø�� ø�.
ø�ü ø�ü ø�ü

þ þ þ ÿ ÿ þ ÿ ÿS�����	
�+R���

Cloudy

We�
����

(a) (b)

Figure 13.15 (a) A multiply connected network describing Mary’s daily lawn routine: each

morning, she checks the weather; if it’s cloudy, she usually doesn’t turn on the sprinkler; if

the sprinkler is on, or if it rains during the day, the grass will be wet. Thus, Cloudy affects

WetGrass via two different causal pathways. (b) A clustered equivalent of the multiply

connected network.

function PRIOR-SAMPLE(bn) returns an event sampled from the prior specified by bn

inputs: bn , a Bayesian network specifying joint distribution P(X1, . . . , Xn)

x← an event with n elements

for each variable Xi in X1, . . . , Xn do

x[i]← a random sample from P(Xi | parents(Xi))
return x

Figure 13.16 A sampling algorithm that generates events from a Bayesian network. Each

variable is sampled according to the conditional distribution given the values already sampled

for the variable’s parents.

98 Chapter 13 Probabilistic Reasoning

function REJECTION-SAMPLING(X , e, bn ,N) returns an estimate of P(X | e)
inputs: X , the query variable

e, observed values for variables E

bn , a Bayesian network

N , the total number of samples to be generated

local variables: C, a vector of counts for each value of X , initially zero

for j = 1 to N do

x← PRIOR-SAMPLE(bn)

if x is consistent with e then

C[j]←C[j]+1 where xj is the value of X in x

return NORMALIZE(C)

Figure 13.17 The rejection-sampling algorithm for answering queries given evidence in a

Bayesian network.

function LIKELIHOOD-WEIGHTING(X , e, bn ,N) returns an estimate of P(X | e)
inputs: X , the query variable

e, observed values for variables E

bn , a Bayesian network specifying joint distribution P(X1, . . . , Xn)
N , the total number of samples to be generated

local variables: W, a vector of weighted counts for each value of X , initially zero

for j = 1 to N do

x,w←WEIGHTED-SAMPLE(bn , e)

W[j]←W[j] + w where xj is the value of X in x

return NORMALIZE(W)

function WEIGHTED-SAMPLE(bn , e) returns an event and a weight

w← 1; x← an event with n elements, with values fixed from e

for i = 1 to n do

if Xi is an evidence variable with value xij in e

then w←w × P (Xi= xij | parents(Xi))
else x[i]← a random sample from P(Xi | parents(Xi))

return x, w

Figure 13.18 The likelihood-weighting algorithm for inference in Bayesian networks. In

WEIGHTED-SAMPLE, each nonevidence variable is sampled according to the conditional

distribution given the values already sampled for the variable’s parents, while a weight is

accumulated based on the likelihood for each evidence variable.

99

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 200000 400000 600000 800000 1x106

E
rr

or

Number of samples

Rejection sampling
Likelihood weighting

Figure 13.19 Performance of rejection sampling and likelihood weighting on the insurance

network. The x-axis shows the number of samples generated and the y-axis shows the maxi-

mum absolute error in any of the probability values for a query on PropertyCost .

function GIBBS-ASK(X , e, bn ,N) returns an estimate of P(X | e)
local variables: C, a vector of counts for each value of X , initially zero

Z, the nonevidence variables in bn

x, the current state of the network, initialized from e

initialize x with random values for the variables in Z

for k = 1 to N do

choose any variable Zi from Z according to any distribution ρ(i)
set the value of Zi in x by sampling from P(Zi |mb(Zi))
C[j]←C[j] + 1 where xj is the value of X in x

return NORMALIZE(C)

Figure 13.20 The Gibbs sampling algorithm for approximate inference in Bayes nets; this

version chooses variables at random, but cycling through the variables but also works.

100 Chapter 13 Probabilistic Reasoning

rc

r¬c ¬r¬c

¬rc

0����� 0��0��

0�����

0�����

0��0��

0��1640�����
0�0���

0����� 0�0���0����� 0�����

rc

r¬c ¬r¬c

¬rc

������ ������

������

1�����

������

������1�����
������

������ ������������ ������

(a) (b)

Figure 13.21 (a) The states and transition probabilities of the Markov chain for the query

P(Rain | Sprinkler = true,WetGrass = true). Note the self-loops: the state stays the same

when either variable is chosen and then resamples the same value it already has. (b) The tran-

sition probabilities when the CPT for Rain constrains it to have the same value as Cloudy .

 0

 0.005

 0.01

 0.015

 0.02

 0 200000 400000 600000 800000 1x106

E
rr

or

Number of samples

Likelihood weighting
Gibbs sampling

 0

 0.005

 0.01

 0.015

 0.02

 0 200000 400000 600000 800000 1x106

E
rr

or

Number of samples

Likelihood weighting
Gibbs sampling

(a) (b)

Figure 13.22 Performance of Gibbs sampling compared to likelihood weighting on the car

insurance network: (a) for the standard query on PropertyCost , and (b) for the case where

the output variables are observed and Age is the query variable.

101

Rain

W�� !"##

 !��G�! !"##

Cloudy

Sprinkler Rain

(a)

GreenerGrass

W�� !"##

Cloudy

(b)

Sprinkler
= True

Figure 13.23 (a) A causal Bayesian network representing cause–effect relations among five

variables. (b) The network after performing the action “turn Sprinkler on.”

CHAPTER 14
PROBABILISTIC REASONING OVER

TIME

Xt�$ Xt�% Xt(a)

(b)

Xt+% Xt+$

Xt�$ Xt�% Xt Xt+% Xt+$

Figure 14.1 (a) Bayesian network structure corresponding to a first-order Markov process

with state defined by the variables Xt. (b) A second-order Markov process.

P(Rt|Rt&')

(*,
(*-

/2Ut|Rt)

Figure 14.2 Bayesian network structure and conditional distributions describing the um-

brella world. The transition model is P(Raint |Raint−1) and the sensor model is

P(Umbrellat |Raint).

103

Figure 14.3 Smoothing computes P(Xk | e1:t), the posterior distribution of the state at some

past time k given a complete sequence of observations from 1 to t.

function FORWARD-BACKWARD(ev,prior) returns a vector of probability distributions

inputs: ev, a vector of evidence values for steps 1, . . . , t
prior , the prior distribution on the initial state, P(X0)

local variables: fv, a vector of forward messages for steps 0, . . . , t
b, a representation of the backward message, initially all 1s

sv, a vector of smoothed estimates for steps 1, . . . , t

fv[0]← prior

for i= 1 to t do

fv[i]← FORWARD(fv[i− 1], ev[i])
for i= t down to 1 do

sv[i]←NORMALIZE(fv[i]×b)
b←BACKWARD(b, ev[i])

return sv

Figure 14.4 The forward–backward algorithm for smoothing: computing posterior prob-

abilities of a sequence of states given a sequence of observations. The FORWARD and

BACKWARD operators are defined by Equations (??) and (??), respectively.

104 Chapter 14 Probabilistic Reasoning over Time

Figure 14.5 (a) Possible state sequences for Raint can be viewed as paths through a graph of

the possible states at each time step. (States are shown as rectangles to avoid confusion with

nodes in a Bayes net.) (b) Operation of the Viterbi algorithm for the umbrella observation

sequence [true, true, false, true, true], where the evidence starts at time 1. For each t, we

have shown the values of the message m1:t, which gives the probability of the best sequence

reaching each state at time t. Also, for each state, the bold arrow leading into it indicates

its best predecessor as measured by the product of the preceding sequence probability and

the transition probability. Following the bold arrows back from the most likely state in m1:5

gives the most likely sequence, shown by the bold outlines and darker shading.

105

function FIXED-LAG-SMOOTHING(et,hmm ,d) returns a distribution over Xt−d

inputs: et, the current evidence for time step t
hmm , a hidden Markov model with S× S transition matrix T

d , the length of the lag for smoothing

persistent: t , the current time, initially 1

f, the forward message P(Xt | e1:t), initially hmm .PRIOR

B, the d-step backward transformation matrix, initially the identity matrix

et−d:t, double-ended list of evidence from t− d to t, initially empty

local variables: Ot−d,Ot, diagonal matrices containing the sensor model information

add et to the end of et−d:t

Ot← diagonal matrix containing P(et |Xt)
if t > d then

f← FORWARD(f, et−d)
remove et−d−1 from the beginning of et−d:t

Ot−d← diagonal matrix containing P(et−d |Xt−d)
B←O−1

t−dT−1BTOt

else B←BTOt

t← t + 1
if t > d+ 1 then return NORMALIZE(f × B1) else return null

Figure 14.6 An algorithm for smoothing with a fixed time lag of d steps, implemented as

an online algorithm that outputs the new smoothed estimate given the observation for a new

time step. Notice that the final output NORMALIZE(f×B1) is just α f×b, by Equation (??).

106 Chapter 14 Probabilistic Reasoning over Time

(a) Posterior distribution over robot location after E1 = 1011

(b) Posterior distribution over robot location after E1 = 1011, E2 = 1010

Figure 14.7 Posterior distribution over robot location: (a) after one observation E1 =1011
(i.e., obstacles to the north, south, and west); (b) after a random move to an adjacent location

and a second observation E2 =1010 (i.e., obstacles to the north and south). The size of each

disk corresponds to the probability that the robot is at that location. The sensor error rate for

each bit is ǫ=0.2.

 0

 1

 2

 3

 4

 5

 6

 7

 0 5 10 15 20 25 30 35 40

Lo
ca

liz
at

io
n

er
ro

r

Number of observations

ε = 0.40
ε = 0.20
ε = 0.10
ε = 0.05
ε = 0.02
ε = 0.00

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0 5 10 15 20 25 30 35 40

V
ite

rb
i p

at
h

er
ro

r

Number of observations

ε = 0.40
ε = 0.20
ε = 0.10
ε = 0.05
ε = 0.02
ε = 0.00

(a) (b)

Figure 14.8 Performance of HMM localization as a function of the length of the observation

sequence for various different values of the sensor error probability ǫ; data averaged over 400

runs. (a) The localization error, defined as the Manhattan distance from the true location. (b)

The Viterbi path error, defined as the average Manhattan distance of states on the Viterbi path

from corresponding states on the true path.

107

Figure 14.9 Bayesian network structure for a linear dynamical system with position Xt,

velocity Ẋt, and position measurement Zt.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

-10 -5 0 5 10

P(x0)

P(x1)

P(x1 | z1 = 2.5)

*z1

P
(x

)

x position

Figure 14.10 Stages in the Kalman filter update cycle for a random walk with a prior given

by µ0 =0.0 and σ0 =1.5, transition noise given by σx =2.0, sensor noise given by σz =1.0,

and a first observation z1=2.5 (marked on the x-axis). Notice how the prediction P (x1)
is flattened out, relative to P (x0), by the transition noise. Notice also that the mean of the

posterior distribution P (x1 | z1) is slightly to the left of the observation z1 because the mean

is a weighted average of the prediction and the observation.

108 Chapter 14 Probabilistic Reasoning over Time

8 10 12 14 16 18 20 22 24 26

6

7

8

9

10

11

12

8 10 12 14 16 18 20 22 24 26
6

7

8

9

10

11

12

(a) (b)

2D filtering 2D smoothing

X

Y

true
observed
filtered

X

Y

true
observed
smoothed

Figure 14.11 (a) Results of Kalman filtering for an object moving on the X–Y plane, show-

ing the true trajectory (left to right), a series of noisy observations, and the trajectory esti-

mated by Kalman filtering. Variance in the position estimate is indicated by the ovals. (b)

The results of Kalman smoothing for the same observation sequence.

Figure 14.12 A bird flying toward a tree (top views). (a) A Kalman filter will predict the

location of the bird using a single Gaussian centered on the obstacle. (b) A more realistic

model allows for the bird’s evasive action, predicting that it will fly to one side or the other.

109

P(R13R04R0

R1 P5U13614

Figure 14.13 Left: Specification of the prior, transition model, and sensor model for the

umbrella DBN. Subsequent slices are copies of slice 1. Right: A simple DBN for robot

motion in the X–Y plane.

-1

 0

 1

 2

 3

 4

 5

 15 20 25 30

E(Batteryt |...5555005555...)

E(Batteryt |...5555000000...)

E
(B

a
tt

e
ry

t)

Time step t

-1

 0

 1

 2

 3

 4

 5

 15 20 25 30

E(Batteryt |...5555005555...)

E(Batteryt |...5555000000...)

E
(B

a
tt

e
ry

t)

Time step

(a) (b)

Figure 14.14 (a) Upper curve: trajectory of the expected value of Battery t for an observa-

tion sequence consisting of all 5s except for 0s at t=21 and t=22, using a simple Gaussian

error model. Lower curve: trajectory when the observation remains at 0 from t=21 onwards.

(b) The same experiment run with the transient failure model. The transient failure is handled

well, but the persistent failure results in excessive pessimism about the battery charge.

110 Chapter 14 Probabilistic Reasoning over Time

1BatteryBattery0

1BMeter

0BMBroken 1BMBroken

f
t
0B 1P7B 8

9:;;;
;:;;9

-1

 0

 1

 2

 3

 4

 5

 15 20 25 30

E(Batteryt |...5555005555...)

E(Batteryt |...5555000000...)

P(BMBrokent |...5555000000...)

P(BMBrokent |...5555005555...)

E
(B

a
tt
e

ry
t)

Time step

(a) (b)

Figure 14.15 (a) A DBN fragment showing the sensor status variable required for modeling

persistent failure of the battery sensor. (b) Upper curves: trajectories of the expected value of

Battery t for the “transient failure” and “permanent failure” observations sequences. Lower

curves: probability trajectories for BMBroken given the two observation sequences.

P(R1<R0>R0 P?R1<R0> P?R1<R0> P?R1<R0>P?R1<R0>R0 P?R2<R1>R1 P?R3<R2>R2 P?R4<R3>R3

R1 P?@1<A1> A1 B?@1<A1> A2 B?@2<A2> A3 B?@3<A3> A4 B?@4<A4>

ADEF4ADEF0 ADEF1 ADEF0 ADEF1 ADEF2 ADEF3

@HIJella1 @HIJella1 @HIJella2 @HIJella3 @HIJella4

Figure 14.16 Unrolling a dynamic Bayesian network: slices are replicated to accommodate

the observation sequence Umbrella1:3. Further slices have no effect on inferences within the

observation period.

111

function PARTICLE-FILTERING(e,N ,dbn) returns a set of samples for the next time step

inputs: e, the new incoming evidence

N , the number of samples to be maintained

dbn , a DBN defined by P(X0), P(X1 |X0), and P(E1 |X1)
persistent: S , a vector of samples of size N , initially generated from P(X0)
local variables: W , a vector of weights of size N

for i = 1 to N do

S [i]← sample from P(X1 |X0 = S [i]) // step 1

W [i]←P(e |X1 = S[i]) // step 2

S←WEIGHTED-SAMPLE-WITH-REPLACEMENT(N ,S ,W) // step 3

return S

Figure 14.17 The particle filtering algorithm implemented as a recursive update oper-

ation with state (the set of samples). Each of the sampling operations involves sam-

pling the relevant slice variables in topological order, much as in PRIOR-SAMPLE. The

WEIGHTED-SAMPLE-WITH-REPLACEMENT operation can be implemented to run in O(N)
expected time. The step numbers refer to the description in the text.

Figure 14.18 The particle filtering update cycle for the umbrella DBN with N =10, showing

the sample populations of each state. (a) At time t, 8 samples indicate rain and 2 indicate

¬rain . Each is propagated forward by sampling the next state through the transition model.

At time t + 1, 6 samples indicate rain and 4 indicate ¬rain . (b) ¬umbrella is observed at

t+ 1. Each sample is weighted by its likelihood for the observation, as indicated by the size

of the circles. (c) A new set of 10 samples is generated by weighted random selection from

the current set, resulting in 2 samples that indicate rain and 8 that indicate ¬rain .

112 Chapter 14 Probabilistic Reasoning over Time

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 20 40 60 80 100

M
ax

 n
or

m
 e

rr
or

Number of observations

SIS
PF

Figure 14.19 Max norm error in the grid-world location estimate (compared to exact infer-

ence) for likelihood weighting (sequential importance sampling) with 100,000 samples and

particle filtering with 1,000 samples; data averaged over 50 runs.

Location0 Location1

Dirt1,0

Dirt2,0

Dirt42,0

Dirt1,1

Dirt2,1

Dirt42,1

WallSensor1

DirtSensor1

Figure 14.20 A dynamic Bayes net for simultaneous localization and mapping in the

stochastic-dirt vacuum world. Dirty squares persist with probability p, and clean squares

become dirty with probability 1 − p. The local dirt sensor is 90% accurate, for the square in

which the robot is currently located.

113

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 20 40 60 80 100

R
M

S
 e

rr
or

 in
 d

irt
 p

ro
ba

bi
lit

ie
s

Number of observations

p = 1.00
p = 0.95
p = 0.90
p = 0.80
p = 0.70

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 100 200 300 400 500

R
M

S
 d

irt
 e

rr
or

Number of observations

Exact, p = 1.00
Noisy, p = 1.00

(a) (b)

Figure 14.21 (a) Performance of the standard particle filtering algorithm with 1,000 par-

ticles, showing RMS error in marginal dirt probabilities compared to exact inference for

different values of the dirt persistence p. (b) Performance of Rao-Blackwellized particle fil-

tering (100 particles) compared to ground truth, for both exact location sensing and noisy

wall sensing and with deterministic dirt. Data averaged over 20 runs.

CHAPTER 15
PROBABILISTIC PROGRAMMING

R J R R R R RJ J J J J

R J

K

L

R J

L

K

R J

L

K

R J

L

K

R J

L

K

Figure 15.1 Top: Some members of the set of all possible worlds for a language with two

constant symbols, R and J , and one binary relation symbol, under the standard semantics for

first-order logic. Bottom: the possible worlds under database semantics. The interpretation

of the constant symbols is fixed, and there is a distinct object for each constant symbol.

Recommendation(C1, B1)

Honest(C1) Kindness(C1)

Quality(B1)

Recommendation(C1, B1)

Honest(C1) Kindness(C1)

Quality(B1)

Recommendation(C2, B1M

HonestNC2M KindnessNC2M

QualityNB2M

RecommendationNC1, B2M RecommendationNC2, B2M

NOM NQM

Figure 15.2 (a) Bayes net for a single customer C1 recommending a single book B1.

Honest(C1) is Boolean, while the other variables have integer values from 1 to 5. (b) Bayes

net with two customers and two books.

115

Recommendation(C1, B1)

Honest(C1) Kindness(C1)Quality(B1)

Recommendation(C1, B2T

QualityVB2T

FanVC1, A1T FanVC1, A2T AuthorVB2T

Figure 15.3 Fragment of the equivalent Bayes net for the book recommendation RPM when

Author(B2) is unknown.

Variable Value Probability

#Customer 2 0.3333
#Book 3 0.3333
Honest 〈Customer, ,1〉 true 0.99
Honest 〈Customer, ,2〉 false 0.01
Kindness〈Customer, ,1〉 4 0.3
Kindness〈Customer, ,2〉 1 0.1
Quality〈Book, ,1〉 1 0.05

Quality〈Book, ,2〉 3 0.4

Quality〈Book, ,3〉 5 0.15

#LoginID 〈Owner ,〈Customer, ,1〉〉 1 1.0

#LoginID 〈Owner ,〈Customer, ,2〉〉 2 0.25

Recommendation〈LoginID,〈Owner ,〈Customer, ,1〉〉,1〉,〈Book, ,1〉 2 0.5
Recommendation〈LoginID,〈Owner ,〈Customer, ,1〉〉,1〉,〈Book, ,2〉 4 0.5
Recommendation〈LoginID,〈Owner ,〈Customer, ,1〉〉,1〉,〈Book, ,3〉 5 0.5
Recommendation〈LoginID,〈Owner ,〈Customer, ,2〉〉,1〉,〈Book, ,1〉 5 0.4
Recommendation〈LoginID,〈Owner ,〈Customer, ,2〉〉,1〉,〈Book, ,2〉 5 0.4
Recommendation〈LoginID,〈Owner ,〈Customer, ,2〉〉,1〉,〈Book, ,3〉 1 0.4
Recommendation〈LoginID,〈Owner ,〈Customer, ,2〉〉,2〉,〈Book, ,1〉 5 0.4
Recommendation〈LoginID,〈Owner ,〈Customer, ,2〉〉,2〉,〈Book, ,2〉 5 0.4
Recommendation〈LoginID,〈Owner ,〈Customer, ,2〉〉,2〉,〈Book, ,3〉 1 0.4

Figure 15.4 One particular world for the book recommendation OUPM. The number vari-

ables and basic random variables are shown in topological order, along with their chosen

values and the probabilities for those values.

116 Chapter 15 Probabilistic Programming

type Researcher, Paper, Citation

random String Name(Researcher)

random String Title(Paper)

random Paper PubCited(Citation)

random String Text(Citation)

random Boolean Professor(Researcher)

origin Researcher Author(Paper)

#Researcher ∼ OM(3, 1)
Name(r) ∼ NamePrior ()
Professor (r) ∼ Boolean(0.2)
#Paper (Author = r) ∼ if Professor (r) then OM(1.5, 0.5) else OM(1, 0.5)
Title(p) ∼ PaperTitlePrior ()
CitedPaper (c) ∼ UniformChoice({Paper p})
Text(c) ∼ HMMGrammar (Name(Author(CitedPaper (c))),Title(CitedPaper (c)))

Figure 15.5 An OUPM for citation information extraction. For simplicity the model assumes

one author per paper and omits details of the grammar and error models.

#SeismicEvents ∼ Poisson(T ∗ λe)
Time(e) ∼ UniformReal(0, T)
EarthQuake(e) ∼ Boolean(0.999)
Location(e) ∼ if Earthquake(e) then SpatialPrior () else UniformEarth()
Depth(e) ∼ if Earthquake(e) then UniformReal(0, 700) else Exactly(0)
Magnitude(e) ∼ Exponential(log(10))
Detected(e, p, s) ∼ Logistic(weights(s, p),Magnitude(e), Depth(e), Dist(e, s))
#Detections(site = s) ∼ Poisson(T ∗ λf (s))
#Detections(event=e, phase=p, station=s) = if Detected(e, p, s) then 1 else 0
OnsetTime(a, s) if (event(a) = null) then ∼ UniformReal(0, T)

else = Time(event(a)) + GeoTT (Dist(event(a), s),Depth(event(a)), phase(a))
+ Laplace(µt(s), σt(s))

Amplitude(a, s) if (event(a) = null) then ∼ NoiseAmpModel (s)
else = AmpModel (Magnitude(event(a)),Dist(event(a), s),Depth(event(a)), phase(a))

Azimuth(a, s) if (event(a) = null) then ∼ UniformReal(0, 360)
else = GeoAzimuth(Location(event(a)),Depth(event(a)), phase(a), Site(s))

+ Laplace(0, σa(s))
Slowness(a, s) if (event(a) = null) then ∼ UniformReal(0, 20)

else = GeoSlowness(Location(event(a)),Depth(event(a)), phase(a), Site(s))
+ Laplace(0, σs(s))

ObservedPhase(a, s) ∼ CategoricalPhaseModel (phase(a))

Figure 15.6 A simplified version of the NET-VISA model (see text).

117

0 100 200 300 400 500 600

+ 1.1040359× 109

− 30

− 20

− 10

0

10

20

30

1
.0

-
2
.0

H
z

0 100 200 300 400 500 600

Time (s) + 1.1040359× 109

− 1

0

1

2

3

4

5

S
T
A

(1
.5

s
)

/
LT

A
(6

0
s
)

ASAR – se

(a) (b)

Figure 15.7 (a) Top: Example of seismic waveform recorded at Alice Springs, Australia.

Bottom: the waveform after processing to detect the arrival times of seismic waves. Blue lines

are the automatically detected arrivals; red lines are the true arrivals. (b) Location estimates

for the DPRK nuclear test of February 12, 2013: UN CTBTO Late Event Bulletin (green

triangle at top left); NET-VISA (blue square in center). The entrance to the underground

test facility (small “x”) is 0.75km from NET-VISA’s estimate. Contours show NET-VISA’s

posterior location distribution. Courtesy of CTBTO Preparatory Commission.

2

1 3

5

4

2

1

3

5

4

3

(d)(c)

(b)(a)

track termination

false alarm

detection

failure

track

initiation

3

2

1

5

4
2

1

5

4

5

4

2

1 3

4

5

1

2

3

4

5 1

2
3

4

5

3
2

1

Figure 15.8 (a) Observations made of object locations in 2D space over five time steps. Each

observation blip is labeled with the time step but does not identify the object that produced it.

(b–c) Possible hypotheses about the underlying object tracks. (d) A hypothesis for the case

in which false alarms, detection failures, and track initiation/termination are possible.

118 Chapter 15 Probabilistic Programming

#Aircraft(EntryTime =t) ∼ Poisson(λa)
Exits(a, t) ∼ if InFlight(a, t) then Boolean(αe)
InFlight(a, t) = (t=EntryTime(a)) ∨ (InFlight(a, t− 1) ∧ ¬ Exits(a, t− 1))
X(a, t) ∼ if t = EntryTime(a) then InitX ()

else if InFlight(a, t) thenN (FX(a, t− 1),Σx)
#Blip(Source=a, Time=t) ∼ if InFlight(a, t) then Bernoulli(DetectionProb(X(a, t)))
#Blip(Time=t) ∼ Poisson(λf)
Z(b) ∼ if Source(b)=null then UniformZ (R) elseN (HX(Source(b),Time(b)),Σz)

Figure 15.9 An OUPM for radar tracking of multiple targets with false alarms, detection

failure, and entry and exit of aircraft. The rate at which new aircraft enter the scene is λa,

while the probability per time step that an aircraft exits the scene is αe. False alarm blips (i.e.,

ones not produced by an aircraft) appear uniformly in space at a rate of λf per time step. The

probability that an aircraft is detected (i.e., produces a blip) depends on its current position.

(a) (b)

Figure 15.10 Images from (a) upstream and (b) downstream surveillance cameras roughly

two miles apart on Highway 99 in Sacramento, California. The boxed vehicle has been

identified at both cameras.

119

function GENERATE-IMAGE() returns an image with some letters

letters←GENERATE-LETTERS(10)

return RENDER-NOISY-IMAGE(letters, 32, 128)

function GENERATE-LETTERS(λ) returns a vector of letters

n ∼ Poisson(λ)
letters← []
for i = 1 to n do

letters[i] ∼ UniformChoice({a, b, c, · · ·})
return letters

function RENDER-NOISY-IMAGE(letters,width ,height) returns a noisy image of the letters

clean image←RENDER(letters,width ,height , text top = 10, text left = 10)

noisy image← []
noise variance ∼ UniformReal(0.1, 1)
for row = 1 to width do

for col = 1 to height do

noisy image [row , col] ∼ N (clean image[row, col], noise variance)
return noisy image

Figure 15.11 Generative program for an open-universe probability model for optical charac-

ter recognition. The generative program produces degraded images containing sequences of

letters by generating each sequence, rendering it into a 2D image, and incorporating additive

noise at each pixel.

Figure 15.12 The top panel shows twelve degraded images produced by executing the gener-

ative program from Figure ??. The number of letters, their identities, the amount of additive

noise, and the specific pixel-wise noise are all part of the domain of the probability model.

The bottom panel shows twelve degraded images produced by executing the generative pro-

gram from Figure ??. The Markov model for letters typically yields sequences of letters that

are easier to pronounce.

120 Chapter 15 Probabilistic Programming

Figure 15.13 Noisy input image (top) and inference results (bottom) produced by three runs,

each of 25 MCMC iterations, with the model from Figure ??. Note that the inference process

correctly identifies the sequence of letters.

Figure 15.14 Top: extremely noisy input image. Bottom left: with three inference results

from 25 MCMC iterations with the independent-letter model from Figure ??. Bottom right:

three inference results with the letter bigram model from Figure ??. Both models exhibit

ambiguity in the results, but the latter model’s results reflect prior knowledge of plausible

letter sequences.

function GENERATE-MARKOV-LETTERS(λ) returns a vector of letters

n ∼ Poisson(λ)
letters← []
letter probs←MARKOV-INITIAL()

for i = 1 to n do

letters[i] ∼ Categorical (letter probs)
letter probs←MARKOV-TRANSITION(letters[i])

return letters

Figure 15.15 Generative program for an improved optical character recognition model that

generates letters according to a letter bigram model whose pairwise letter frequencies are

estimated from a list of English words.

CHAPTER 16
MAKING SIMPLE DECISIONS

1¢

1¢

1¢

A

B C

p

q

A

B

C

p

(1–p)

(1–p)(1–q)

(1–q)

A

B

C

is equivalent to

(a) (b)

(1–p)q

Figure 16.1 (a) Nontransitive preferencesA ≻ B ≻ C ≻ A can result in irrational behavior:

a cycle of exchanges each costing one cent. (b) The decomposability axiom.

U

$ $
2150,000 800,000

(a) (b)

U

Figure 16.2 The utility of money. (a) Empirical data for Mr. Beard over a limited range. (b)

A typical curve for the full range.

122 Chapter 16 Making Simple Decisions

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

-5 -4 -3 -2 -1 0 1 2 3 4 5

k=3

k=10

k=30

Error in utility estimate

Figure 16.3 Unjustified optimism caused by choosing the best of k options: we assume

that each option has a true utility of 0 but a utility estimate that is distributed according to

a unit normal (brown curve). The other curves show the distributions of the maximum of k
estimates for k=3, 10, and 30.

(a)

A

BC

D

A

B

C

(b)

This region
dominates A

X2 X2

X1 X1

Figure 16.4 Strict dominance. (a) Deterministic: Option A is strictly dominated by B but

not by C or D. (b) Uncertain: A is strictly dominated by B but not by C.

123

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

-6 -5.5 -5 -4.5 -4 -3.5 -3 -2.5 -2

S1S2

P
ro

ba
bi

lit
y

Negative cost

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-6 -5.5 -5 -4.5 -4 -3.5 -3 -2.5 -2

S1

S2

P
ro

ba
bi

lit
y

Negative cost

(a) (b)

Figure 16.5 Stochastic dominance. (a) S1 stochastically dominates S2 on frugality (negative

cost). (b) Cumulative distributions for the frugality of S1 and S2.

Y

Z[\]^_ `[_a

Quietness

Frugality

Litigation

Construction

Air Traffic Safety

Figure 16.6 A decision network for the airport-siting problem.

124 Chapter 16 Making Simple Decisions

b

cdfghfi jdik

Litigation

Construction

Air Traffic

Figure 16.7 A simplified representation of the airport-siting problem. Chance nodes corre-

sponding to outcome states have been factored out.

(c)

P(U | Ej)

U1U2

U

(b)

P(U | Ej)

U1U2

U

(a)

P(U | Ej)

U1U2

U

Figure 16.8 Three generic cases for the value of information. In (a), a1 will almost certainly

remain superior to a2, so the information is not needed. In (b), the choice is unclear and the

information is crucial. In (c), the choice is unclear, but because it makes little difference, the

information is less valuable. (Note: The fact that U2 has a high peak in (c) means that its

expected value is known with higher certainty than U1.)

125

function INFORMATION-GATHERING-AGENT(percept) returns an action

persistent: D , a decision network

integrate percept into D

j ← the value that maximizes VPI (Ej) / C (Ej)
if VPI (Ej) > C (Ej)

then return Request(Ej)
else return the best action from D

Figure 16.9 Design of a simple, myopic information-gathering agent. The agent works by

repeatedly selecting the observation with the highest information value, until the cost of the

next observation is greater than its expected benefit.

l

+$8

mno

pqr
durian

vanilla

s

+$98

–$82

LikesDurian

true

false

true

false

+$1

+$1

D/V

durian

durian

vanilla

vanilla

+$98

0.5

0.0

D/V

durian

vanilla

…

…

…

…

…

…

…

…

…

…

…

…

+$1+$0–$82

0.00.00.5

1.00.00.0

(a) (b) (c)

U

Durian/Vanilla

U

Durian/Vanilla

U

Durian/Vanilla

LikesDurian

Figure 16.10 (a) A decision network for the ice cream choice with an uncertain utility func-

tion. (b) The network with the expected utility of each action. (c) Moving the uncertainty

from the utility function into a new random variable.

uvwxyw
U = ? U = 0

act z{}~�� z��� off

U = 0

U = 0U = ?

wait

z{}~�� �obot off

z{}~�� z��� offact wait

�� �����

+60–40

R

H

R

Figure 16.11 The off-switch game. R, the robot, can choose to act now, with a highly

uncertain payoff; to switch itself off; or to defer to H , the human. H can switch R off or let

it go ahead. R now has the same choice again. Acting still has an uncertain payoff, but now

R knows the payoff is nonnegative.

CHAPTER 17
MAKING COMPLEX DECISIONS

Figure 17.1 (a) A simple, stochastic 4× 3 environment that presents the agent with a se-

quential decision problem. (b) Illustration of the transition model of the environment: the

“intended” outcome occurs with probability 0.8, but with probability 0.2 the agent moves

at right angles to the intended direction. A collision with a wall results in no movement.

Transitions into the two terminal states have reward +1 and –1, respectively, and all other

transitions have a reward of –0.04.

127

Figure 17.2 (a) The optimal policies for the stochastic environment with r= − 0.04 for

transitions between nonterminal states. There are two policies because in state (3,1) both

Left and Up are optimal. (b) Optimal policies for four different ranges of r.

0.8516 0.9078 0.9578

0.8016 0.7003

0.7453 0.6953 0.6514 0.4279

Figure 17.3 The utilities of the states in the 4× 3 world with γ=1 and r= − 0.04 for

transitions to nonterminal states.

128 Chapter 17 Making Complex Decisions

Plug/Unplugt

LeftWheelt

RightWheelt

Chargingt

Batteryt

Ẋt

Xt

Rt

Plug/Unplugt+1

LeftWheelt+1

RightWheelt+1

Chargingt+1

Batteryt+1

Ẋt+1

Xt+1

Rt+1

Ut+2

Chargingt+2

Batteryt+2

Ẋt+2

Xt+2

Figure 17.4 A dynamic decision network for a mobile robot with state variables for battery

level, charging status, location, and velocity, and action variables for the left and right wheel

motors and for charging.

129

At

NextPiecet

CurrentPiecet

Rt

Filledt

At+1

NextPiecet+1

CurrentPiecet+1

Rt+1

Filledt+1

(a) (b)

Next

Figure 17.5 (a) The game of Tetris. The T-shaped piece at the top center can be dropped

in any orientation and in any horizontal position. If a row is completed, that row disappears

and the rows above it move down, and the agent receives one point. The next piece (here, the

L-shaped piece at top right) becomes the current piece, and a new next piece appears, chosen

at random from the seven piece types. The game ends if the board fills up to the top. (b) The

DDN for the Tetris MDP.

function VALUE-ITERATION(mdp, ǫ) returns a utility function

inputs: mdp, an MDP with states S , actions A(s), transition model P (s′ | s, a),
rewards R(s, a, s′), discount γ

ǫ, the maximum error allowed in the utility of any state

local variables: U , U ′, vectors of utilities for states in S , initially zero

δ, the maximum relative change in the utility of any state

repeat

U ←U ′; δ← 0

for each state s in S do

U ′[s]←maxa∈A(s) Q-VALUE(mdp, s , a,U)
if |U ′[s] − U [s]| > δ then δ←|U ′[s] − U [s]|

until δ ≤ ǫ(1− γ)/γ
return U

Figure 17.6 The value iteration algorithm for calculating utilities of states. The termination

condition is from Equation (??).

130 Chapter 17 Making Complex Decisions

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40

(1,1)
(1,3)

(3,1)

(3,3)

(4,1)

U
til

ity
 e

st
im

at
es

Number of iterations

 1

 10

 100

 1000

 10000

 100000

 1x106

 1x107

 0.5 0.6 0.7 0.8 0.9 1

Ite
ra

tio
ns

 r
eq

ui
re

d

Discount factor γ

c = 0.0001
c = 0.001
c = 0.01
c = 0.1

(a) (b)

Figure 17.7 (a) Graph showing the evolution of the utilities of selected states using value

iteration. (b) The number of value iterations required to guarantee an error of at most ǫ= c ·
Rmax, for different values of c, as a function of the discount factor γ.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14

M
ax

 e
rr

or
/P

ol
ic

y
lo

ss

Number of iterations

Max error
Policy loss

Figure 17.8 The maximum error ‖Ui−U‖ of the utility estimates and the policy loss ‖Uπi−
U‖, as a function of the number of iterations of value iteration on the 4× 3 world.

131

function POLICY-ITERATION(mdp) returns a policy

inputs: mdp, an MDP with states S , actions A(s), transition model P (s′ | s, a)
local variables: U , a vector of utilities for states in S , initially zero

π, a policy vector indexed by state, initially random

repeat

U ← POLICY-EVALUATION(π,U ,mdp)

unchanged?← true

for each state s in S do

a∗← argmax
a∈A(s)

Q-VALUE(mdp, s , a,U)

if Q-VALUE(mdp, s ,a∗,U) > Q-VALUE(mdp, s , π[s],U) then

π[s]← a∗; unchanged?← false

until unchanged?
return π

Figure 17.9 The policy iteration algorithm for calculating an optimal policy.

���� ��

0.1 0.10.8 0.1 0.10.8 0.1 0.10.8

3,2

��� ������

�� Right Down Left

3,2 3,3 4,2 3,3 4,2 3,1 4,2 3,1 3,2 3,1 3,2 3,3

Figure 17.10 Part of an expectimax tree for the 4× 3 MDP rooted at (3,2). The triangular

nodes are max modes and the circular nodes are chance nodes.

132 Chapter 17 Making Complex Decisions

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 20 40 60 80 100 120 140 160

A
ve

ra
ge

 to
ta

l r
ew

ar
d

Number of playouts

Figure 17.11 Performance of UCT as a function of the number of playouts per move for the

4× 3 world using a random playout policy, averaged over 1000 runs per data point.

0, 2, 0, 7.2, 0, 0, 0, …

1, 1, 1, 1, 1, 1, 1, …

M

M1

R0� R1� R2� R3� R4� �

�� �� �� �� �� �� �� �

M

M�

(a) (b)

Figure 17.12 (a) A simple deterministic bandit problem with two arms. The arms can be

pulled in any order, and each yields the sequence of rewards shown. (b) A more general case

of the bandit in (a), where the first arm gives an arbitrary sequence of rewards and the second

arm gives a fixed reward λ.

�

�

�

�

�

�

�

�

�

�

�

�

0 2 0 ��� 0
0

0 2 0 ��� 0
0

0

0000

(a) (b)

Figure 17.13 (a) The reward sequence M =0, 2, 0, 7.2, 0, 0, 0, . . . augmented with a choice

to switch permanently to a constant arm Mλ at each point. (b) An MDP whose optimal value

is exactly equivalent to the optimal value for (a), at the point where the optimal policy is

indifferent between M and Mλ.

133

����

�¡��

�¢��

�£�� �¢�¡

���¡

�¡�¡ ���¢

�¡�¢ ���£

R=1
p=1/2

R=0
p=1/2

R=1
p=¤¥¦

R=1
p=¦¥§

R=0
p=¤¥¦

R=0
p=¦¥§

0
¨¥¦

1
¨¥¦

0
¨¥§

1
¨¥§

1
¤¥§

0
¤¥§

 0
 2

 4
 6

 8
 10

s 0
 2

 4
 6

 8
 10

f

 0
 0.2
 0.4
 0.6
 0.8

 1

Gittins index

(a) (b)

Figure 17.14 (a) States, rewards, and transition probabilities for the Bernoulli bandit. (b)

Gittins indices for the states of the Bernoulli bandit process.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.2 0.4 0.6 0.8 1

[Stay]

[Go]U
til

ity

Probability of state B

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.2 0.4 0.6 0.8 1

U
til

ity

Probability of state B

(a) (b)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.2 0.4 0.6 0.8 1

U
til

ity

Probability of state B

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 0 0.2 0.4 0.6 0.8 1

U
til

ity

Probability of state B

(c) (d)

Figure 17.15 (a) Utility of two one-step plans as a function of the initial belief state b(B) for

the two-state world, with the corresponding utility function shown in bold. (b) Utilities for 8

distinct two-step plans. (c) Utilities for four undominated two-step plans. (d) Utility function

for optimal eight-step plans.

134 Chapter 17 Making Complex Decisions

function POMDP-VALUE-ITERATION(pomdp, ǫ) returns a utility function

inputs: pomdp , a POMDP with states S , actions A(s), transition model P (s′ | s, a),
sensor model P (e | s), rewards R(s), discount γ

ǫ, the maximum error allowed in the utility of any state

local variables: U , U ′, sets of plans p with associated utility vectors αp

U ′← a set containing just the empty plan [], with α[](s)= R(s)
repeat

U ←U ′

U ′← the set of all plans consisting of an action and, for each possible next percept,

a plan in U with utility vectors computed according to Equation (??)

U ′←REMOVE-DOMINATED-PLANS(U ′)

until MAX-DIFFERENCE(U ,U ′) ≤ ǫ(1− γ)/γ
return U

Figure 17.16 A high-level sketch of the value iteration algorithm for POMDPs. The

REMOVE-DOMINATED-PLANS step and MAX-DIFFERENCE test are typically implemented

as linear programs.

©ª Right Down Left

01101100 0110 1100 1010

Figure 17.17 Part of an expectimax tree for the 4× 3 POMDP with a uniform initial belief

state. The belief states are depicted with shading proportional to the probability of being in

each location.

135

Left Left «¬ Right Right Right

0011 0001 1111 1000 1010 1001

Figure 17.18 A sequence of percepts, belief states, and actions in the 4× 3 POMDP with

a wall-sensing error of ǫ=0.2. Notice how the early Left moves are safe—they are very

unlikely to fall into (4, 2)—and coerce the agent’s location into a small number of possible

locations. After moving Up, the agent thinks it is probably in (3, 3), but possibly in (1, 3).
Fortunately, moving Right is a good idea in both cases, so it moves Right , finds out that it

had been in (1, 3) and is now in (2, 3), and then continues moving Right and reaches the

goal.

CHAPTER 18
MULTIAGENT DECISION MAKING

Actors(A,B)
Init(At(A,LeftBaseline) ∧ At(B,RightNet) ∧

Approaching(Ball ,RightBaseline) ∧ Partner(A,B) ∧ Partner(B,A)
Goal (Returned(Ball) ∧ (At(x ,RightNet) ∨ At(x,LeftNet))
Action(Hit(actor ,Ball),

PRECOND:Approaching(Ball , loc) ∧ At(actor , loc)
EFFECT:Returned(Ball))

Action(Go(actor , to),
PRECOND:At(actor , loc) ∧ to 6= loc,
EFFECT:At(actor , to) ∧ ¬ At(actor , loc))

Figure 18.1 The doubles tennis problem. Two actors, A and B, are playing together and can

be in one of four locations: LeftBaseline , RightBaseline , LeftNet , and RightNet . The ball

can be returned only if a player is in the right place. The NoOp action is a dummy, which

has no effect. Note that each action must include the actor as an argument.

137

one

oneone

two

twotwo

E

­

one

oneone

two

twotwo

­

®

one two

®

­

one two

­

®

¯°

¯±

+2

+1

 0

–1

–2

²±

1

two

one

³

p

¯°

¯±

+2

+1

 0

–1

–2

²±

1

´µ¶

one

³

·

(a) (b)

(c) (d)

(e) ¸¹º

[p» one¼ ½¾ ¿ ÀÁ» twoÂ Ã·» ¶ÄÅ¼ ½¾ ¿ ·Á» twoÂ

2À ¿ 3(1 ¿ À 2) · ¿ 3(1 ¿ ·)3À + 4(1 ¿ À 3) · + 4(1 ¿ ·)

2 ÆÇ

ÆÇ

ÆÇ

ÆÇ

ÆÇ

4 2

2

2

ÆÇ ÆÇ 4

4

Figure 18.2 (a) and (b): Minimax game trees for two-finger Morra if the players take turns

playing pure strategies. (c) and (d): Parameterized game trees where the first player plays

a mixed strategy. The payoffs depend on the probability parameter (p or q) in the mixed

strategy. (e) and (f): For any particular value of the probability parameter, the second player

will choose the “better” of the two actions, so the value of the first player’s mixed strategy is

given by the heavy lines. The first player will choose the probability parameter for the mixed

strategy at the intersection point.

138 Chapter 18 Multiagent Decision Making

testify

testify

testify

testify

testify

testify

testify

testify

testify

testify

testify

testify

refuseHAWK

GRIM

TAT-FOR-TIT

TIT-FOR-TAT

DOVE refuse

refuse

refuse

refuse

refuse

refuse

refuse

refuse refuse

refuse

refuse

Figure 18.3 Some common, colorfully named finite-state machine strategies for the in-

finitely repeated prisoner’s dilemma.

1,1

ÈÉ

above down

below

0,0

0,0

1

2

Figure 18.4 An extensive-form game with a counterintuitive Nash equilibrium.

139

0

0,0!

+1,-1!

0,0!

-1,+1!

1/6: AA

r

k

r

k

r

k

r

k

+1,-1!

+1,-1!

+1,-1!

+1,-1!

0,0!

+2,-2!

0,0!

-2,+2!

c

f

c

f

c

f

c

f

1/3: KA

1/3: AK

1/6: KK

I1,1

I1,2 I2,1

I2,2

I2,1

1

1

1

1

2

2

2

2

Figure 18.5 Extensive form of a simplified version of poker with two players and only four

cards. The moves are r (raise), f (fold), c (call), and k (check).

Ê

R R R

[2,0] [1,1] [0,2]

[90,0]

[50,50]

[0,90]

ËÌÍÎÌ ËÏÍÌÌ ËÏÍÏÌ

Figure 18.6 The paperclip game. Each branch is labeled [p, s] denoting the number of pa-

perclips and staples manufactured on that branch. Harriet the human can choose to make two

paperclips, two staples, or one of each. (The values in green italics are the values for Harriet

if the game ended there, assuming θ=0.45.) Robbie the robot then has a choice to make 90

paperclips, 90 staples, or 50 of each.

{1}, {2}, {3}, {4}

{1}, {2}, {3, 4}

{1}, {2, 3, 4} {1, 2}, {3, 4} {2}, {1, 3, 4} {1, 3}, {2, 4}

{1, 2, 3, 4}

{3},{1, 2, 4} {1, 4},{ 2, 3} {4},{1, 2, 3}

{1, 2}, {3}, {4} {1}, {3}, {2, 4} {2}, {4}, {1, 3} {2}, {3}, {1, 4}

level 1

level 2

level 3

level 4

{1}, {4}, {2, 3}

Figure 18.7 The coalition structure graph for N = {1, 2, 3, 4}. Level 1 has coalition struc-

tures containing a single coalition; level 2 has coalition structures containing two coalitions,

and so on.

140 Chapter 18 Multiagent Decision Making

I have a
problem...

problem recognition
task
announcement

biddingawarding

Figure 18.8 The contract net task allocation protocol.

CHAPTER 19
LEARNING FROM EXAMPLES

Da
ta

 se
t 1

Linear Sinusoidal Piecewise linear Degree-12 polynomial

Da
ta

 se
t 2

Figure 19.1 Finding hypotheses to fit data. Top row: four plots of best-fit functions from

four different hypothesis spaces trained on data set 1. Bottom row: the same four functions,

but trained on a slightly different data set (sampled from the same f(x) function).

142 Chapter 19 Learning from Examples

Example
Input Attributes Output

Alt Bar Fri Hun Pat Price Rain Res Type Est WillWait

x1 Yes No No Yes Some $$$ No Yes French 0–10 y1 = Yes

x2 Yes No No Yes Full $ No No Thai 30–60 y2 = No

x3 No Yes No No Some $ No No Burger 0–10 y3 = Yes

x4 Yes No Yes Yes Full $ Yes No Thai 10–30 y4 = Yes

x5 Yes No Yes No Full $$$ No Yes French >60 y5 = No

x6 No Yes No Yes Some $$ Yes Yes Italian 0–10 y6 = Yes

x7 No Yes No No None $ Yes No Burger 0–10 y7 = No

x8 No No No Yes Some $$ Yes Yes Thai 0–10 y8 = Yes

x9 No Yes Yes No Full $ Yes No Burger >60 y9 = No

x10 Yes Yes Yes Yes Full $$$ No Yes Italian 10–30 y10 = No

x11 No No No No None $ No No Thai 0–10 y11 = No

x12 Yes Yes Yes Yes Full $ No No Burger 30–60 y12 = Yes

Figure 19.2 Examples for the restaurant domain.

No Yes

No Yes

No Yes

No Yes

None Some Full

>60 30-60 10-30 0-10

No Yes

Alternate?

Hungry?

Reservation?

Bar? Raining?

Alternate?

Patrons?

Fri/Sat?

No Yes

No Yes

Yes

Yes

No Yes

No Yes

YesNoYes

No Yes

YesNo

WaitEstimate?

Figure 19.3 A decision tree for deciding whether to wait for a table.

143

(a)

None Some Full

Patrons?

YesNo Hungry?

(b)

No Yes

121 3 4 6 8

2 5 7 9 10 11

French Italian Thai Burger

Type?

121 3 4 6 8

2 5 7 9 10 11

1

5

6

10

4 8

2 11

123

7 9 7 11

1 3 6 8 124

2 5 9 10

124

2 105 9

Figure 19.4 Splitting the examples by testing on attributes. At each node we show the

positive (light boxes) and negative (dark boxes) examples remaining. (a) Splitting on Type

brings us no nearer to distinguishing between positive and negative examples. (b) Splitting

on Patrons does a good job of separating positive and negative examples. After splitting on

Patrons, Hungry is a fairly good second test.

function LEARN-DECISION-TREE(examples ,attributes ,parent examples) returns a tree

if examples is empty then return PLURALITY-VALUE(parent examples)

else if all examples have the same classification then return the classification

else if attributes is empty then return PLURALITY-VALUE(examples)

else

A← argmaxa ∈ attributes IMPORTANCE(a, examples)
tree← a new decision tree with root test A

for each value v of A do

exs←{e : e∈ examples and e.A = v}
subtree← LEARN-DECISION-TREE(exs,attributes −A, examples)

add a branch to tree with label (A = v) and subtree subtree

return tree

Figure 19.5 The decision tree learning algorithm. The function IMPORTANCE is described in

Section ??. The function PLURALITY-VALUE selects the most common output value among

a set of examples, breaking ties randomly.

144 Chapter 19 Learning from Examples

None Some Full

Patrons?

No Yes

No Yes

Hungry?

No

No Yes

Fri/Sat?

YesNo

Yes

Type?

French Italian Thai Burger

Yes No

Figure 19.6 The decision tree induced from the 12-example training set.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

P
ro

po
rt

io
n

co
rr

ec
t o

n
te

st
 s

et

Training set size

Figure 19.7 A learning curve for the decision tree learning algorithm on 100 randomly gen-

erated examples in the restaurant domain. Each data point is the average of 20 trials.

145

function MODEL-SELECTION(Learner , examples , k) returns a (hypothesis, error rate) pair

err← an array, indexed by size, storing validation-set error rates

training set , test set← a partition of examples into two sets

for size = 1 to∞ do

err [size]←CROSS-VALIDATION(Learner , size, training set , k)

if err is starting to increase significantly then

best size← the value of size with minimum err [size]

h←Learner (best size, training set)

return h, ERROR-RATE(h, test set)

function CROSS-VALIDATION(Learner , size , examples , k) returns error rate

N ← the number of examples

errs← 0

for i = 1 to k do

validation set← examples[(i − 1) × N/k:i × N/k]

training set← examples − validation set

h←Learner (size, training set)

errs← errs + ERROR-RATE(h, validation set)

return errs / k // average error rate on validation sets, across k-fold cross-validation

Figure 19.8 An algorithm to select the model that has the lowest validation error. It builds

models of increasing complexity, and choosing the one with best empirical error rate, err ,

on the validation data set. Learner(size, examples) returns a hypothesis whose complexity

is set by the parameter size , and which is trained on examples . In CROSS-VALIDATION,

each iteration of the for loop selects a different slice of the examples as the validation set,

and keeps the other examples as the training set. It then returns the average validation set

error over all the folds. Once we have determined which value of the size parameter is best,

MODEL-SELECTION returns the model (i.e., learner/hypothesis) of that size, trained on all

the training examples, along with its error rate on the held-out test examples.

146 Chapter 19 Learning from Examples

 0

 10

 20

 30

 40

 50

 60

 1 2 3 4 5 6 7 8 9 10

E
rr

or
 r

at
e

(%
)

Tree size in nodes

Validation Set Error
Training Set Error

 0

 10

 20

 30

 40

 50

 60

 10 100 1000

E
rr

or
 r

at
e

(%
)

Thousands of parameters

Validation Set Error
Training Set Error

(a) (b)

Figure 19.9 Error rates on training data (lower, green line) and validation data (upper, orange

line) for models of different complexity on two different problems. MODEL-SELECTION

picks the hyperparameter value with the lowest validation-set error. In (a) the model class is

decision trees and the hyperparameter is the number of nodes. The data is from a version of

the restaurant problem. The optimal size is 7. In (b) the model class is convolutional neural

networks (see Section ??) and the hyperparameter is the number of regular parameters in the

network. The data is the MNIST data set of images of digits; the task is to identify each digit.

The optimal number of parameters is 1,000,000 (note the log scale).

Patrons(x, Some)
No

Yes Yes

No
Patrons(x, Full) Fri/Sat(x)

Yes

No

Yes

^

Figure 19.10 A decision list for the restaurant problem.

function DECISION-LIST-LEARNING(examples) returns a decision list, or failure

if examples is empty then return the trivial decision list No

t← a test that matches a nonempty subset examplest of examples

such that the members of examples t are all positive or all negative

if there is no such t then return failure

if the examples in examples t are positive then o←Yes else o←No

return a decision list with initial test t and outcome o and remaining tests given by

DECISION-LIST-LEARNING(examples − examples t)

Figure 19.11 An algorithm for learning decision lists.

147

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

P
ro

po
rt

io
n

co
rr

ec
t o

n
te

st
 s

et

Training set size

Decision tree
Decision list

Figure 19.12 Learning curve for DECISION-LIST-LEARNING algorithm on the restaurant

data. The curve for LEARN-DECISION-TREE is shown for comparison; decision trees do

slightly better on this particular problem.

 300

 400

 500

 600

 700

 800

 900

 1000

 500 1000 1500 2000 2500 3000 3500

H
ou

se
 p

ric
e

in
 $

10
00

House size in square feet

w0

w1

Loss

(a) (b)

Figure 19.13 (a) Data points of price versus floor space of houses for sale in Berkeley, CA,

in July 2009, along with the linear function hypothesis that minimizes squared-error loss:

y = 0.232x+ 246. (b) Plot of the loss function
∑

j(yj −w1xj +w0)
2 for various values of

w0, w1. Note that the loss function is convex, with a single global minimum.

148 Chapter 19 Learning from Examples

w
1

w
2

w*

w
1

w
2

w*

Figure 19.14 Why L1 regularization tends to produce a sparse model. Left: With L1 regu-

larization (box), the minimal achievable loss (concentric contours) often occurs on an axis,

meaning a weight of zero. Right: With L2 regularization (circle), the minimal loss is likely

to occur anywhere on the circle, giving no preference to zero weights.

 2.5
 3

 3.5
 4

 4.5
 5

 5.5
 6

 6.5
 7

 7.5

 4.5 5 5.5 6 6.5 7

x 2

x1

 2.5
 3

 3.5
 4

 4.5
 5

 5.5
 6

 6.5
 7

 7.5

 4.5 5 5.5 6 6.5 7

x 2

x1

(a) (b)

Figure 19.15 (a) Plot of two seismic data parameters, body wave magnitude x1 and surface

wave magnitude x2, for earthquakes (open orange circles) and nuclear explosions (green

circles) occurring between 1982 and 1990 in Asia and the Middle East (?). Also shown is

a decision boundary between the classes. (b) The same domain with more data points. The

earthquakes and explosions are no longer linearly separable.

149

 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 100 200 300 400 500 600 700

P
ro

po
rt

io
n

co
rr

ec
t

Number of weight updates

 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 25000 50000 75000
P

ro
po

rt
io

n
co

rr
ec

t

Number of weight updates

 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 25000 50000 75000

P
ro

po
rt

io
n

co
rr

ec
t

Number of weight updates

(a) (b) (c)

Figure 19.16 (a) Plot of total training-set accuracy vs. number of iterations through the train-

ing set for the perceptron learning rule, given the earthquake/explosion data in Figure ??(a).

(b) The same plot for the noisy, nonseparable data in Figure ??(b); note the change in scale of

the x-axis. (c) The same plot as in (b), with a learning rate schedule α(t)= 1000/(1000+ t).

 0

 0.5

 1

-6 -4 -2 0 2 4 6
 0

 0.5

 1

-6 -4 -2 0 2 4 6

-2 0 2 4 6

-4-2 0 2 4 6 8 10

 0
 0.2
 0.4
 0.6
 0.8

 1

x1

x2

(a) (b) (c)

Figure 19.17 (a) The hard threshold function Threshold (z) with 0/1 output. Note that

the function is nondifferentiable at z=0. (b) The logistic function, Logistic(z) =
1

1+e−z , also known as the sigmoid function. (c) Plot of a logistic regression hypothesis

hw(x)=Logistic(w · x) for the data shown in Figure ??(b).

150 Chapter 19 Learning from Examples

 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 1000 2000 3000 4000

P
ro

po
rt

io
n

co
rr

ec
t

Number of weight updates

 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 25000 50000 75000

P
ro

po
rt

io
n

co
rr

ec
t

Number of weight updates

 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 25000 50000 75000

P
ro

po
rt

io
n

co
rr

ec
t

Number of weight updates

(a) (b) (c)

Figure 19.18 Repeat of the experiments in Figure ?? using logistic regression. The plot in

(a) covers 5000 iterations rather than 700, while the plots in (b) and (c) use the same scale as

before.

2.5

3

ÐÑÒ
4

ÓÑÒ
5

5.5

6

ÔÑÒ
7

ÕÑÒ

ÓÑÒ 5 ÒÑÒ 6 ÔÑÒ 7

x1

x 2

2.5

3

Ö×Ø
4

Ù×Ø
5

5.5

6

Ú×Ø
7

Û×Ø

Ù×Ø 5 Ø×Ø 6 Ú×Ø 7

x1

x 2

(k=1) (k=5)

Figure 19.19 (a) A k-nearest-neighbors model showing the extent of the explosion class for

the data in Figure ??, with k=1. Overfitting is apparent. (b) With k=5, the overfitting

problem goes away for this data set.

151

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 2 4 6 8 10 12 14
 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 2 4 6 8 10 12 14

(a) (b)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 2 4 6 8 10 12 14
 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 2 4 6 8 10 12 14

(c) (d)

Figure 19.20 Nonparametric regression models: (a) connect the dots, (b) 3-nearest neigh-

bors average, (c) 3-nearest-neighbors linear regression, (d) locally weighted regression with

a quadratic kernel of width 10.

152 Chapter 19 Learning from Examples

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

(a) (b)

Figure 19.21 Support vector machine classification: (a) Two classes of points (orange open

and green filled circles) and three candidate linear separators. (b) The maximum margin

separator (heavy line), is at the midpoint of the margin (area between dashed lines). The

support vectors (points with large black circles) are the examples closest to the separator;

here there are three.

153

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5 0 0.5 1 1.5

x 2

x1

 0
 0.5

 1
 1.5

 2
 2.5 0

 0.5

 1

 1.5

 2

 2.5

-3
-2
-1
 0
 1
 2
 3

x1
2

x2
2

√2x1x2

(a) (b)

Figure 19.22 (a) A two-dimensional training set with positive examples as green filled cir-

cles and negative examples as orange open circles. The true decision boundary, x2
1 +x2

2 ≤ 1,

is also shown. (b) The same data after mapping into a three-dimensional input space

(x2
1, x

2
2,
√
2x1x2). The circular decision boundary in (a) becomes a linear decision boundary

in three dimensions. Figure ??(b) gives a closeup of the separator in (b).

+
+

+
+

+
+++++

+
+

+
+

–––

–
–

–
–

–

–

–

–
–

–
–

–

–
–

– – –
–

–
–

–
–

– –

–
–

–

–

–

–
– –

–

–
– –

–

–

Figure 19.23 Illustration of the increased expressive power obtained by ensemble learning.

We take three linear threshold hypotheses, each of which classifies positively on the unshaded

side, and classify as positive any example classified positively by all three. The resulting

triangular region is a hypothesis not expressible in the original hypothesis space.

154 Chapter 19 Learning from Examples

h

h1 = h2 = h3 = h4 =

Figure 19.24 How the boosting algorithm works. Each shaded rectangle corresponds to

an example; the height of the rectangle corresponds to the weight. The checks and crosses

indicate whether the example was classified correctly by the current hypothesis. The size of

the decision tree indicates the weight of that hypothesis in the final ensemble.

155

function ADABOOST(examples ,L,K) returns a hypothesis

inputs: examples , set of N labeled examples (x1, y1), . . . , (xN , yN)
L, a learning algorithm

K , the number of hypotheses in the ensemble

local variables: w, a vector of N example weights, initially all 1/N
h, a vector of K hypotheses

z, a vector of K hypothesis weights

ǫ← a small positive number, used to avoid division by zero

for k = 1 to K do

h[k]←L(examples , w)

error← 0

for j = 1 to N do // Compute the total error for h[k]
if h[k](xj) 6= yj then error← error + w[j]

if error > 1/2 then break from loop

error←min(error , 1 − ǫ)
for j = 1 to N do // Give more weight to the examples h[k] got wrong

if h[k](xj) = yj then w[j]←w[j] · error/(1− error)
w←NORMALIZE(w)

z[k]← 1
2 log ((1 − error)/error) // Give more weight to accurate h[k]

return Function(x) :
∑

zi hi(x)

Figure 19.25 The ADABOOST variant of the boosting method for ensemble learning. The

algorithm generates hypotheses by successively reweighting the training examples. The func-

tion WEIGHTED-MAJORITY generates a hypothesis that returns the output value with the

highest vote from the hypotheses in h, with votes weighted by z. For regression problems, or

for binary classification with two classes -1 and 1, this is
∑

k h[k]z[k].

156 Chapter 19 Learning from Examples

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

P
ro

po
rt

io
n

co
rr

ec
t o

n
te

st
 s

et

Training set size

Boosted decision stumps
Decision stump

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 50 100 150 200

T
ra

in
in

g/
te

st
 a

cc
ur

ac
y

Number of hypotheses K

Training accuracy
Test accuracy

(a) (b)

Figure 19.26 (a) Graph showing the performance of boosted decision stumps with K =5
versus unboosted decision stumps on the restaurant data. (b) The proportion correct on the

training set and the test set as a function of K , the number of hypotheses in the ensemble.

Notice that the test set accuracy improves slightly even after the training accuracy reaches 1,

i.e., after the ensemble fits the data exactly.

157

Figure 19.27 A two-dimensional t-SNE map of the MNIST data set, a collection of 60,000

images of handwritten digits, each 28× 28 pixels and thus 784 dimensions. You can clearly

see clusters for the ten digits, with a few confusions in each cluster; for example the top

cluster is for the digit 0, but within the bounds of the cluster are a few data points representing

the digits 3 and 6. The t-SNE algorithm finds a representation that accentuates the differences

between clusters.

158 Chapter 19 Learning from Examples

Tests for Features and Data

(1) Feature expectations are captured in a schema. (2) All features are beneficial. (3) No fea-

ture’s cost is too much. (4) Features adhere to meta-level requirements. (5) The data pipeline

has appropriate privacy controls. (6) New features can be added quickly. (7) All input feature

code is tested.

Tests for Model Development

(1) Every model specification undergoes a code review. (2) Every model is checked in to a

repository. (3) Offline proxy metrics correlate with actual metrics (4) All hyperparameters

have been tuned. (5) The impact of model staleness is known. (6) A simpler model is not

better. (7) Model quality is sufficient on all important data slices. The model has been tested

for considerations of inclusion.

Tests for Machine Learning Infrastructure

(1) Training is reproducible. (2) Model specification code is unit tested. (3) The full ML

pipeline is integration tested. (4) Model quality is validated before attempting to serve it.

(5) The model allows debugging by observing the step-by-step computation of training or

inference on a single example. (6) Models are tested via a canary process before they enter

production serving environments. (7) Models can be quickly and safely rolled back to a pre-

vious serving version.

Monitoring Tests for Machine Learning

(1) Dependency changes result in notification. (2) Data invariants hold in training and serv-

ing inputs. (3) Training and serving features compute the same values. (4) Models are not

too stale. (5) The model is numerically stable. (6) The model has not experienced regres-

sions in training speed, serving latency, throughput, or RAM usage. (7) The model has not

experienced a regression in prediction quality on served data.

Figure 19.28 A set of criteria to see how well you are doing at deploying your machine

learning model with sufficient tests. Abridged from ? (?), who also provide a scoring metric.

CHAPTER 20
LEARNING PROBABILISTIC MODELS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

P
os

te
rio

r
pr

ob
ab

ili
ty

 o
f h

yp
ot

he
si

s

Number of observations in d

P(h1 | d)
P(h2 | d)
P(h3 | d)
P(h4 | d)
P(h5 | d)

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10

P
ro

ba
bi

lit
y

th
at

 n
ex

t c
an

dy
 is

 li
m

e

Number of observations in d

(a) (b)

Figure 20.1 (a) Posterior probabilities P (hi | d1, . . . , dN) from Equation (??). The number

of observations N ranges from 1 to 10, and each observation is of a lime candy. (b) Bayesian

prediction P (DN+1 = lime | d1, . . . , dN) from Equation (??).

Flavor

P(ÜÝÞßàááâ)

(a)

ã(ÜÝÞßàááâ)

äåæçèé

(b)

Ü

Þßàááâ

lime

ã(êÝred ë Üì

íéæîîïé

ð

ð

ð1

ðñ

Figure 20.2 (a) Bayesian network model for the case of candies with an unknown proportion

of cherry and lime. (b) Model for the case where the wrapper color depends (probabilisti-

cally) on the candy flavor.

160 Chapter 20 Learning Probabilistic Models

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

P
ro

po
rt

io
n

co
rr

ec
t o

n
te

st
 s

et

Training set size

Decision tree
Naive Bayes

Figure 20.3 The learning curve for naive Bayes learning applied to the restaurant problem

from Chapter ??; the learning curve for decision tree learning is shown for comparison.

 0 0.2 0.4 0.6 0.8 1 0
 0.2

 0.4
 0.6

 0.8
 1

 0

 1

 2

 3

 4

x

y

P(y|x)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

y

x

(a) (b)

Figure 20.4 (a) A linear–Gaussian model described as y= θ1x+θ2 plus Gaussian noise with

fixed variance. (b) A set of 50 data points generated from this model and the best-fit line.

161

 0

 0.5

 1

 1.5

 2

 2.5

 0 0.2 0.4 0.6 0.8 1

[1,1]

[2,2]

[5,5]

P
(Θ

 =
 θ

)

Parameter θ

 0

 1

 2

 3

 4

 5

 6

 0 0.2 0.4 0.6 0.8 1

[3,1]

[6,2]

[30,10]

P
(Θ

 =
 θ

)

Parameter θ

(a) (b)

Figure 20.5 Examples of the Beta(a, b) distribution for different values of (a, b).

Θ

Θ1 Θ2

Flavor1 Flavor2 Flavor3

Wrapper1 Wrapper2 Wrapper3

Figure 20.6 A Bayesian network that corresponds to a Bayesian learning process. Posterior

distributions for the parameter variables Θ, Θ1, and Θ2 can be inferred from their prior

distributions and the evidence in Flavor i and Wrapper i.

162 Chapter 20 Learning Probabilistic Models

-6

-4

-2

 0

 2

 4

 6

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

y

x

-6

-4

-2

 0

 2

 4

 6

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

y

x

(a) (b)

Figure 20.7 Bayesian linear regression with a model constrained to pass through the origin

and fixed noise variance σ2 =0.2. Contours at ±1, ±2, and ±3 standard deviations are

shown for the predictive density. (a) With three data points near the origin, the slope is quite

uncertain, with σ2
N ≈ 0.3861. Notice how the uncertainty increases with distance from the

observed data points. (b) With two additional data points further away, the slope θ is very

tightly constrained, with σ2
N ≈ 0.0286. The remaining variance in the predictive density is

almost entirely due to the fixed noise σ2.

 0
 0.2

 0.4
 0.6

 0.8
 1 0

 0.2
 0.4

 0.6
 0.8

 1

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
Density

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1
(a) (b)

Figure 20.8 (a) A 3D plot of the mixture of Gaussians from Figure ??(a). (b) A 128-point

sample of points from the mixture, together with two query points (small orange squares) and

their 10-nearest-neighborhoods (large circle and smaller circle to the right).

163

 0 0.2 0.4 0.6 0.8 1 0
 0.2

 0.4
 0.6

 0.8
 1

Density

 0 0.2 0.4 0.6 0.8 1 0
 0.2

 0.4
 0.6

 0.8
 1

Density

 0 0.2 0.4 0.6 0.8 1 0
 0.2

 0.4
 0.6

 0.8
 1

Density

(a) (b) (c)

Figure 20.9 Density estimation using k-nearest-neighbors, applied to the data in Fig-

ure ??(b), for k=3, 10, and 40 respectively. k = 3 is too spiky, 40 is too smooth, and

10 is just about right. The best value for k can be chosen by cross-validation.

 0 0.2 0.4 0.6 0.8 1 0
 0.2

 0.4
 0.6

 0.8
 1

Density

 0 0.2 0.4 0.6 0.8 1 0
 0.2

 0.4
 0.6

 0.8
 1

Density

 0 0.2 0.4 0.6 0.8 1 0
 0.2

 0.4
 0.6

 0.8
 1

Density

(a) (b) (c)

Figure 20.10 Density estimation using kernels for the data in Figure ??(b), using Gaussian

kernels with w=0.02, 0.07, and 0.20 respectively. w=0.07 is about right.

Symptom1 Symptom2 Symptom3

(a) (b)

òóôõö÷øùóôùó

Symptom1 Symptom2 Symptom3

54

6 6 6 54 162 486

Smoking Diet Exercise
2 2 2

Smoking Diet Exercise
2 2 2

Figure 20.11 (a) A simple diagnostic network for heart disease, which is assumed to be

a hidden variable. Each variable has three possible values and is labeled with the number

of independent parameters in its conditional distribution; the total number is 78. (b) The

equivalent network with HeartDisease removed. Note that the symptom variables are no

longer conditionally independent given their parents. This network requires 708 parameters.

164 Chapter 20 Learning Probabilistic Models

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

(a) (b) (c)

Figure 20.12 (a) A Gaussian mixture model with three components; the weights (left-to-

right) are 0.2, 0.3, and 0.5. (b) 500 data points sampled from the model in (a). (c) The model

reconstructed by EM from the data in (b).

-200
-100

 0
 100
 200
 300
 400
 500
 600
 700

 0 5 10 15 20

Lo
g-

lik
el

ih
oo

d
L

Iteration number

-2020

-2010

-2000

-1990

-1980

 0 20 40 60 80 100 120

Lo
g-

lik
el

ih
oo

d
L

Iteration number

(a) (b)

Figure 20.13 Graphs showing the log likelihood of the data, L, as a function of the EM

iteration. The horizontal line shows the log likelihood according to the true model. (a)

Graph for the Gaussian mixture model in Figure ??. (b) Graph for the Bayesian network in

Figure ??(a).

165

(a) (b)

C

úHole

Bag

P(ûüýþ1)

WrapperFlavor

Bag

1

2

P(ÿþc����� | B)

�F1

�

�F1

Figure 20.14 (a) A mixture model for candy. The proportions of different flavors, wrappers,

and presence of holes depend on the bag, which is not observed. (b) Bayesian network for

a Gaussian mixture. The mean and covariance of the observable variables X depend on the

component C.

P(R1|R0)R0 P(R1|R0) P(R1|R0) P(R1|R0)P(R1|R0)R0 P(R2|R1)R1 P(R3|R2)R2 P(R4|R3)R3

R1 P(U1|R1) R1 P(U1|R1) R2 P(U2|R2) R3 P(U3|R3) R4 P(U4|R4)

R���4R���0 R���1 R���0 R���1 R���2 R���3

U�	
ella1 U�	
ella1 U�	
ella2 U�	
ella3 U�	
ella4

Figure 20.15 An unrolled dynamic Bayesian network that represents a hidden Markov

model (repeat of Figure ??).

CHAPTER 21
DEEP LEARNING

(a) (b) (c)

Figure 21.1 (a) A shallow model, such as linear regression, has short computation paths

between inputs and output. (b) A decision list network (page ??) has some long paths for

some possible input values, but most paths are short. (c) A deep learning network has longer

computation paths, allowing each variable to interact with all the others.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

-6 -4 -2 0 2 4 6
 0
 1
 2
 3
 4
 5
 6
 7
 8

-6 -4 -2 0 2 4 6

softplus
ReLU

-1
-0.8
-0.6
-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

 1

-6 -4 -2 0 2 4 6

(a) (b) (c)

Figure 21.2 Activation functions commonly used in deep learning systems: (a) the logistic

or sigmoid function; (b) the ReLU function and the softplus function; (c) the tanh function.

167

ŷ

x1
w1,3

w2,3

w3,5

w4,5
x2 w2,4

w1,4

3

4

5 +

✕

✕

✕

✕

+

✕

✕

✕

✕

+

✕

w0,5

+1 g5 ŷ

x1

w0,3

w1,3

w2,3

+1

g3

w3,5

w4,5

x2

w0,4

w2,4

+1

w1,4

g4

(a) (b)

Figure 21.3 (a) A neural network with two inputs, one hidden layer of two units, and one

output unit. Not shown are the dummy inputs and their associated weights. (b) The network

in (a) unpacked into its full computation graph.

5 6 6 2 5 6 5

5 9 4

+�
��

+� +�
��

+� +�
��

+�

Figure 21.4 An example of a one-dimensional convolution operation with a kernel of size

l=3 and a stride s=2. The peak response is centered on the darker (lower intensity) input

pixel. The results would usually be fed through a nonlinear activation function (not shown)

before going to the next hidden layer.

168 Chapter 21 Deep Learning

Figure 21.5 The first two layers of a CNN for a 1D image with a kernel size l=3 and a

stride s=1. Padding is added at the left and right ends in order to keep the hidden layers the

same size as the input. Shown in red is the receptive field of a unit in the second hidden layer.

Generally speaking, the deeper the unit, the larger the receptive field.

f

g k

j

h

∂L/∂h�

∂L/∂hk

∂L/∂f

∂L/∂g

Figure 21.6 Illustration of the back-propagation of gradient information in an arbitrary com-

putation graph. The forward computation of the output of the network proceeds from left to

right, while the back-propagation of gradients proceeds from right to left.

169

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 1 2 3 4 5 6 7

T
es

t-
se

t e
rr

or

Number of weights (× 107)

3-layer
11-layer

Figure 21.7 Test-set error as a function of layer width (as measured by total number of

weights) for three-layer and eleven-layer convolutional networks. The data come from early

versions of Google’s system for transcribing addresses in photos taken by Street View cars

(?).

Δ

Figure 21.8 (a) Schematic diagram of a basic RNN where the hidden layer z has recurrent

connections; the ∆ symbol indicates a delay. (b) The same network unrolled over three time

steps to create a feedforward network. Note that the weights are shared across all time steps.

170 Chapter 21 Deep Learning

Figure 21.9 A demonstration of how a generative model has learned to use different direc-

tions in z space to represent different aspects of faces. We can actually perform arithmetic in

z space. The images here are all generated from the learned model and show what happens

when we decode different points in z space. We start with the coordinates for the concept of

“man with glasses,” subtract off the coordinates for “man,” add the coordinates for “woman,”

and obtain the coordinates for “woman with glasses.” Images reproduced with permission

from (?).

CHAPTER 22
REINFORCEMENT LEARNING

0.8516 0.9078 0.9578

0.8016 0.7003

0.7453 0.6953 0.6514 0.4279

(a) (b)

Figure 22.1 (a) The optimal policies for the stochastic environment with R(s, a, s′)=−0.04
for transitions between nonterminal states. There are two policies because in state (3,1) both

Left and Up are optimal. We saw this before in Figure ??. (b) The utilities of the states in

the 4× 3 world, given policy π.

172 Chapter 22 Reinforcement Learning

function PASSIVE-ADP-LEARNER(percept) returns an action

inputs: percept , a percept indicating the current state s ′ and reward signal r

persistent: π, a fixed policy

mdp, an MDP with model P , rewards R, actions A, discount γ
U , a table of utilities for states, initially empty

N s′|s,a, a table of outcome count vectors indexed by state and action, initially zero

s , a, the previous state and action, initially null

if s ′ is new then U [s ′]← 0

if s is not null then

increment N s′|s,a[s ,a][s’]

R[s , a, s ′]← r

add a to A[s]

P(· | s, a)←NORMALIZE(N s′|s,a[s , a])

U ← POLICYEVALUATION(π,U ,mdp)

s ,a← s ′,π[s ′]

return a

Figure 22.2 A passive reinforcement learning agent based on adaptive dynamic program-

ming. The agent chooses a value for γ and then incrementally computes the P and R values

of the MDP. The POLICY-EVALUATION function solves the fixed-policy Bellman equations,

as described on page ??.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

(1,1)

(1,3)

(2,1)

(3,2)

(3,3)

U
til

ity
 e

st
im

at
es

Number of trials

 0

 0.05

 0.1

 0.15

 0.2

 0 20 40 60 80 100

R
M

S
 e

rr
or

 in
 u

til
ity

Number of trials

(a) (b)

Figure 22.3 The passive ADP learning curves for the 4× 3 world, given the optimal policy

shown in Figure ??. (a) The utility estimates for a selected subset of states, as a function

of the number of trials. Notice that it takes 14 and 23 trials respectively before the rarely

visited states (2,1) and (3,2) “discover” that they connect to the +1 exit state at (4,3). (b) The

root-mean-square error (see Appendix A) in the estimate for U(1, 1), averaged over 50 runs

of 100 trials each.

173

function PASSIVE-TD-LEARNER(percept) returns an action

inputs: percept , a percept indicating the current state s ′ and reward signal r

persistent: π, a fixed policy

s , the previous state, initially null

U , a table of utilities for states, initially empty

Ns, a table of frequencies for states, initially zero

if s ′ is new then U [s ′]← 0

if s is not null then

increment N s[s]

U [s]←U [s] + α(N s[s]) × (r + γ U [s ′] - U [s])

s← s ′

return π[s ′]

Figure 22.4 A passive reinforcement learning agent that learns utility estimates using tem-

poral differences. The step-size function α(n) is chosen to ensure convergence.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500

(1,1)

(1,3)

(2,1)

(3,3)

(3,2)

U
til

ity
 e

st
im

at
es

Number of trials

 0

 0.05

 0.1

 0.15

 0.2

 0 20 40 60 80 100

R
M

S
 e

rr
or

 in
 u

til
ity

Number of trials

(a) (b)

Figure 22.5 The TD learning curves for the 4 × 3 world. (a) The utility estimates for a

selected subset of states, as a function of the number of trials, for a single run of 500 trials.

Compare with the run of 100 trials in Figure ??(a). (b) The root-mean-square error in the

estimate for U(1, 1), averaged over 50 runs of 100 trials each.

174 Chapter 22 Reinforcement Learning

 0

 0.5

 1

 1.5

 2

 0 100 200 300 400 500

R
M

S
 e

rr
or

, p
ol

ic
y

lo
ss

Number of trials

RMS error
Policy loss

(a) (b)

Figure 22.6 Performance of a greedy ADP agent that executes the action recommended by

the optimal policy for the learned model. (a) The root mean square (RMS) error averaged

across all nine nonterminal squares and the policy loss in (1,1). We see that the policy con-

verges quickly, after just eight trials, to a suboptimal policy with a loss of 0.235. (b) The

suboptimal policy to which the greedy agent converges in this particular sequence of trials.

Notice the Down action in (1,2).

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 20 40 60 80 100

U
til

ity
 e

st
im

at
es

Number of trials

(1,1)
(1,3)
(2,1)
(3,2)
(3,3)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 20 40 60 80 100

R
M

S
 e

rr
or

, p
ol

ic
y

lo
ss

Number of trials

RMS error
Policy loss

(a) (b)

Figure 22.7 Performance of the exploratory ADP agent using R+ = 2 and Ne = 5. (a)

Utility estimates for selected states over time. (b) The RMS error in utility values and the

associated policy loss.

175

function Q-LEARNING-AGENT(percept) returns an action

inputs: percept , a percept indicating the current state s ′ and reward signal r

persistent: Q , a table of action values indexed by state and action, initially zero

Nsa , a table of frequencies for state–action pairs, initially zero

s , a, the previous state and action, initially null

if s is not null then

increment Nsa [s ,a]

Q [s ,a]←Q [s ,a] + α(Nsa [s , a])(r + γ maxa′ Q [s′, a′] − Q [s ,a])
s ,a← s ′,argmaxa′ f(Q [s ′, a′],Nsa [s

′, a′])
return a

Figure 22.8 An exploratory Q-learning agent. It is an active learner that learns the value

Q(s, a) of each action in each situation. It uses the same exploration function f as the ex-

ploratory ADP agent, but avoids having to learn the transition model.

x

�

(a) (b)

Figure 22.9 (a) Setup for the problem of balancing a long pole on top of a moving cart. The

cart can be jerked left or right by a controller that observes the cart’s position x and velocity

ẋ, as well as the pole’s angle θ and rate of change of angle θ̇. (b) Six superimposed time-

lapse images of a single autonomous helicopter performing a very difficult “nose-in circle”

maneuver. The helicopter is under the control of a policy developed by the PEGASUS policy-

search algorithm (?). A simulator model was developed by observing the effects of various

control manipulations on the real helicopter; then the algorithm was run on the simulator

model overnight. A variety of controllers were developed for different maneuvers. In all

cases, performance far exceeded that of an expert human pilot using remote control. (Image

courtesy of Andrew Ng.)

CHAPTER 23
NATURAL LANGUAGE PROCESSING

Tag Word Description Tag Word Description

CC and Coordinating conjunction PRP$ your Possessive pronoun

CD three Cardinal number RB quickly Adverb

DT the Determiner RBR quicker Adverb, comparative

EX there Existential there RBS quickest Adverb, superlative

FW per se Foreign word RP off Particle

IN of Preposition SYM + Symbol

JJ purple Adjective TO to to

JJR better Adjective, comparative UH eureka Interjection

JJS best Adjective, superlative VB talk Verb, base form

LS 1 List item marker VBD talked Verb, past tense

MD should Modal VBG talking Verb, gerund

NN kitten Noun, singular or mass VBN talked Verb, past participle

NNS kittens Noun, plural VBP talk Verb, non-3rd-sing

NNP Ali Proper noun, singular VBZ talks Verb, 3rd-sing

NNPS Fords Proper noun, plural WDT which Wh-determiner

PDT all Predeterminer WP who Wh-pronoun

POS ’s Possessive ending WP$ whose Possessive wh-pronoun

PRP you Personal pronoun WRB where Wh-adverb

$ $ Dollar sign # # Pound sign

“ ‘ Left quote ” ’ Right quote

([Left parenthesis)] Right parenthesis

, , Comma . ! Sentence end

: ; Mid-sentence punctuation

Figure 23.1 Part-of-speech tags (with an example word for each tag) for the Penn Treebank

corpus (?). Here “3rd-sing” is an abbreviation for “third person singular present tense.”

177

S → NP VP [0.90] I + feel a breeze

| S Conj S [0.10] I feel a breeze + and + It stinks

NP → Pronoun [0.25] I

| Name [0.10] Ali

| Noun [0.10] pits

| Article Noun [0.25] the + wumpus

| Article Adjs Noun [0.05] the + smelly dead + wumpus

| Digit Digit [0.05] 3 4

| NP PP [0.10] the wumpus + in 1 3

| NP RelClause [0.05] the wumpus + that is smelly

| NP Conj NP [0.05] the wumpus + and + I

VP → Verb [0.40] stinks

| VP NP [0.35] feel + a breeze

| VP Adjective [0.05] smells + dead

| VP PP [0.10] is + in 1 3

| VP Adverb [0.10] go + ahead

Adjs → Adjective [0.80] smelly

| Adjective Adjs [0.20] smelly + dead

PP → Prep NP [1.00] to + the east

RelClause → RelPro VP [1.00] that + is smelly

Figure 23.2 The grammar for E0, with example phrases for each rule. The syntactic cat-

egories are sentence (S), noun phrase (NP), verb phrase (VP), list of adjectives (Adjs),

prepositional phrase (PP), and relative clause (RelClause).

Noun → stench [0.05] | breeze [0.10] | wumpus [0.15] | pits [0.05] | . . .
Verb → is [0.10] | feel [0.10] | smells [0.10] | stinks [0.05] | . . .
Adjective → right [0.10] | dead [0.05] | smelly [0.02] | breezy [0.02] . . .
Adverb → here [0.05] | ahead [0.05] | nearby [0.02] | . . .
Pronoun → me [0.10] | you [0.03] | I [0.10] | it [0.10] | . . .
RelPro → that [0.40] | which [0.15] | who [0.20] | whom [0.02] | . . .
Name → Ali [0.01] | Bo [0.01] | Boston [0.01] | . . .
Article → the [0.40] | a [0.30] | an [0.10] | every [0.05] | . . .
Prep → to [0.20] | in [0.10] | on [0.05] | near [0.10] | . . .
Conj → and [0.50] | or [0.10] | but [0.20] | yet [0.02] | . . .
Digit → 0 [0.20] | 1 [0.20] | 2 [0.20] | 3 [0.20] | 4 [0.20] | . . .

Figure 23.3 The lexicon for E0. RelPro is short for relative pronoun, Prep for preposition,

and Conj for conjunction. The sum of the probabilities for each category is 1.

178 Chapter 23 Natural Language Processing

List of items Rule

S

NP VP S → NP VP

NP VP Adjective VP → VP Adjective

NP Verb Adjective VP → Verb

NP Verb dead Adjective → dead

NP is dead Verb → is

Article Noun is dead NP → Article Noun

Article wumpus is dead Noun → wumpus

the wumpus is dead Article → the

Figure 23.4 Parsing the string “The wumpus is dead” as a sentence, according to the gram-

mar E0. Viewed as a top-down parse, we start with S , and on each step match one nontermi-

nal X with a rule of the form (X → Y . . .) and replace X in the list of items with Y . . . ;

for example replacing S with the sequence NP VP . Viewed as a bottom-up parse, we start

with the words “the wumpus is dead”, and on each step match a string of tokens such as (Y

. . .) against a rule of the form (X → Y . . .) and replace the tokens with X ; for example

replacing “the” with Article or Article Noun with NP .

179

function CYK-PARSE(words , grammar) returns a table of parse trees

inputs: words , a list of words

grammar , a structure with LEXICALRULES and GRAMMARRULES

T← a table // T [X , i , k] is most probable X tree spanning words i:k
P← a table, initially all 0 // P[X , i , k] is probability of tree T [X , i , k]

// Insert lexical categories for each word.

for i = 1 to LEN(words) do

for each (X , p) in grammar .LEXICALRULES(words i) do

P [X , i , i]← p

T [X , i , i]← TREE(X , words i)

// Construct Xi:k from Yi:j + Zj+1:k, shortest spans first.

for each (i , j , k) in SUBSPANS(LEN(words)) do

for each (X , Y , Z , p) in grammar .GRAMMARRULES do

PYZ ←P [Y , i , j] × P [Z , j + 1, k] × p

if PYZ > P [X , i , k] do

P [X , i , k]←PYZ

T [X , i , k]←TREE(X , T [Y , i , j], T [Z , j + 1, k])

return T

function SUBSPANS(N) yields (i , j , k) tuples

for length = 2 to N do

for i = 1 to N + 1 − length do

k← i + length − 1
for j = i to k − 1 do

yield (i, j, k)

Figure 23.5 The CYK algorithm for parsing. Given a sequence of words, it finds the most

probable parse tree for the sequence and its subsequences. The table P [X , i , k] gives the

probability of the most probable tree of category X spanning words i:k. The output table

T [X , i , k] contains the most probable tree of category X spanning positions i to k inclu-

sive. The function SUBSPANS returns all tuples (i , j , k) covering a span of words i:k, with

i ≤ j < k, listing the tuples by increasing length of the i : k span, so that when we go

to combine two shorter spans into a longer one, the shorter spans are already in the table.

LEXICALRULES(word) returns a collection of (X , p) pairs, one for each rule of the form

X → word [htbp], and GRAMMARRULES gives (X ,Y ,Z , p) tuples, one for each grammar

rule of the form X → Y Z [p].

180 Chapter 23 Natural Language Processing

Article Noun

wumpus

Verb

NP VP

S

Every smells

0.25

0.90

 0.05 0.15 0.10

 0.40

Figure 23.6 Parse tree for the sentence “Every wumpus smells” according to the grammar

E0. Each interior node of the tree is labeled with its probability. The probability of the tree as

a whole is 0.9× 0.25× 0.05× 0.15× 0.40× 0.10=0.0000675. The tree can also be written

in linear form as [S [NP [Article every] [Noun wumpus]][VP [Verb smells]]].

I detect

the Adjective wumpus near Pronoun

I

detect

the smelly

wumpus

near

me

Pronoun

NP

S

VP

Verb

NP

Article PrepNoun

NP

PP

NPAdjs

mesmelly

Figure 23.7 A dependency-style parse (top) and the corresponding phrase structure parse

(bottom) for the sentence I detect the smelly wumpus near me.

181

[[S [NP -2 Her eyes]

[VP were

[VP glazed

[NP *-2]

[SBAR-ADV as if

[S [NP she]

[VP did n’t

[VP [VP hear [NP *-1]]

or

[VP [ADVP even] see [NP *-1]]

[NP-1 him]]]]]]]]

.]

Figure 23.8 Annotated tree for the sentence “Her eyes were glazed as if she didn’t hear

or even see him.” from the Penn Treebank. Note a grammatical phenomenon we have not

covered yet: the movement of a phrase from one part of the tree to another. This tree analyzes

the phrase “hear or even see him” as consisting of two constituent VPs, [VP hear [NP *-1]]

and [VP [ADVP even] see [NP *-1]], both of which have a missing object, denoted *-1,

which refers to the NP labeled elsewhere in the tree as [NP-1 him]. Similarly, the [NP *-2]

refers to the [NP-2 Her eyes].

S (v) → NP(Sbj , pn , n) VP(pn , v) | . . .
NP(c, pn , n) → Pronoun(c, pn ,n) | Noun(c, pn ,n) | . . .
VP(pn , v) → Verb(pn , v) NP(Obj , pn ,n) | . . .
PP(head) → Prep(head) NP(Obj , pn , h)

Pronoun(Sbj , 1S , I) → I

Pronoun(Sbj , 1P ,we) → we

Pronoun(Obj , 1S ,me) → me

Pronoun(Obj , 3P , them) → them

Verb(3S , see) → see

Figure 23.9 Part of an augmented grammar that handles case agreement, subject–verb agree-

ment, and head words. Capitalized names are constants: Sbj, and Obj for subjective and ob-

jective case; 1S for first person singular; 1P and 3P for first and third person plural. As usual,

lowercase names are variables. For simplicity, the probabilities have been omitted.

182 Chapter 23 Natural Language Processing

Exp(op(x1, x2)) → Exp(x1) Operator (op) Exp(x2)
Exp(x) → (Exp(x))

Exp(x) → Number(x)
Number(x) → Digit(x)
Number(10 × x1 + x2) → Number(x1) Digit(x2)
Operator (+) → +

Operator (−) → -

Operator (×) → ×
Operator (÷) → ÷
Digit(0) → 0

Digit(1) → 1

. . .

Figure 23.10 A grammar for arithmetic expressions, augmented with semantics. Each vari-

able xi represents the semantics of a constituent.

Operator(÷)

3 ()4 2+

Number(2)

Digit(2)

Number(4)

Digit(4)Operator(+)Digit(3)

Number(3)

Exp(5)

Exp(2)

Exp(2)

Exp(4) Exp(2)Exp(3)

÷

Figure 23.11 Parse tree with semantic interpretations for the string “3 + (4÷ 2)”.

183

S(pred (n)) → NP(n) VP(pred)

VP(pred(n)) → Verb(pred) NP(n)

NP(n) → Name(n)

Name(Ali) → Ali

Name(Bo) → Bo

Verb(λy λx Loves(x, y)) → loves

Ali loves Bo

Name(Ali) Name(Bo)

NP(Bo)NP(Ali)

S(Loves(Ali, Bo))

Verb(λy λ x Loves(x, y))

VP(λx Loves(x, Bo))

(a) (b)

Figure 23.12 (a) A grammar that can derive a parse tree and semantic interpretation for “Ali

loves Bo” (and three other sentences). Each category is augmented with a single argument

representing the semantics. (b) A parse tree with semantic interpretations for the string “Ali

loves Bo.”

CHAPTER 24
DEEP LEARNING FOR NATURAL

LANGUAGE PROCESSING

f�����
g�����

g������

��n���
niece

auntuncle

car
bicycle

truck
apple

banana np���

Figure 24.1 Word embedding vectors computed by the GloVe algorithm trained on 6 billion

words of text. 100-dimensional word vectors are projected down onto two dimensions in this

visualization. Similar words appear near each other.

185

A B C D=C + (B− A) Relationship

Athens Greece Oslo Norway Capital

Astana Kazakhstan Harare Zimbabwe Capital

Angola kwanza Iran rial Currency

copper Cu gold Au Atomic Symbol

Microsoft Windows Google Android Operating System

New York New York Times Baltimore Baltimore Sun Newspaper

Berlusconi Silvio Obama Barack First name

Switzerland Swiss Cambodia Cambodian Nationality

Einstein scientist Picasso painter Occupation

brother sister grandson granddaughter Family Relation

Chicago Illinois Stockton California State

possibly impossibly ethical unethical Negative

mouse mice dollar dollars Plural

easy easiest lucky luckiest Superlative

walking walked swimming swam Past tense

Figure 24.2 A word embedding model can sometimes answer the question “A is to B as C

is to [what]?” with vector arithmetic: given the word embedding vectors for the words A,

B, and C, compute the vector D=C + (B − A) and look up the word that is closest to D.

(The answers in column D were computed automatically by the model. The descriptions in

the “Relationship” column were added by hand.) Adapted from ? (?, ?).

Yesterday they cut the rope

Embedding
lookup

Embedding
lookup

Embedding
lookup

Embedding
lookup

Embedding
lookup

Hidden Layer 1

Class = PastTenseVerb

Hidden Layer 2

Output Layer

Figure 24.3 Feedforward part-of-speech tagging model. This model takes a 5-word window

as input and predicts the tag of the word in the middle—here, cut. The model is able to

account for word position because each of the 5 input embeddings is multiplied by a different

part of the first hidden layer. The parameter values for the word embeddings and for the three

layers are all learned simultaneously during training.

186 Chapter 24 Deep Learning for Natural Language Processing

Δ

Figure 24.4 (a) Schematic diagram of an RNN where the hidden layer z has recurrent con-

nections; the ∆ symbol indicates a delay. Each input x is the word embedding vector of

the next word in the sentence. Each output y is the output for that time step. (b) The same

network unrolled over three timesteps to create a feedforward network. Note that the weights

are shared across all timesteps.

Yesterday they cut the rope

Embedding
lookup

RNN

RNN

Feedforward

Embedding
lookup

RNN

RNN

Feedforward

Embedding
lookup

RNN

RNN

Feedforward

Embedding
lookup

RNN

RNN

Feedforward

Embedding
lookup

RNN

RNN

Feedforward

Class =
Adverb

Class =
Pronoun

Class =
PastTenseVerb

Class =
Determiner

Class =
Noun

Figure 24.5 A bidirectional RNN network for POS tagging.

187

Source
L���

�S����

L���

Target
L���

�S����

L���

�S����

L���

Target
L���

Target
L���

Target
L���

Target
L���

�T� man is tall < !"�!# El TS$%�� es alto

El TS$%�� es alto <�&'#

Figure 24.6 Basic sequence-to-sequence model. Each block represents one LSTM timestep.

(For simplicity, the embedding and output layers are not shown.) On successive steps we feed

the network the words of the source sentence “The man is tall,” followed by the <start>

tag to indicate that the network should start producing the target sentence. The final hidden

state at the end of the source sentence is used as the hidden state for the start of the target

sentence. After that, each target sentence word at time t is used as input at time t + 1, until

the network produces the <end> tag to indicate that sentence generation is finished.

(a)

The front door is red

*,-./-0

1.

1.

puerta

234/56
1278

234/56
1278

234/56
1278

234/56
1278

234/56
1278

Target
Attentional
1278

Target
Attentional
1278

�

La puerta de entrada es r9:;

=>?

front

door

is

red

@AB

Figure 24.7 (a) Attentional sequence-to-sequence model for English-to-Spanish translation.

The dashed lines represent attention. (b) Example of attention probability matrix for a bilin-

gual sentence pair, with darker boxes representing higher values of aij . The attention proba-

bilities sum to one over each column.

188 Chapter 24 Deep Learning for Natural Language Processing

Timestep 2

Beam 1 Beam 1 Beam 1 Beam 1

Beam 2Beam 2Beam 2

Una

Una

20.3 20.8

20.922.1

Score Score

21.5

21.9

Score

20.5

20.7

Score

Word Word

entrada

puerta

20.3

22.1

ScoreWord Word

entrada

puerta

puerta

de

de

del

La La La entrada La puerta de

La puerta del

Word

Score: 0.0 Score: 20.3

Score: 22.1

Score: 21.1 Score: 21.7

Score: 21.9

[start]

Hypothesis Hypothesis

Hypothesis

Hypothesis Hypothesis

La puerta

Score: 21.2

Hypothesis Hypothesis

Timestep 4Timestep 3Timestep 1

Figure 24.8 Beam search with beam size of b=2. The score of each word is the log-

probability generated by the target RNN softmax, and the score of each hypothesis is the

sum of the word scores. At timestep 3, the highest scoring hypothesis La entrada can only

generate low-probability continuations, so it “falls off the beam.”

Transformer
CDEGH

IJKMN VGeNOHQ

VMNKMN VGeNOHQ

Feedforward

+

+

WGXZ[\NNGJN]OJ
Residual

^OJJGeN]OJ

Residual
^OJJGeN]OJ

Figure 24.9 A single-layer transformer consists of self-attention, a feedforward network,

and residual connections.

189

Yesterday they cut the rope

Embedding
lookup

Embedding
lookup

Embedding
lookup

Embedding
lookup

Embedding
lookup

Positional
Embedding 1

Positional
Embedding 2

Positional
Embedding 3

Positional
Embedding 4

Positional
_`abddilm o

Feedforward Feedforward Feedforward Feedforward Feedforward

Class =
Adverb

Class =
Pronoun

Class =
PastTenseVerb

Class =
Determiner

Class =
Noun

Transformer Layer

Transformer Layer

Transformer Layer

+ + + + +

Figure 24.10 Using the transformer architecture for POS tagging.

Feedforward

red car is big <eos>

The red car is big

Feedforward Feedforward Feedforward Feedforward

Non-contextual
representations

(word embeddings)

Contextual
representations
(RNN output)

Embedding
lookup

Embedding
lookup

Embedding
lookup

Embedding
lookup

Embedding
lookup

RNN RNN RNN RNN RNN

Figure 24.11 Training contextual representations using a left-to-right language model.

190 Chapter 24 Deep Learning for Natural Language Processing

The river

rose

five feet

Embedding
lookup

RNN

Embedding
lookup

Embedding
lookup

Embedding
lookup

RNN RNN RNN RNN

RNN RNN RNN RNN RNN

Feedforward

MLM

embedding

[masked]

Figure 24.12 Masked language modeling: pretrain a bidirectional model—for example, a

multilayer RNN—by masking input words and predicting only those masked words.

1. What will best separate a mixture of iron filings and black pepper?

(a) magnet (b) filter paper (c) triple beam balance (d) voltmeter

2. Which form of energy is produced when a rubber band vibrates?

(a) chemical (b) light (c) electrical (d) sound

3. Because copper is a metal, it is

(a) liquid at room temperature (b) nonreactive with other substances

(c) a poor conductor of electricity (d) a good conductor of heat

4. Which process in an apple tree primarily results from cell division?

(a) growth (b) photosynthesis (c) gas exchange (d) waste removal

Figure 24.13 Questions from an 8th grade science exam that the ARISTO system can an-

swer correctly using an ensemble of methods, with the most influential being a ROBERTA

language model. Answering these questions requires knowledge about natural language, the

structure of multiple-choice tests, commonsense, and science.

191

It is a truth universally acknowledged that the earth is not the center of the uni-

verse. There are those who assert there is. I do not accept them, but others I

consider to be of the same opinion. The truth is, however, that if there are other

than the center, and if there are any other living things in the universe and if they

are not human, then we do not yet have our answers. We have to go on. This page

gives a simplified, simplified answer to the problem. We don’t have all the answers.

The truth is, however, that the truth is out there.

When Gregor Samsa woke up one morning, he did not notice anything strange.

“When my wife is looking at me, I feel like she is looking at a piece of art,” he said.

“I think she is admiring something I have created.” The idea is that by looking at

your own life, you learn something important and become a better person. It is a

theory that emerged from psychologist Daniel Goleman’s work, in which he asked

“How do you know you’re not a loser?”

Alice was beginning to get very tired of sitting with her sister on the bank. She

sat up, yawned, and said, with a loud little scream, “I hope you don’t mind if I keep

on doing what I should like to do, and if someone asks me which of us will do

more, don’t tell them that I won’t do much, my dear sister.”

All happy families are alike; each happy family is like a garden of paradise. The

only difference between happy families and unhappy families, is that the unhappy

family doesn’t have any flowers or trees.

Tell me a story. Tell me a story. Tell me a story. Tell me a story. Tell me a story.

Tell me a story. Tell me a story. Tell me a story. Tell me a story. Tell me a story.

Tell me a story. Tell me a story. Please fill out the following details. Thank you...

Thank you for your interest in this interview. Please wait...

Figure 24.14 Example completion texts generated by the GPT-2 language model, given the

prompts in bold. Most of the texts are quite fluent English, at least locally. The final example

demonstrates that sometimes the model just breaks down.

CHAPTER 25
COMPUTER VISION

Figure 25.1 Geometry in the scene appears distorted in images. Parallel lines appear to

meet, like the railway tracks in a desolate town. Buildings that have right angles in the real

world scene have distorted angles in the image.

f

image
plane

pinhole

P

P’

Y X

Z

Q

Figure 25.2 Each light sensitive element at the back of a pinhole camera receives light that

passes through the pinhole from a small range of directions. If the pinhole is small enough,

the result is a focused image behind the pinhole. The process of projection means that large,

distant objects look the same as smaller, nearby objects—the point P ′ in the image plane

could have come from a nearby toy tower at point P or from a distant real tower at point Q.

193

Iris
Cornea Fovea

Visual Axis

Optical AxisLens

Retina

Optic Nerve

Lens
System

Im
ag

e
pl

an
e

F
oc

al
 p

la
ne

Depth of field

Figure 25.3 Lenses collect the light leaving a point in the scene (here, the tip of the candle

flame) in a range of directions, and steer all the light to arrive at a single point on the image

plane. Points in the scene near the focal plane—within the depth of field—will be focused

properly. In cameras, elements of the lens system move to change the focal plane, whereas

in the eye, the shape of the lens is changed by specialized muscles.

Specularities

Cast shadow

Diffuse reflection, dark

Diffuse reflection, bright

Figure 25.4 This photograph illustrates a variety of illumination effects. There are specular-

ities on the stainless steel cruet. The onions and carrots are bright diffuse surfaces because

they face the light direction. The shadows appear at surface points that cannot see the light

source at all. Inside the pot are some dark diffuse surfaces where the light strikes at a tangen-

tial angle. (There are also some shadows inside the pot.) Photo by Ryman Cabannes/Image

Professionals GmbH/Alamy Stock Photo.

194 Chapter 25 Computer Vision

A B

u u

Figure 25.5 Two surface patches are illuminated by a distant point source, whose rays are

shown as light arrows. Patch A is tilted away from the source (θ is close to 90◦) and collects

less energy, because it cuts fewer light rays per unit surface area. Patch B, facing the source

(θ is close to 0◦), collects more energy.

1

2

4

2

1

1

3

Figure 25.6 Different kinds of edges: (1) depth discontinuities; (2) surface orientation dis-

continuities; (3) reflectance discontinuities; (4) illumination discontinuities (shadows).

195

0 10 20 30 40 50 60 70 80 90 100
−1

0

1

2

0 10 20 30 40 50 60 70 80 90 100
−1

0

1

0 10 20 30 40 50 60 70 80 90 100
−1

0

1

Figure 25.7 Top: Intensity profile I(x) along a one-dimensional section across a step edge.

Middle: The derivative of intensity, I ′(x). Large values of this function correspond to edges,

but the function is noisy. Bottom: The derivative of a smoothed version of the intensity. The

noisy candidate edge at x=75 has disappeared.

Figure 25.8 (a) Photograph of a stapler. (b) Edges computed from (a).

196 Chapter 25 Computer Vision

Figure 25.9 Two frames of a video sequence and the optical flow field corresponding to the

displacement from one frame to the other. Note how the movement of the tennis racket and

the front leg is captured by the directions of the arrows. (Images courtesy of Thomas Brox.)

(a) (b) (c) (d)

Figure 25.10 (a) Original image. (b) Boundary contours, where the higher the Pb value,

the darker the contour. (c) Segmentation into regions, corresponding to a fine partition of

the image. Regions are rendered in their mean colors. (d) Segmentation into regions, corre-

sponding to a coarser partition of the image, resulting in fewer regions. (Images courtesy of

Pablo Arbelaez, Michael Maire, Charless Fowlkes and Jitendra Malik.)

197

qstuvwstxuyzy{ }v~u�x

�����vzsy �u�st��xzsy

Figure 25.11 Important sources of appearance variation that can make different images of

the same object look different. First, elements can foreshorten, like the circular patch on the

top left. This patch is viewed at a glancing angle, and so is elliptical in the image. Second,

objects viewed from different directions can change shape quite dramatically, a phenomenon

known as aspect. On the top right are three different aspects of a doughnut. Occlusion causes

the handle of the mug on the bottom left to disappear when the mug is rotated. In this case,

because the body and handle belong to the same mug, we have self-occlusion. Finally, on the

bottom right, some objects can deform dramatically.

198 Chapter 25 Computer Vision

Digits

Kernels

Convolution output Test against threshold

Figure 25.12 On the far left, some images from the MNIST data set. Three kernels appear

on the center left. They are shown at actual size (tiny blocks) and magnified to reveal their

content: mid-grey is zero, light is positive, and dark is negative. Center right shows the results

of applying these kernels to the images. Right shows pixels where the response is bigger than

a threshold (green) or smaller than a threshold (red). You should notice that this gives (from

top to bottom): a horizontal bar detector; a vertical bar detector; and (harder to note) a line

ending detector. These detectors pay attention to the contrast of the bar, so (for example) a

horizontal bar that is light on top and dark below produces a positive (green) response, and

one that is dark on top and light below gets a negative (red) response. These detectors are

moderately effective, but not perfect.

199

Box non-max

suppression

ROI pool
Neural net

feature

stack

Crop

ROIs

Image

Box proposal

network

Non-max

suppression
Bounding box

regression

Neural net

classifier

0.9

0.7

Figure 25.13 Faster RCNN uses two networks. A picture of a young Nelson Mandela is

fed into the object detector. One network computes “objectness” scores of candidate image

boxes, called “anchor boxes,” centered at a grid point. There are nine anchor boxes (three

scales, three aspect ratios) at each grid point. For the example image, an inner green box and

an outer blue box have passed the objectness test. The second network is a feature stack that

computes a representation of the image suitable for classification. The boxes with highest

objectness score are cut from the feature map, standardized in size with ROI pooling, and

passed to a classifier. The blue box has a higher score than the green box and overlaps it, so

the green box is rejected by non-maximum suppression. Finally, bounding box regression the

blue box so that it fits the face. This means that the relatively coarse sampling of locations,

scales, and aspect ratios does not weaken accuracy. Photo by Sipa/Shutterstock.

200 Chapter 25 Computer Vision

Perceived object

Right image

(a) (b)

Left image

Disparity

LeftRight

Figure 25.14 Translating a camera parallel to the image plane causes image features to move

in the camera plane. The disparity in positions that results is a cue to depth. If we superimpose

left and right images, as in (b), we see the disparity.

b

du/2

dZ

PP0

PR

PL

Left

eye

Z

Right

eye

u

Figure 25.15 The relation between disparity and depth in stereopsis. The centers of projec-

tion of the two eyes are distance b apart, and the optical axes intersect at the fixation point

P0. The point P in the scene projects to points PL and PR in the two eyes. In angular terms,

the disparity between these is δθ (the diagram shows two angles of δθ/2).

201

Figure 25.16 Reconstructing humans from a single image is now practical. Each row shows

a reconstruction of 3D body shape obtained using a single image. These reconstructions are

possible because methods can estimate the location of joints, the joint angles in 3D, the shape

of the body, and the pose of the body with respect to an image. Each row shows the follow-

ing: far left a picture; center left the picture with the reconstructed body superimposed;

center right another view of the reconstructed body; and far right yet another view of the

reconstructed body. The different views of the body make it much harder to conceal errors in

reconstruction. Figure courtesy of Angjoo Kanazawa, produced by a system described in ?

(?).

202 Chapter 25 Computer Vision

Open fridge

Take something

out of fridge

Figure 25.17 The same action can look very different; and different actions can look similar.

These examples show actions taken from a data set of natural behaviors; the labels are chosen

by the curators of the data set, rather than predicted by an algorithm. Top: examples of the

label “opening fridge,” some shown in closeup and some from afar. Bottom: examples of

the label “take something out of fridge.” Notice how in both rows the subject’s hand is close

to the fridge door—telling the difference between the cases requires quite subtle judgment

about where the hand is and where the door is. Figure courtesy of David Fouhey, taken from

a data set described in ? (?).

Timeline

Figure 25.18 What you call an action depends on the time scale. The single frame at the

top is best described as opening the fridge (you don’t gaze at the contents when you close a

fridge). But if you look at a short clip of video (indicated by the frames in the center row),

the action is best described as getting milk from the fridge. If you look at a long clip (the

frames in the bottom row), the action is best described as fixing a snack. Notice that this

illustrates one way in which behavior composes: getting milk from the fridge is sometimes

part of fixing a snack, and opening the fridge is usually part of getting milk from the fridge.

Figure courtesy of David Fouhey, taken from a data set described in ? (?).

203

A baby eating a piece

of food in his mouth

A young boy eating

a piece of cake

A small bird is perched

on a branch

A small brown bear is

sitting in the grass

Figure 25.19 Automated image captioning systems produce some good results and some

failures. The two captions at left describe the respective images well, although “eating . . . in

his mouth” is a disfluency that is fairly typical of the recurrent neural network language mod-

els used by early captioning systems. For the two captions on the right, the captioning system

seems not to know about squirrels, and so guesses the animal from context; it also fails to

recognize that the two squirrels are eating. Image credits: geraine/Shutterstock; ESB Pro-

fessional/Shutterstock; BushAlex/Shutterstock; Maria.Tem/Shutterstock. The images shown

are similar but not identical to the original images from which the captions were generated.

For the original images see ? (?).

Q. What is the cat wearing?
A. Hat

Q. What is the weather like?
A. Rainy

Q. What surface is this?
A. Clay

Q. What toppings are on the pizza?
A. Mushrooms

Q. How many holes are in the pizza?
A. 8

Q. What letter is on the racket?
A. w

Q. What color is the right front leg?
A. Brown

Q. Why is the sign bent?
A. It’s not

Figure 25.20 Visual question-answering systems produce answers (typically chosen from a

multiple-choice set) to natural-language questions about images. Top: the system is produc-

ing quite sensible answers to rather difficult questions about the image. Bottom: less satis-

factory answers. For example, the system is guessing about the number of holes in a pizza,

because it doesn’t understand what counts as a hole, and it has real difficulty counting. Simi-

larly, the system selects brown for the cat’s leg because the background is brown and it can’t

localize the leg properly. Image credits: (Top) Tobyanna/Shutterstock; 679411/Shutterstock;

ESB Professional/Shutterstock; Africa Studio/Shutterstock; (Bottom) Stuart Russell; Max-

isport/Shutterstock; Chendongshan/Shutterstock; Scott Biales DitchTheMap/Shutterstock.

The images shown are similar but not identical to the original images to which the question-

answering system was applied. For the original images see ? (?).

204 Chapter 25 Computer Vision

Figure 25.21 3D models of construction sites are produced from images by structure-from-

motion and multiview stereo algorithms. They help construction companies to coordinate

work on large buildings by comparing a 3D model of the actual construction to date with

the building plans. Left: A visualization of a geometric model captured by drones. The

reconstructed 3D points are rendered in color, so the result looks like progress to date (note

the partially completed building with crane). The small pyramids show the pose of a drone

when it captured an image, to allow visualization of the flight path. Right: These systems

are actually used by construction teams; this team views the model of the as-built site, and

compares it with building plans as part of the coordination meeting. Figure courtesy of Derek

Hoiem, Mani Golparvar-Fard and Reconstruct, produced by a commercial system described

in a blog post at medium.com/reconstruct-inc.

205

Figure 25.22 If you have seen many pictures of some category—say, birds (top)—you can

use them to produce a 3D reconstruction from a single new view (bottom). You need to be

sure that all objects have a fairly similar geometry (so a picture of an ostrich won’t help if

you’re looking at a sparrow), but classification methods can sort this out. From the many

images you can estimate how texture values in the image are distributed across the object,

and thus complete the texture for parts of the bird you haven’t seen yet (bottom). Figure

courtesy of Angjoo Kanazawa, produced by a system described in ? (?). Top photo credit:

Satori/123RF; Bottom left credit: Four Oaks/Shutterstock.

206 Chapter 25 Computer Vision

Figure 25.23 On the left, an image of a real scene. On the right, a computer graphics object

has been inserted into the scene. You can see that the light appears to be coming from the

right direction, and that the object seems to cast appropriate shadows. The generated image

is convincing even if there are small errors in the lighting and shadows, because people are

not expert at identifying these errors. Figure courtesy of Kevin Karsch, produced by a system

described in ? (?).

xi yi…

Training data Input

ixiX Y

regression error

xi yi

yi

Objective Result

Training Test

,

,

y^^

Figure 25.24 Paired image translation where the input consists of aerial images and the

corresponding map tiles, and the goal is to train a network to produce a map tile from an

aerial image. (The system can also learn to generate aerial images from map tiles.) The

network is trained by comparing ŷi (the output for example xi of type X) to the right output

yi of type Y . Then at test time, the network must make new images of type Y from new inputs

of type X . Figure courtesy of Phillip Isola, Jun-Yan Zhu and Alexei A. Efros, produced by a

system described in ? (?). Map data © 2019 Google.

207

i

cycle-consistency error

X Y

yix̂i

xi

Objective Result

xi

…

Y
…

Training data Input
Training Test

,

ŷ

ˆ

X

Figure 25.25 Unpaired image translation: given two populations of images (here type X

is horses and type Y is zebras), but no corresponding pairs, learn to translate a horse into

a zebra. The method trains two predictors: one that maps type X to type Y, and another

that maps type Y to type X. If the first network maps a horse xi to a zebra ŷi, the second

network should map ŷi back to the original xi. The difference between xi and x̂i is what

trains the two networks. The cycle from Y to X and back must be closed. Such networks can

successfully impose rich transformations on images. Figure courtesy of Alexei A. Efros; see

? (?). Running horse photo by Justyna Furmanczyk Gibaszek/Shutterstock.

Figure 25.26 Style transfer: The content of a photo of a cat is combined with the style of an

abstract painting to yield a new image of the cat rendered in the abstract style (right). The

painting is Wassily Kandinsky’s Lyrisches or The Lyrical (public domain); the cat is Cosmo.

208 Chapter 25 Computer Vision

Figure 25.27 GAN generated images of lung X-rays. On the left, a pair consisting of a real

X-ray and a GAN-generated X-ray. On the right, results of a test asking radiologists, given

a pair of X-rays as seen on the left, to tell which is the real X-ray. On average, they chose

correctly 61% of the time, somewhat better than chance. But they differed in their accuracy—

the chart on the right shows the error rate for 12 different radiologists; one of them had an

error rate near 0% and another had 80% errors. The size of each dot indicates the number

of images each radiologist viewed. Figure courtesy of Alex Schwing, produced by a system

described in ? (?).

209

Figure 25.28 Mobileye’s camera-based sensing for autonomous vehicles. Top row: Two

images from a front-facing camera, taken a few seconds apart. The green area is the free

space—the area to which the vehicle could physically move in the immediate future. Objects

are displayed with 3D bounding boxes defining their sides (red for the rear, blue for the right

side, yellow for the left side, and green for the front). Objects include vehicles, pedestrians,

the inner edge of the self-lane marks (necessary for lateral control), other painted road and

crosswalk marks, traffic signs, and traffic lights. Not shown are animals, poles and cones,

sidewalks, railings, and general objects (e.g., a couch that fell from the back of a truck). Each

object is then marked with a 3D position and velocity. Bottom row: A full physical model of

the environment, rendered from the detected objects. (Images show Mobileye’s vision-only

system results). Images courtesy of Mobileye.

210 Chapter 25 Computer Vision

Action to
Execute

Goal (3m, 4m)

Mapper Planner
Action to
Execute

Ego-motion

Mapper Planner

Belief about the world

Figure 25.29 Navigation is tackled by decomposition into two problems: mapping and plan-

ning. With each successive time step, information from sensors is used to incrementally build

an uncertain model of the world. This model along with the goal specification is passed to

a planner that outputs the next action that the robot should take in order to achieve the goal.

Models of the world can be purely geometric (as in classical SLAM), or semantic (as ob-

tained via learning), or even topological (based on landmarks). The actual robot appears on

the right. Figures courtesy of Saurabh Gupta.

CHAPTER 26
ROBOTICS

(a) (b)

Figure 26.1 (a) An industrial robotic arm with a custom end-effector. Image credit: Ma-

cor/123RF. (b) A Kinova® JACO® Assistive Robot arm mounted on a wheelchair. Kinova

and JACO are trademarks of Kinova, Inc.

212 Chapter 26 Robotics

(a) (b)

Figure 26.2 (a) NASA’s Curiosity rover taking a selfie on Mars. Image courtesy of NASA.

(b) A Skydio drone accompanying a family on a bike ride. Image courtesy of Skydio.

(a) (b)

Figure 26.3 (a) Time-of-flight camera; image courtesy of Mesa Imaging GmbH. (b) 3D

range image obtained with this camera. The range image makes it possible to detect obstacles

and objects in a robot’s vicinity. Image courtesy of Willow Garage, LLC.

213

Figure 26.4 Robot perception can be viewed as temporal inference from sequences of ac-

tions and measurements, as illustrated by this dynamic decision network.

xi, yi

vt ¢t
xt11

h(xt)

xt

t11

t ¢t

ut

u

v

Z1 Z2 Z3 Z4

(a) (b)

Figure 26.5 (a) A simplified kinematic model of a mobile robot. The robot is shown as a

circle with an interior radius line marking the forward direction. The state xt consists of the

(xt, yt) position (shown implicitly) and the orientation θt. The new state xt+1 is obtained

by an update in position of vt∆t and in orientation of ωt∆t. Also shown is a landmark at

(xi, yi) observed at time t. (b) The range-scan sensor model. Two possible robot poses are

shown for a given range scan (z1, z2, z3, z4). It is much more likely that the pose on the left

generated the range scan than the pose on the right.

214 Chapter 26 Robotics

function MONTE-CARLO-LOCALIZATIONa, z , N , P (X ′|X, v, ω), P (z|z∗), map

returns a set of samples, S, for the next time step

inputs: a, robot velocities v and ω
z, a vector of M range scan data points

P (X ′|X, v, ω), motion model

P (z|z∗), a range sensor noise model

map, a 2D map of the environment

persistent: S, a vector of N samples

local variables: W , a vector of N weights

S′, a temporary vector of N samples

if S is empty then

for i = 1 to N do // initialization phase

S[i]← sample from P (X0)
for i = 1 to N do // update cycle

S′[i]← sample from P (X ′|X = S[i], v, ω)
W [i]← 1

for j = 1 to M do

z∗←RAYCAST(j, X = S′[i], map)

W [i]←W [i] · P (zj | z∗)
S←WEIGHTED-SAMPLE-WITH-REPLACEMENT(N , S ′, W)

return S

Figure 26.6 A Monte Carlo localization algorithm using a range-scan sensor model with

independent noise.

215

Robot position

(a)

Robot position

(b)

Robot position

(c)

Figure 26.7 Monte Carlo localization, a particle filtering algorithm for mobile robot localiza-

tion. (a) Initial, global uncertainty. (b) Approximately bimodal uncertainty after navigating

in the (symmetric) corridor. (c) Unimodal uncertainty after entering a room and finding it to

be distinctive.

216 Chapter 26 Robotics

X
t+1

X
t

μ
t

Σ
t

f(X
t
, a

t
)

f(μ
t
, a

t
)Σ

t+1

X
t+1

X
t

μ
t

Σ
t

f(X
t
, a

t
)

f(μ
t
, a

t
)Σ

t+1 Σ
t+1

~

f(X
t
, a

t
) = f(μ

t
, a

t
) + F

t
(X

t
 − μ

t
)

~

(a) (b)

Figure 26.8 One-dimensional illustration of a linearized motion model: (a) The function f ,

and the projection of a mean µt and a covariance interval (based on Σt) into time t+ 1. (b)

The linearized version is the tangent of f at µt. The projection of the mean µt is correct.

However, the projected covariance Σ̃t+1 differs from Σt+1.

robot

landmark

Figure 26.9 Localization using the extended Kalman filter. The robot moves on a straight

line. As it progresses, its uncertainty in its location estimate increases, as illustrated by the

error ellipses. When it observes a landmark with known position, the uncertainty is reduced.

(a) (b) (c)

Figure 26.10 Sequence of “drivable surface” classifications using adaptive vision. (a) Only

the road is classified as drivable (pink area). The V-shaped blue line shows where the vehicle

is heading. (b) The vehicle is commanded to drive off the road, and the classifier is beginning

to classify some of the grass as drivable. (c) The vehicle has updated its model of drivable

surfaces to correspond to grass as well as road. Courtesy of Sebastian Thrun.

217

y

x
R

O

y

x

Cobs

O

Figure 26.11 A simple triangular robot that can translate, and needs to avoid a rectangular

obstacle. On the left is the workspace, on the right is the configuration space.

shou

elb

shoshoshoshoshoshoshoshoshoshoshoshosho

elbelbelbelbelbelbelbelbelbelbelbelbelbelb

e
table

table

left wall

vertical
obstacle

s
w

w

(a) (b)

Figure 26.12 (a) Workspace representation of a robot arm with two degrees of freedom. The

workspace is a box with a flat obstacle hanging from the ceiling. (b) Configuration space of

the same robot. Only white regions in the space are configurations that are free of collisions.

The dot in this diagram corresponds to the configuration of the robot shown on the left.

218 Chapter 26 Robotics

conf-3

conf-1
conf-2

conf-3

conf-2

conf-1

e

sw

w

table

table

vertical

obstacle

left wall

(a) (b)

Figure 26.13 Three robot configurations, shown in workspace and configuration space.

qg

qs

Figure 26.14 A visibility graph. Lines connect every pair of vertices that can “see” each

other—lines that don’t go through an obstacle. The shortest path must lie upon these lines.

219

Figure 26.15 A Voronoi diagram showing the set of points (black lines) equidistant to two

or more obstacles in configuration space.

start
goal

start

goal

(a) (b)

Figure 26.16 (a) Value function and path found for a discrete grid cell approximation of the

configuration space. (b) The same path visualized in workspace coordinates. Notice how the

robot bends its elbow to avoid a collision with the vertical obstacle.

220 Chapter 26 Robotics

qg

qgqg

qg

qs

qs qs

qs

Figure 26.17 The probabilistic roadmap (PRM) algorithm. Top left: the start and goal con-

figurations. Top right: sample M collision-free milestones (here M = 5). Bottom left:

connect each milestone to its k nearest neighbors (here k = 3). Bottom right: find the

shortest path from the start to the goal on the resulting graph.

qg

qs

qsample

Figure 26.18 The bidirectional RRT algorithm constructs two trees (one from the start, the

other from the goal) by incrementally connecting each sample to the closest node in each

tree, if the connection is possible. When a sample connects to both trees, that means we have

found a solution path.

221

(a) (b) (c)

Figure 26.19 Snapshots of a trajectory produced by an RRT and post-processed with short-

cutting. Courtesy of Anca Dragan.

Figure 26.20 Trajectory optimization for motion planning. Two point-obstacles with circu-

lar bands of decreasing cost around them. The optimizer starts with the straight line trajectory,

and lets the obstacles bend the line away from collisions, finding the minimum path through

the cost field.

Figure 26.21 The task of reaching to grasp a bottle solved with a trajectory optimizer. Left:

the initial trajectory, plotted for the end effector. Middle: the final trajectory after optimiza-

tion. Right: the goal configuration. Courtesy of Anca Dragan. See ? (?).

222 Chapter 26 Robotics

(a) (b) (c)

Figure 26.22 Robot arm control using (a) proportional control with gain factor 1.0, (b) pro-

portional control with gain factor 0.1, and (c) PD (proportional derivative) control with gain

factors 0.3 for the proportional component and 0.8 for the differential component. In all cases

the robot arm tries to follow the smooth line path, but in (a) and (b) deviates substantially from

the path.

v

Cv

motion
envelope

initial
configuration

Figure 26.23 A two-dimensional environment, velocity uncertainty cone, and envelope of

possible robot motions. The intended velocity is v, but with uncertainty the actual velocity

could be anywhere inCv , resulting in a final configuration somewhere in the motion envelope,

which means we wouldn’t know if we hit the hole or not.

v

Cv

motion
envelope

initial
configuration

Figure 26.24 The first motion command and the resulting envelope of possible robot mo-

tions. No matter what actual motion ensues, we know the final configuration will be to the

left of the hole.

223

v
Cv

motion
envelope

Figure 26.25 The second motion command and the envelope of possible motions. Even with

error, we will eventually get into the hole.

(a) (b) (c)

Figure 26.26 Training a robust policy. (a) Multiple simulations are run of a robot hand ma-

nipulating objects, with different randomized parameters for physics and lighting. Courtesy

of Wojciech Zaremba. (b) The real-world environment, with a single robot hand in the center

of a cage, surrounded by cameras and range finders. (c) Simulation and real-world train-

ing yields multiple different policies for grasping objects; here a pinch grasp and a quadpod

grasp. Courtesy of OpenAI. See ? (?).

224 Chapter 26 Robotics

(a) (b) (c)

Figure 26.27 Making predictions by assuming that people are noisily rational given their

goal: the robot uses the past actions to update a belief over what goal the person is heading

to, and then uses the belief to make predictions about future actions. (a) The map of a room.

(b) Predictions after seeing a small part of the person’s trajectory (white path); (c) Predictions

after seeing more human actions: the robot now knows that the person is not heading to the

hallway on the left, because the path taken so far would be a poor path if that were the

person’s goal. Images courtesy of Brian D. Ziebart. See ? (?).

(a) (b)

Figure 26.28 (a) Left: An autonomous car (middle lane) predicts that the human driver (left

lane) wants to keep going forward, and plans a trajectory that slows down and merges behind.

Right: The car accounts for the influence its actions can have on human actions, and realizes

it can merge in front and rely on the human driver to slow down. (b) That same algorithm

produces an unusual strategy at an intersection: the car realizes that it can make it more

likely for the person (bottom) to proceed faster through the intersection by starting to inch

backwards. Images courtesy of Anca Dragan. See ? (?).

225

Figure 26.29 Left: A mobile robot is shown a demonstration that stays on the dirt road.

Middle: The robot infers the desired cost function, and uses it in a new scene, knowing to

put lower cost on the road there. Right: The robot plans a path for the new scene that also

stays on the road, reproducing the preferences behind the demonstration. Images courtesy of

Nathan Ratliff and James A. Bagnell. See ? (?).

Figure 26.30 A human teacher pushes the robot down to teach it to stay closer to the ta-

ble. The robot appropriately updates its understanding of the desired cost function and starts

optimizing it. Courtesy of Anca Dragan. See ? (?).

Figure 26.31 A programming interface that involves placing specially designed blocks in

the robot’s workspace to select objects and specify high-level actions. Images courtesy of

Maya Cakmak. See ? (?).

226 Chapter 26 Robotics

S1S2

S4S3

push backward

lift up set down

retract, lift higher

move
forward no

yes

stuck?

(a) (b)

Figure 26.32 (a) Genghis, a hexapod robot. (Image courtesy of Rodney A. Brooks.) (b) An

augmented finite state machine (AFSM) that controls one leg. The AFSM reacts to sensor

feedback: if a leg is stuck during the forward swinging phase, it will be lifted increasingly

higher.

(a) (b)

Figure 26.33 (a) A patient with a brain–machine interface controlling a robot arm to grab a

drink. Image courtesy of Brown University. (b) Roomba, the robot vacuum cleaner. Photo

by HANDOUT/KRT/Newscom.

227

(a) (b)

Figure 26.34 (a) Surgical robot in the operating room. Photo by Patrick Landmann/Science

Source. (b) Hospital delivery robot. Photo by Wired.

(a) (b)

Figure 26.35 (a) Autonomous car BOSS which won the DARPA Urban Challenge. Photo

by Tangi Quemener/AFP/Getty Images/Newscom. Courtesy of Sebastian Thrun. (b) Aerial

view showing the perception and predictions of the Waymo autonomous car (white vehicle

with green track). Other vehicles (blue boxes) and pedestrians (orange boxes) are shown with

anticipated trajectories. Road/sidewalk boundaries are in yellow. Photo courtesy of Waymo.

228 Chapter 26 Robotics

(a) (b)

Figure 26.36 (a) A robot mapping an abandoned coal mine. (b) A 3D map of the mine

acquired by the robot. Courtesy of Sebastian Thrun.

CHAPTER 27
PHILOSOPHY, ETHICS, AND SAFETY

OF AI

CHAPTER 28
THE FUTURE OF AI

CHAPTER 29
MATHEMATICAL BACKGROUND

CHAPTER 30
NOTES ON LANGUAGES AND

ALGORITHMS

