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For example, suppose we turn the sprinkler on—that is, if we (who are, by definition,

not part of the causal processes described by the model) intervene to impose the condition

Sprinkler= true. In the notation of the do-calculus, which is a key part of the theory of causalDo-calculus

networks, this is written as do(Sprinkler= true). Once done, this means that the sprinkler

variable is no longer dependent on whether it’s a cloudy day. We therefore delete the equation

S= fS(C,US) from the system of structural equations and replace it with S= true, giving us

C = fC(UC)

R = fR(C,UR)

S = true (13.16)

W = fW (R,S,UW )

G = fG(W,UG) .

From these equations, we obtain the new joint distribution for the remaining variables condi-

tioned on do(Sprinkler= true):

P(c,r,w,g |do(S= true)) = P(c) P(r |c) P(w |r,s= true) P(g |w) (13.17)

This corresponds to the “mutilated” network in Figure 13.23(b). From Equation (13.17), we

see that the only variables whose probabilities change are WetGrass and GreenerGrass, that

is, the descendants of the manipulated variable Sprinkler.

Note the difference between conditioning on the action do(Sprinkler= true) in the origi-

nal network and conditioning on the observation Sprinkler= true. The original network tells

us that the sprinkler is less likely to be on when the weather is cloudy, so if we observe

the sprinkler to be on, that reduces the probability that the weather is cloudy. But common

sense tells us that if we (operating from outside the world, so to speak) reach in and turn

on the sprinkler, that doesn’t affect the weather or provide new information about what the

weather is like that day. As shown in Figure 13.23(b), intervening breaks the normal causal

link between the weather and the sprinkler. This prevents any influence flowing backward

from Sprinkler to Cloudy. Thus, conditioning on do(Sprinkler= true) in the original graph is

equivalent to conditioning on Sprinkler= true in the mutilated graph.

A similar approach can be taken to analyze the effect of do(Xj =x jk) in a general causal

network with variables X1, . . . ,Xn. The network corresponds to a joint distribution defined in

the usual way (see Equation (13.2)):

P(x1, . . . ,xn) =
n

∏
i=1

P(xi | parents(Xi)) . (13.18)

After applying do(Xj =x jk), the new joint distribution Pxjk
simply omits the factor for Xj:

Pxjk
(x1, . . . ,xn) =

{

∏i!= j P(xi | parents(Xi)) =
P(x1,...,xn)

P(x j | parents(Xj))
if x j =x jk

0 if x j != x jk

(13.19)

This follows from the fact that setting Xj to a particular value x jk corresponds to deleting

the equation Xj = f j(Parents(Xj),Uj) from the system of structural equations and replacing it

with Xj =x jk. With a bit more algebraic manipulation, one can derive a formula for the effect

of setting variable Xj on any other variable Xi:

P(Xi = xi |do(Xj =x jk)) = Pxjk
(Xi=xi)

= ∑
parents(Xj)

P(xi |x jk, parents(Xj))P(parents(Xj)) . (13.20)


