
364 Chapter 11 Automated Planning

function ANGELIC-SEARCH(problem, hierarchy, initialPlan) returns a solution or fail

frontier←a FIFO queue with initialPlan as the only element
while true do

if IS-EMPTY?(frontier) then return fail
plan←POP(frontier) // chooses the shallowest node in frontier

if REACH+(problem.INITIAL,plan) intersects problem.GOAL then

if plan is primitive then return plan // REACH+ is exact for primitive plans

guaranteed←REACH−(problem.INITIAL,plan) ∩ problem.GOAL

if guaranteed$={} and MAKING-PROGRESS(plan, initialPlan) then
finalState←any element of guaranteed

return DECOMPOSE(hierarchy, problem.INITIAL, plan, finalState)
hla← some HLA in plan

prefix,suffix← the action subsequences before and after hla in plan

outcome←RESULT(problem.INITIAL, prefix)
for each sequence in REFINEMENTS(hla, outcome, hierarchy) do

add APPEND(prefix, sequence, suffix) to frontier

function DECOMPOSE(hierarchy, s0, plan, sf) returns a solution

solution←an empty plan
while plan is not empty do

action←REMOVE-LAST(plan)
si←a state in REACH−(s0, plan) such that sf∈REACH−(si,action)
problem←a problem with INITIAL = si and GOAL = sf

solution←APPEND(ANGELIC-SEARCH(problem, hierarchy, action), solution)
sf←si

return solution

Figure 11.11 A hierarchical planning algorithm that uses angelic semantics to identify and
commit to high-level plans that work while avoiding high-level plans that don’t. The predi-
cate MAKING-PROGRESS checks to make sure that we aren’t stuck in an infinite regression
of refinements. At top level, call ANGELIC-SEARCH with [Act] as the initialPlan.

The ability to commit to or reject high-level plans can give ANGELIC-SEARCH a sig-

nificant computational advantage over HIERARCHICAL-SEARCH, which in turn may have a

large advantage over plain old BREADTH-FIRST-SEARCH. Consider, for example, cleaning

up a large vacuum world consisting of an arrangement of rooms connected by narrow corri-

dors, where each room is a w× h rectangle of squares. It makes sense to have an HLA for

Navigate (as shown in Figure 11.7) and one for CleanWholeRoom. (Cleaning the room could

be implemented with the repeated application of another HLA to clean each row.) Since there

are five primitive actions, the cost for BREADTH-FIRST-SEARCH grows as 5d , where d is the

length of the shortest solution (roughly twice the total number of squares); the algorithm

cannot manage even two 3×3 rooms. HIERARCHICAL-SEARCH is more efficient, but still

suffers from exponential growth because it tries all ways of cleaning that are consistent with

the hierarchy. ANGELIC-SEARCH scales approximately linearly in the number of squares—

it commits to a good high-level sequence of room-cleaning and navigation steps and prunes

away the other options.

