Section 9.1 Propositional vs. First-Order Inference

Similarly, the rule of Existential Instantiation replaces an existentially quantified vari-
able with a single new constant symbol. The formal statement is as follows: for any sentence
«, variable v, and constant symbol k that does not appear elsewhere in the knowledge base,

Jv «
SuBST({v/k}, )
For example, from the sentence

dx Crown(x) A OnHead(x,John)

we can infer the sentence
Crown(Cy) A OnHead(C\,John)

as long as C; does not appear elsewhere in the knowledge base. Basically, the existential
sentence says there is some object satisfying a condition, and applying the existential instan-
tiation rule just gives a name to that object. Of course, that name must not already belong
to another object. Mathematics provides a nice example: suppose we discover that there is a
number that is a little bigger than 2.71828 and that satisfies the equation d(x*)/dy=x" for x.
We can give this number the name e, but it would be a mistake to give it the name of an
existing object, such as 7. In logic, the new name is called a Skolem constant.

Whereas Universal Instantiation can be applied many times to the same axiom to pro-
duce many different consequences, Existential Instantiation need only be applied once, and
then the existentially quantified sentence can be discarded. For example, we no longer need
Jx Kill(x, Victim) once we have added the sentence Kill(Murderer, Victim).

9.1.1 Reduction to propositional inference

We now show how to convert any first-order knowledge base into a propositional knowledge
base. The first idea is that, just as an existentially quantified sentence can be replaced by
one instantiation, a universally quantified sentence can be replaced by the set of all possible
instantiations. For example, suppose our knowledge base contains just the sentences

Vx King(x) A Greedy(x) = Evil(x)
King(John)

Greedy(John)
Brother(Richard,John) .

and that the only objects are John and Richard. We apply Ul to the first sentence using all
possible substitutions, {x/John} and {x/Richard}. We obtain

King(John) \ Greedy(John) = Evil(John)
King(Richard) A Greedy(Richard) = Evil(Richard) .

9.1

Next replace ground atomic sentences, such as King(John), with proposition symbols, such
as JohnlsKing. Finally, apply any of the complete propositional algorithms in Chapter 7 to
obtain conclusions such as JohnlsEvil, which is equivalent to Evil(John).

This technique of propositionalization can be made completely general, as we show
in Section 9.5. However, there is a problem: when the knowledge base includes a func-
tion symbol, the set of possible ground-term substitutions is infinite! For example, if the
knowledge base mentions the Father function, then infinitely many nested terms such as
Father(Father(Father(John))) can be constructed.

281

Existential
Instantiation

Skolem constant

Propositionalization



