
Section 8.4 Knowledge Engineering in First-Order Logic 275

In(1,X1) to denote the first input terminal for circuit X1. A similar function Out(n,c) is used

for output terminals. The predicate Arity(c, i, j) asserts that circuit c has i input and j output

terminals. The connectivity between gates can be represented by a predicate, Connected,

which takes two terminals as arguments, as in Connected(Out(1,X1), In(1,X2)).
Finally, we need to know whether a signal is on or off. One possibility is to use a unary

predicate, On(t), which is true when the signal at a terminal is on. This makes it a little

difficult, however, to pose questions such as “What are all the possible values of the signals

at the output terminals of circuit C1 ?” We therefore introduce as objects two signal values,

1 and 0, representing “on” and “off” respectively, and a function Signal(t) that denotes the

signal value for the terminal t.

Encode general knowledge of the domain

One sign that we have a good ontology is that we require only a few general rules, which can

be stated clearly and concisely. These are all the axioms we will need:

1. If two terminals are connected, then they have the same signal:

∀ t1, t2 Terminal(t1)∧Terminal(t2)∧Connected(t1, t2) ⇒
Signal(t1)=Signal(t2) .

2. The signal at every terminal is either 1 or 0:

∀ t Terminal(t) ⇒ Signal(t)=1∨Signal(t)=0 .

3. Connected is commutative:

∀ t1, t2 Connected(t1, t2) ⇔ Connected(t2, t1) .

4. There are four types of gates:

∀g Gate(g)∧ k = Type(g) ⇒ k = AND∨ k = OR∨ k = XOR∨ k = NOT .

5. An AND gate’s output is 0 if and only if any of its inputs is 0:

∀g Gate(g)∧Type(g)=AND ⇒
Signal(Out(1,g))=0 ⇔ ∃n Signal(In(n,g))=0 .

6. An OR gate’s output is 1 if and only if any of its inputs is 1:

∀g Gate(g)∧Type(g)=OR ⇒
Signal(Out(1,g))=1 ⇔ ∃n Signal(In(n,g))=1 .

7. An XOR gate’s output is 1 if and only if its inputs are different:

∀g Gate(g)∧Type(g)=XOR ⇒
Signal(Out(1,g))=1 ⇔ Signal(In(1,g)) '= Signal(In(2,g)) .

8. A NOT gate’s output is different from its input:

∀g Gate(g)∧Type(g)=NOT ⇒
Signal(Out(1,g)) '= Signal(In(1,g)) .

9. The gates (except for NOT) have two inputs and one output.

∀g Gate(g)∧Type(g) = NOT ⇒ Arity(g,1,1) .

∀g Gate(g)∧ k = Type(g)∧ (k = AND∨ k = OR∨ k = XOR) ⇒
Arity(g,2,1)

10. A circuit has terminals, up to its input and output arity, and nothing beyond its arity:

∀c, i, j Circuit(c)∧Arity(c, i, j) ⇒
∀n (n≤ i ⇒ Terminal(In(n,c)))∧ (n > i ⇒ In(n,c) = Nothing)∧
∀n (n≤ j ⇒ Terminal(Out(n,c)))∧ (n > j ⇒ Out(n,c) = Nothing)


