
Section 7.6 Effective Propositional Model Checking 235

function WALKSAT(clauses, p, max flips) returns a satisfying model or failure

inputs: clauses, a set of clauses in propositional logic
p, the probability of choosing to do a “random walk” move, typically around 0.5
max flips, number of value flips allowed before giving up

model←a random assignment of true/false to the symbols in clauses

for each i= 1 to max flips do

if model satisfies clauses then return model

clause←a randomly selected clause from clauses that is false in model
if RANDOM(0, 1) ≤ p then

flip the value in model of a randomly selected symbol from clause

else flip whichever symbol in clause maximizes the number of satisfied clauses
return failure

Figure 7.18 The WALKSAT algorithm for checking satisfiability by randomly flipping the
values of variables. Many versions of the algorithm exist.

as “the set of clauses in which variable Xi appears as a positive literal.” This task is

complicated by the fact that the algorithms are interested only in the clauses that have

not yet been satisfied by previous assignments to variables, so the indexing structures

must be updated dynamically as the computation proceeds.

With these enhancements, modern solvers can handle problems with tens of millions of vari-

ables. They have revolutionized areas such as hardware verification and security protocol

verification, which previously required laborious, hand-guided proofs.

7.6.2 Local search algorithms

We have seen several local search algorithms so far in this book, including HILL-CLIMBING

(page 111) and SIMULATED-ANNEALING (page 115). These algorithms can be applied di-

rectly to satisfiability problems, provided that we choose the right evaluation function. Be-

cause the goal is to find an assignment that satisfies every clause, an evaluation function that

counts the number of unsatisfied clauses will do the job. In fact, this is exactly the measure

used by the MIN-CONFLICTS algorithm for CSPs (page 198). All these algorithms take steps

in the space of complete assignments, flipping the truth value of one symbol at a time. The

space usually contains many local minima, to escape from which various forms of random-

ness are required. In recent years, there has been a great deal of experimentation to find a

good balance between greediness and randomness.

One of the simplest and most effective algorithms to emerge from all this work is called

WALKSAT (Figure 7.18). On every iteration, the algorithm picks an unsatisfied clause and

picks a symbol in the clause to flip. It chooses randomly between two ways to pick which

symbol to flip: (1) a “min-conflicts” step that minimizes the number of unsatisfied clauses in

the new state and (2) a “random walk” step that picks the symbol randomly.

When WALKSAT returns a model, the input sentence is indeed satisfiable, but when it

returns failure, there are two possible causes: either the sentence is unsatisfiable or we need to

give the algorithm more time. If we set max flips=∞ and p > 0, WALKSAT will eventually

return a model (if one exists), because the random-walk steps will eventually hit upon the


