
Section 7.5 Propositional Theorem Proving 231

function PL-FC-ENTAILS?(KB, q) returns true or false

inputs: KB, the knowledge base, a set of propositional definite clauses
q, the query, a proposition symbol

count←a table, where count[c] is initially the number of symbols in clause c’s premise
inferred←a table, where inferred[s] is initially false for all symbols
queue←a queue of symbols, initially symbols known to be true in KB

while queue is not empty do

p←POP(queue)
if p = q then return true

if inferred[p] = false then
inferred[p]← true

for each clause c in KB where p is in c.PREMISE do

decrement count[c]
if count[c] = 0 then add c.CONCLUSION to queue

return false

Figure 7.15 The forward-chaining algorithm for propositional logic. The queue keeps track
of symbols known to be true but not yet “processed.” The count table keeps track of how
many premises of each implication are not yet proven. Whenever a new symbol p from
the queue is processed, the count is reduced by one for each implication in whose premise
p appears (easily identified in constant time with appropriate indexing.) If a count reaches
zero, all the premises of the implication are known, so its conclusion can be added to the
queue. Finally, we need to keep track of which symbols have been processed; a symbol that
is already in the set of inferred symbols need not be added to the queue again. This avoids
redundant work and prevents loops caused by implications such as P⇒ Q and Q⇒ P.

To see this, assume the opposite, namely that some clause a1 ∧ . . .∧ ak ⇒ b is false in

the model. Then a1 ∧ . . .∧ ak must be true in the model and b must be false in the model.

But this contradicts our assumption that the algorithm has reached a fixed point, because we

would now be licensed to add b to the KB. We can conclude, therefore, that the set of atomic

sentences inferred at the fixed point defines a model of the original KB. Furthermore, any

atomic sentence q that is entailed by the KB must be true in all its models and in this model

in particular. Hence, every entailed atomic sentence q must be inferred by the algorithm.

Forward chaining is an example of the general concept of data-driven reasoning—that Data-driven

is, reasoning in which the focus of attention starts with the known data. It can be used within

an agent to derive conclusions from incoming percepts, often without a specific query in

mind. For example, the wumpus agent might TELL its percepts to the knowledge base using

an incremental forward-chaining algorithm in which new facts can be added to the agenda to

initiate new inferences. In humans, a certain amount of data-driven reasoning occurs as new

information arrives. For example, if I am indoors and hear rain starting to fall, it might occur

to me that the picnic will be canceled. Yet it will probably not occur to me that the seventeenth

petal on the largest rose in my neighbor’s garden will get wet; humans keep forward chaining

under careful control, lest they be swamped with irrelevant consequences.

The backward-chaining algorithm, as its name suggests, works backward from the query.

If the query q is known to be true, then no work is needed. Otherwise, the algorithm finds


