
Bibliographical and Historical Notes 143

Linear programming (LP) was first studied systematically by the mathematician Leonid

Kantorovich (1939). It was one of the first applications of computers; the simplex algo-

rithm (Dantzig, 1949) is still used despite worst-case exponential complexity. Karmarkar

(1984) developed the far more efficient family of interior-point methods, which was shown

to have polynomial complexity for the more general class of convex optimization problems

by Nesterov and Nemirovski (1994). Excellent introductions to convex optimization are pro-

vided by Ben-Tal and Nemirovski (2001) and Boyd and Vandenberghe (2004).

Work by Sewall Wright (1931) on the concept of a fitness landscape was an impor-

tant precursor to the development of genetic algorithms. In the 1950s, several statisticians,

including Box (1957) and Friedman (1959), used evolutionary techniques for optimization

problems, but it wasn’t until Rechenberg (1965) introduced evolution strategies to solve op-

timization problems for airfoils that the approach gained popularity. In the 1960s and 1970s,

John Holland (1975) championed genetic algorithms, both as a useful optimization tool and

as a method to expand our understanding of adaptation (Holland, 1995).

The artificial life movement (Langton, 1995) took this idea one step further, viewing

the products of genetic algorithms as organisms rather than just solutions to problems. The

Baldwin effect discussed in the chapter was proposed roughly simultaneously by Conwy

Lloyd Morgan (1896) and James Baldwin (1896). Computer simulations have helped to

clarify its implications (Hinton and Nowlan, 1987; Ackley and Littman, 1991; Morgan and

Griffiths, 2015). Smith and Szathmáry (1999), Ridley (2004), and Carroll (2007) provide

general background on evolution.

Most comparisons of genetic algorithms to other approaches (especially stochastic hill

climbing) have found that the genetic algorithms are slower to converge (O’Reilly and Op-

pacher, 1994; Mitchell et al., 1996; Juels and Wattenberg, 1996; Baluja, 1997). Such findings

are not universally popular within the GA community, but recent attempts within that com-

munity to understand population-based search as an approximate form of Bayesian learning

(see Chapter 20) might help close the gap between the field and its critics (Pelikan et al.,

1999). The theory of quadratic dynamical systems may also explain the performance of

GAs (Rabani et al., 1998). There are some impressive practical applications of GAs, in areas

as diverse as antenna design (Lohn et al., 2001), computer-aided design (Renner and Ekart,

2003), climate models (Stanislawska et al., 2015), medicine (Ghaheri et al., 2015), and de-

signing deep neural networks (Miikkulainen et al., 2019).

The field of genetic programming is a subfield of genetic algorithms in which the rep-

resentations are programs rather than bit strings. The programs are represented in the form

of syntax trees, either in a standard programming language or in specially designed formats

to represent electronic circuits, robot controllers, and so on. Crossover involves splicing to-

gether subtrees in such a way that the offspring are guaranteed to be well-formed expressions.

Interest in genetic programming was spurred by the work of John Koza (1992, 1994),

but it goes back at least to early experiments with machine code by Friedberg (1958) and

with finite-state automata by Fogel et al. (1966). As with genetic algorithms, there is debate

about the effectiveness of the technique. Koza et al. (1999) describe experiments in the use

of genetic programming to design circuit devices.

The journals Evolutionary Computation and IEEE Transactions on Evolutionary Com-

putation cover evolutionary algorithms; articles are also found in Complex Systems, Adaptive

Behavior, and Artificial Life. The main conference is the Genetic and Evolutionary Com-


