
Section 4.5 Online Search Agents and Unknown Environments 137

function ONLINE-DFS-AGENT(problem, s′) returns an action
persistent: s, a, the previous state and action, initially null

result, a table mapping (s, a) to s′, initially empty
untried, a table mapping s to a list of untried actions
unbacktracked, a table mapping s to a queue of states never backtracked to

if problem.IS-GOAL(s′) then return stop

if s′ is a new state (not in untried) then untried[s′]←problem.ACTIONS(s′)
if s is not null then

result[s, a]←s′

add s to the end of unbacktracked[s′]
if untried[s′] is empty then

if unbacktracked[s′] is empty then return stop

s′, a←null, an action b such that result[s′, b] = POP(unbacktracked[s′])
else a←POP(untried[s′])
s← s′

return a

Figure 4.21 An online search agent that uses depth-first exploration. The agent can safely
explore only in state spaces in which every action can be “undone” by some other action.

mazes and 8-puzzles, are clearly safely explorable (if they have any solution at all). We will

cover the subject of safe exploration in more depth in Section 22.3.2.

Even in safely explorable environments, no bounded competitive ratio can be guaranteed

if there are paths of unbounded cost. This is easy to show in environments with irreversible

actions, but in fact it remains true for the reversible case as well, as Figure 4.20(b) shows.

For this reason, it is common to characterize the performance of online search algorithms in

terms of the size of the entire state space rather than just the depth of the shallowest goal.

4.5.2 Online search agents

After each action, an online agent in an observable environment receives a percept telling it

what state it has reached; from this information, it can augment its map of the environment.

The updated map is then used to plan where to go next. This interleaving of planning and

action means that online search algorithms are quite different from the offline search algo-

rithms we have seen previously: offline algorithms explore their model of the state space,

while online algorithms explore the real world. For example, A∗ can expand a node in one

part of the space and then immediately expand a node in a distant part of the space, because

node expansion involves simulated rather than real actions.

An online algorithm, on the other hand, can discover successors only for a state that it

physically occupies. To avoid traveling all the way to a distant state to expand the next node,

it seems better to expand nodes in a local order. Depth-first search has exactly this property

because (except when the algorithm is backtracking) the next node expanded is a child of the

previous node expanded.

An online depth-first exploration agent (for deterministic but unknown actions) is shown

in Figure 4.21. This agent stores its map in a table, result[s,a], that records the state resulting

from executing action a in state s. (For nondeterministic actions, the agent could record a set


