
Section 4.5 Online Search Agents and Unknown Environments 135

search is also helpful in nondeterministic domains because it allows the agent to focus its

computational efforts on the contingencies that actually arise rather than those that might

happen but probably won’t.

Of course, there is a tradeoff: the more an agent plans ahead, the less often it will find

itself up the creek without a paddle. In unknown environments, where the agent does not

know what states exist or what its actions do, the agent must use its actions as experiments in

order to learn about the environment.

A canonical example of online search is the mapping problem: a robot is placed in an Mapping problem

unknown building and must explore to build a map that can later be used for getting from

A to B. Methods for escaping from labyrinths—required knowledge for aspiring heroes of

antiquity—are also examples of online search algorithms. Spatial exploration is not the only

form of online exploration, however. Consider a newborn baby: it has many possible actions

but knows the outcomes of none of them, and it has experienced only a few of the possible

states that it can reach.

4.5.1 Online search problems

An online search problem is solved by interleaving computation, sensing, and acting. We’ll

start by assuming a deterministic and fully observable environment (Chapter 17 relaxes these

assumptions) and stipulate that the agent knows only the following:

• ACTIONS(s), the legal actions in state s;

• c(s,a,s′), the cost of applying action a in state s to arrive at state s′. Note that this cannot

be used until the agent knows that s′ is the outcome.

• IS-GOAL(s), the goal test.

Note in particular that the agent cannot determine RESULT(s, a) except by actually being in s

and doing a. For example, in the maze problem shown in Figure 4.19, the agent does not know

that going Up from (1,1) leads to (1,2); nor, having done that, does it know that going Down

will take it back to (1,1). This degree of ignorance can be reduced in some applications—for

example, a robot explorer might know how its movement actions work and be ignorant only

of the locations of obstacles.

Finally, the agent might have access to an admissible heuristic function h(s) that estimates

the distance from the current state to a goal state. For example, in Figure 4.19, the agent might

know the location of the goal and be able to use the Manhattan-distance heuristic (page 97).

Typically, the agent’s objective is to reach a goal state while minimizing cost. (Another

possible objective is simply to explore the entire environment.) The cost is the total path

cost that the agent incurs as it travels. It is common to compare this cost with the path cost

the agent would incur if it knew the search space in advance—that is, the optimal path in

the known environment. In the language of online algorithms, this comparison is called the

competitive ratio; we would like it to be as small as possible. Competitive ratio

Online explorers are vulnerable to dead ends: states from which no goal state is reach- Dead end

able. If the agent doesn’t know what each action does, it might execute an action such as

“jump into a bottomless pit” and remain stuck there. In general, no algorithm can avoid dead !
ends in all state spaces. Consider the two dead-end state spaces in Figure 4.20(a). An online

search algorithm that has visited states S and A cannot tell if it is in the top state space or

the bottom one; the two look identical given what the agent has seen. Therefore, there is no


