form of a heuristic function that estimates how far a given state is from the goal, or if we precompute partial solutions involving patterns or landmarks.

- Before an agent can start searching, a well-defined **problem** must be formulated.
- A problem consists of five parts: the **initial state**, a set of **actions**, a **transition model** describing the results of those actions, a set of **goal states**, and an **action cost function**.
- The environment of the problem is represented by a **state space graph**. A **path** through the state space (a sequence of actions) from the initial state to a goal state is a **solution**.
- Search algorithms generally treat states and actions as **atomic**, without any internal structure (although we introduced features of states when it came time to do learning).
- Search algorithms are judged on the basis of **completeness**, **cost optimality**, **time complexity**, and **space complexity**.
- **Uninformed search** methods have access only to the problem definition. Algorithms build a search tree in an attempt to find a solution. Algorithms differ based on which node they expand first:
 - Best-first search selects nodes for expansion using an evaluation function.
 - **Breadth-first search** expands the shallowest nodes first; it is complete, optimal for unit action costs, but has exponential space complexity.
 - Uniform-cost search expands the node with lowest path cost, g(n), and is optimal for general action costs.
 - Depth-first search expands the deepest unexpanded node first. It is neither complete nor optimal, but has linear space complexity. Depth-limited search adds a depth bound.
 - Iterative deepening search calls depth-first search with increasing depth limits until a goal is found. It is complete when full cycle checking is done, optimal for unit action costs, has time complexity comparable to breadth-first search, and has linear space complexity.
 - **Bidirectional search** expands two frontiers, one around the initial state and one around the goal, stopping when the two frontiers meet.
- Informed search methods have access to a heuristic function h(n) that estimates the cost of a solution from n. They may have access to additional information such as pattern databases with solution costs.
 - Greedy best-first search expands nodes with minimal h(n). It is not optimal but is often efficient.
 - A* search expands nodes with minimal f(n) = g(n) + h(n). A* is complete and optimal, provided that h(n) is admissible. The space complexity of A* is still an issue for many problems.
 - Bidirectional A* search is sometimes more efficient than A* itself.
 - **IDA**^{*} (iterative deepening A^{*} search) is an iterative deepening version of A^{*}, and thus adresses the space complexity issue.
 - RBFS (recursive best-first search) and SMA* (simplified memory-bounded A*) are robust, optimal search algorithms that use limited amounts of memory; given enough time, they can solve problems for which A* runs out of memory.