
9 INFERENCE IN
FIRST-ORDER LOGIC

In which we define effective procedures for answering questions posed in first-
order logic.

Chapter 7 defined the notion of inference and showed how sound and complete inference can
be achieved for propositional logic. In this chapter, we extend those results to obtain algo-
rithms that can answer any answerable question stated in first-order logic. This is significant,
because more or less anything can be stated in first-order logic if you work hard enough at it.

Section 9.1 introduces inference rules for quantifiers and shows how to reduce first-
order inference to propositional inference, albeit at great expense. Section 9.2 describes the
idea of unification, showing how it can be used to construct inference rules that work di-
rectly with first-order sentences. We then discuss three major families of first-order inference
algorithms: forward chaining and its applications to deductive databases and production
systems are covered in Section 9.3; backward chaining and logic programming systems
are developed in Section 9.4; and resolution-based theorem-proving systems are described
in Section 9.5. In general, one tries to use the most efficient method that can accommodate the
facts and axioms that need to be expressed. Reasoning with fully general first-order sentences
using resolution is usually less efficient than reasoning with definite clauses using forward or
backward chaining.

9.1 PROPOSITIONAL VS. FIRST-ORDER INFERENCE

This section and the next introduce the ideas underlying modern logical inference systems.
We begin with some simple inference rules that can be applied to sentences with quantifiers
to obtain sentences without quantifiers. These rules lead naturally to the idea that first-order
inference can be done by converting the knowledge base to propositional logic and using
propositional inference, which we already know how to do. The next section points out an
obvious shortcut, leading to inference methods that manipulate first-order sentences directly.
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Inference rules for quantifiers

Let us begin with universal quantifiers. Suppose our knowledge base contains the standard
folkloric axiom stating that all greedy kings are evil:

∀x King(x) ∧Greedy(x) ⇒ Evil(x) .

Then it seems quite permissible to infer any of the following sentences:

King(John) ∧Greedy(John) ⇒ Evil(John) .
King(Richard) ∧Greedy(Richard) ⇒ Evil(Richard) .
King(Father(John)) ∧Greedy(Father(John)) ⇒ Evil(Father(John)) .

...

The rule of Universal Instantiation (UI for short) says that we can infer any sentence ob-UNIVERSAL
INSTANTIATION

tained by substituting a ground term (a term without variables) for the variable. 1 To write
out the inference rule formally, we use the notion of substitutions introduced in Section 8.3.
Let SUBST(θ, α) denote the result of applying the substitution θ to the sentence α. Then the
rule is written

∀ v α

SUBST({v/g}, α)

for any variable v and ground term g. For example, the three sentences given earlier are
obtained with the substitutions {x/John}, {x/Richard}, and {x/Father(John)}.

The corresponding Existential Instantiation rule for the existential quantifier is slightlyEXISTENTIAL
INSTANTIATION

more complicated. For any sentence α, variable v, and constant symbol k that does not appear
elsewhere in the knowledge base,

∃ v α

SUBST({v/k}, α)
.

For example, from the sentence

∃x Crown(x) ∧OnHead(x, John)

we can infer the sentence

Crown(C1) ∧OnHead(C1, John)

as long as C1 does not appear elsewhere in the knowledge base. Basically, the existential
sentence says there is some object satisfying a condition, and the instantiation process is just
giving a name to that object. Naturally, that name must not already belong to another object.
Mathematics provides a nice example: suppose we discover that there is a number that is a
little bigger than 2.71828 and that satisfies the equation d(xy)/dy = xy for x. We can give this
number a name, such as e, but it would be a mistake to give it the name of an existing object,
such as π. In logic, the new name is called a Skolem constant. Existential Instantiation is aSKOLEM CONSTANT

special case of a more general process called skolemization, which we cover in Section 9.5.

1 Do not confuse these substitutions with the extended interpretations used to define the semantics of quantifiers.
The substitution replaces a variable with a term (a piece of syntax) to produce a new sentence, whereas an
interpretation maps a variable to an object in the domain.
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As well as being more complicated than Universal Instantiation, Existential Instanti-
ation plays a slightly different role in inference. Whereas Universal Instantiation can be
applied many times to produce many different consequences, Existential Instantiation can be
applied once, and then the existentially quantified sentence can be discarded. For example,
once we have added the sentence Kill(Murderer ,Victim), we no longer need the sentence
∃x Kill(x,Victim). Strictly speaking, the new knowledge base is not logically equivalent
to the old, but it can be shown to be inferentially equivalent in the sense that it is satisfiableINFERENTIAL

EQUIVALENCE

exactly when the original knowledge base is satisfiable.

Reduction to propositional inference

Once we have rules for inferring nonquantified sentences from quantified sentences, it be-
comes possible to reduce first-order inference to propositional inference. In this section we
will give the main ideas; the details are given in Section 9.5.

The first idea is that, just as an existentially quantified sentence can be replaced by
one instantiation, a universally quantified sentence can be replaced by the set of all possible
instantiations. For example, suppose our knowledge base contains just the sentences

∀x King(x) ∧Greedy(x) ⇒ Evil(x)
King(John)
Greedy(John)
Brother(Richard , John) .

(9.1)

Then we apply UI to the first sentence using all possible ground term substitutions from the
vocabulary of the knowledge base—in this case, {x/John} and {x/Richard}. We obtain

King(John) ∧Greedy(John) ⇒ Evil(John) ,
King(Richard) ∧Greedy(Richard) ⇒ Evil(Richard) ,

and we discard the universally quantified sentence. Now, the knowledge base is essentially
propositional if we view the ground atomic sentences—King(John), Greedy(John), and
so on—as proposition symbols. Therefore, we can apply any of the complete propositional
algorithms in Chapter 7 to obtain conclusions such as Evil(John).

This technique of propositionalization can be made completely general, as we showPROPOSITIONALIZATION

in Section 9.5; that is, every first-order knowledge base and query can be propositionalized
in such a way that entailment is preserved. Thus, we have a complete decision procedure
for entailment . . . or perhaps not. There is a problem: When the knowledge base includes
a function symbol, the set of possible ground term substitutions is infinite! For example, if
the knowledge base mentions the Father symbol, then infinitely many nested terms such as
Father(Father(Father(John))) can be constructed. Our propositional algorithms will have
difficulty with an infinitely large set of sentences.

Fortunately, there is a famous theorem due to Jacques Herbrand (1930) to the effect
that if a sentence is entailed by the original, first-order knowledge base, then there is a proof
involving just a finite subset of the propositionalized knowledge base. Since any such subset
has a maximum depth of nesting among its ground terms, we can find the subset by first
generating all the instantiations with constant symbols (Richard and John), then all terms of
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depth 1 (Father(Richard) and Father(John)), then all terms of depth 2, and so on, until we
are able to construct a propositional proof of the entailed sentence.

We have sketched an approach to first-order inference via propositionalization that is
complete—that is, any entailed sentence can be proved. This is a major achievement, given
that the space of possible models is infinite. On the other hand, we do not know until the
proof is done that the sentence is entailed! What happens when the sentence is not entailed?
Can we tell? Well, for first-order logic, it turns out that we cannot. Our proof procedure can
go on and on, generating more and more deeply nested terms, but we will not know whether
it is stuck in a hopeless loop or whether the proof is just about to pop out. This is very much
like the halting problem for Turing machines. Alan Turing (1936) and Alonzo Church (1936)
both proved, in rather different ways, the inevitability of this state of affairs. The question of
entailment for first-order logic is semidecidable—that is, algorithms exist that say yes to every
entailed sentence, but no algorithm exists that also says no to every nonentailed sentence.

9.2 UNIFICATION AND LIFTING

The preceding section described the understanding of first-order inference that existed up
to the early 1960s. The sharp-eyed reader (and certainly the computational logicians of the
early 1960s) will have noticed that the propositionalization approach is rather inefficient. For
example, given the query Evil(x) and the knowledge base in Equation (9.1), it seems per-
verse to generate sentences such as King(Richard) ∧Greedy(Richard)⇒ Evil(Richard).
Indeed, the inference of Evil(John) from the sentences

∀x King(x) ∧Greedy(x) ⇒ Evil(x)
King(John)
Greedy(John)

seems completely obvious to a human being. We now show how to make it completely
obvious to a computer.

A first-order inference rule

The inference that John is evil works like this: find some x such that x is a king and x is
greedy, and then infer that this x is evil. More generally, if there is some substitution θ
that makes the premise of the implication identical to sentences already in the knowledge
base, then we can assert the conclusion of the implication, after applying θ. In this case, the
substitution {x/John} achieves that aim.

We can actually make the inference step do even more work. Suppose that instead of
knowing Greedy(John), we know that everyone is greedy:

∀ y Greedy(y) . (9.2)

Then we would still like to be able to conclude that Evil(John), because we know that
John is a king (given) and John is greedy (because everyone is greedy). What we need
for this to work is find a substitution both for the variables in the implication sentence
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and for the variables in the sentences to be matched. In this case, applying the substitution
{x/John, y/John} to the implication premises King(x) and Greedy(x) and the knowledge
base sentences King(John) and Greedy(y) will make them identical. Thus, we can infer the
conclusion of the implication.

This inference process can be captured as a single inference rule that we call General-
ized Modus Ponens: For atomic sentences pi, pi

′, and q, where there is a substitution θ suchGENERALIZED
MODUS PONENS

that SUBST(θ, pi
′)= SUBST(θ, pi), for all i,

p1
′, p2

′, . . . , pn
′, (p1 ∧ p2 ∧ . . . ∧ pn ⇒ q)

SUBST(θ, q)
.

There are n+1 premises to this rule: the n atomic sentences pi
′ and the one implication. The

conclusion is the result of applying the substitution θ to the consequent q. For our example:

p1
′ is King(John) p1 is King(x)

p2
′ is Greedy(y) p2 is Greedy(x)

θ is {x/John, y/John} q is Evil(x)
SUBST(θ, q) is Evil(John) .

It is easy to show that Generalized Modus Ponens is a sound inference rule. First, we observe
that, for any sentence p (whose variables are assumed to be universally quantified) and for
any substitution θ,

p |= SUBST(θ, p) .

This holds for the same reasons that the Universal Instantiation rule holds. It holds in partic-
ular for a θ that satisfies the conditions of the Generalized Modus Ponens rule. Thus, from
p1

′, . . . , pn
′ we can infer

SUBST(θ, p1
′) ∧ . . . ∧ SUBST(θ, pn

′)

and from the implication p1 ∧ . . . ∧ pn ⇒ q we can infer

SUBST(θ, p1) ∧ . . . ∧ SUBST(θ, pn) ⇒ SUBST(θ, q) .

Now, θ in Generalized Modus Ponens is defined so that SUBST(θ, pi
′)= SUBST(θ, pi), for all

i; therefore the first of these two sentences matches the premise of the second exactly. Hence,
SUBST(θ, q) follows by Modus Ponens.

Generalized Modus Ponens is a lifted version of Modus Ponens—it raises Modus Po-LIFTING

nens from propositional to first-order logic. We will see in the rest of the chapter that we can
develop lifted versions of the forward chaining, backward chaining, and resolution algorithms
introduced in Chapter 7. The key advantage of lifted inference rules over propositionalization
is that they make only those substitutions which are required to allow particular inferences to
proceed. One potentially confusing point is that one sense Generalized Modus Ponens is less
general than Modus Ponens (page 211): Modus Ponens allows any single α on the left-hand
side of the implication, while Generalized Modus Ponens requires a special format for this
sentence. It is generalized in the sense that it allows any number of P ′

i .

Unification

Lifted inference rules require finding substitutions that make different logical expressions
look identical. This process is called unification and is a key component of all first-orderUNIFICATION
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inference algorithms. The UNIFY algorithm takes two sentences and returns a unifier forUNIFIER

them if one exists:

UNIFY(p, q)= θ where SUBST(θ, p)= SUBST(θ, q) .

Let us look at some examples of how UNIFY should behave. Suppose we have a query
Knows(John, x): whom does John know? Some answers to this query can be found by find-
ing all sentences in the knowledge base that unify with Knows(John, x). Here are the results
of unification with four different sentences that might be in the knowledge base.

UNIFY(Knows(John, x), Knows(John, Jane)) = {x/Jane}
UNIFY(Knows(John, x), Knows(y,Bill)) = {x/Bill , y/John}
UNIFY(Knows(John, x), Knows(y,Mother(y))) = {y/John, x/Mother(John)}
UNIFY(Knows(John, x), Knows(x,Elizabeth)) = fail .

The last unification fails because x cannot take on the values John and Elizabeth at the
same time. Now, remember that Knows(x,Elizabeth) means “Everyone knows Elizabeth,”
so we should be able to infer that John knows Elizabeth. The problem arises only because
the two sentences happen to use the same variable name, x. The problem can be avoided
by standardizing apart one of the two sentences being unified, which means renaming itsSTANDARDIZING

APART

variables to avoid name clashes. For example, we can rename x in Knows(x,Elizabeth) to
z17 (a new variable name) without changing its meaning. Now the unification will work:

UNIFY(Knows(John, x), Knows(z17,Elizabeth)) = {x/Elizabeth, z17/John} .

Exercise 9.7 delves further into the need for standardizing apart.
There is one more complication: we said that UNIFY should return a substitution

that makes the two arguments look the same. But there could be more than one such uni-
fier. For example, UNIFY(Knows(John, x),Knows(y, z)) could return {y/John, x/z} or
{y/John, x/John, z/John}. The first unifier gives Knows(John, z) as the result of unifi-
cation, whereas the second gives Knows(John, John). The second result could be obtained
from the first by an additional substitution {z/John}; we say that the first unifier is more
general than the second, because it places fewer restrictions on the values of the variables. It
turns out that, for every unifiable pair of expressions, there is a single most general unifierMOST GENERAL

UNIFIER

(or MGU) that is unique up to renaming of variables. In this case it is {y/John, x/z}.
An algorithm for computing most general unifiers is shown in Figure 9.1. The process is

very simple: recursively explore the two expressions simultaneously “side by side,” building
up a unifier along the way, but failing if two corresponding points in the structures do not
match. There is one expensive step: when matching a variable against a complex term,
one must check whether the variable itself occurs inside the term; if it does, the match fails
because no consistent unifier can be constructed. This so-called occur check makes theOCCUR CHECK

complexity of the entire algorithm quadratic in the size of the expressions being unified.
Some systems, including all logic programming systems, simply omit the occur check and
sometimes make unsound inferences as a result; other systems use more complex algorithms
with linear-time complexity.
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function UNIFY(x , y , θ) returns a substitution to make x and y identical
inputs: x , a variable, constant, list, or compound

y , a variable, constant, list, or compound
θ, the substitution built up so far (optional, defaults to empty)

if θ = failure then return failure
else if x = y then return θ
else if VARIABLE?(x ) then return UNIFY-VAR(x , y , θ)
else if VARIABLE?(y) then return UNIFY-VAR(y , x , θ)
else if COMPOUND?(x ) and COMPOUND?(y) then

return UNIFY(ARGS[x ], ARGS[y], UNIFY(OP[x ], OP[y], θ))
else if LIST?(x ) and LIST?(y) then

return UNIFY(REST[x ], REST[y], UNIFY(FIRST[x ], FIRST[y], θ))
else return failure

function UNIFY-VAR(var , x , θ) returns a substitution
inputs: var , a variable

x , any expression
θ, the substitution built up so far

if {var/val} ∈ θ then return UNIFY(val , x , θ)
else if {x/val} ∈ θ then return UNIFY(var , val , θ)
else if OCCUR-CHECK?(var , x ) then return failure
else return add {var /x} to θ

Figure 9.1 The unification algorithm. The algorithm works by comparing the structures
of the inputs, element by element. The substitution θ that is the argument to UNIFY is built
up along the way and is used to make sure that later comparisons are consistent with bindings
that were established earlier. In a compound expression, such as F (A, B), the function OP

picks out the function symbol F and the function ARGS picks out the argument list (A, B).

Storage and retrieval

Underlying the TELL and ASK functions used to inform and interrogate a knowledge base
are the more primitive STORE and FETCH functions. STORE(s) stores a sentence s into the
knowledge base and FETCH(q) returns all unifiers such that the query q unifies with some
sentence in the knowledge base. The problem we used to illustrate unification—finding all
facts that unify with Knows(John, x)—is an instance of FETCHing.

The simplest way to implement STORE and FETCH is to keep all the facts in the knowl-
edge base in one long list; then, given a query q, call UNIFY(q, s) for every sentence s in the
list. Such a process is inefficient, but it works, and it’s all you need to understand the rest of
the chapter. The remainder of this section outlines ways to make retrieval more efficient, and
can be skipped on first reading.

We can make FETCH more efficient by ensuring that unifications are attempted only
with sentences that have some chance of unifying. For example, there is no point in trying
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to unify Knows(John, x) with Brother(Richard , John). We can avoid such unifications by
indexing the facts in the knowledge base. A simple scheme called predicate indexing putsINDEXING

PREDICATE
INDEXING all the Knows facts in one bucket and all the Brother facts in another. The buckets can be

stored in a hash table2 for efficient access.
Predicate indexing is useful when there are many predicate symbols but only a few

clauses for each symbol. In some applications, however, there are many clauses for a given
predicate symbol. For example, suppose that the tax authorities want to keep track of who
employs whom, using a predicate Employs(x, y). This would be a very large bucket with
perhaps millions of employers and tens of millions of employees. Answering a query such as
Employs(x,Richard) with predicate indexing would require scanning the entire bucket.

For this particular query, it would help if facts were indexed both by predicate and by
second argument, perhaps using a combined hash table key. Then we could simply construct
the key from the query and retrieve exactly those facts that unify with the query. For other
queries, such as Employs(AIMA.org, y), we would need to have indexed the facts by com-
bining the predicate with the first argument. Therefore, facts can be stored under multiple
index keys, rendering them instantly accessible to various queries that they might unify with.

Given a sentence to be stored, it is possible to construct indices for all possible queries
that unify with it. For the fact Employs(AIMA.org,Richard), the queries are

Employs(AIMA.org,Richard) Does AIMA.org employ Richard?
Employs(x,Richard) Who employs Richard?
Employs(AIMA.org, y) Whom does AIMA.org employ?
Employs(x, y) Who employs whom?

These queries form a subsumption lattice, as shown in Figure 9.2(a). The lattice has someSUBSUMPTION
LATTICE

interesting properties. For example, the child of any node in the lattice is obtained from its
parent by a single substitution; and the “highest” common descendant of any two nodes is
the result of applying their most general unifier. The portion of the lattice above any ground
fact can be constructed systematically (Exercise 9.5). A sentence with repeated constants has
a slightly different lattice, as shown in Figure 9.2(b). Function symbols and variables in the
sentences to be stored introduce still more interesting lattice structures.

The scheme we have described works very well whenever the lattice contains a small
number of nodes. For a predicate with n arguments, the lattice contains O(2n) nodes. If
function symbols are allowed, the number of nodes is also exponential in the size of the terms
in the sentence to be stored. This can lead to a huge number of indices. At some point, the
benefits of indexing are outweighed by the costs of storing and maintaining all the indices. We
can respond by adopting a fixed policy, such as maintaining indices only on keys composed of
a predicate plus each argument, or by using an adaptive policy that creates indices to meet the
demands of the kinds of queries being asked. For most AI systems, the number of facts to be
stored is small enough that efficient indexing is considered a solved problem. For industrial
and commercial databases, the problem has received substantial technology development.

2 A hash table is a data structure for storing and retrieving information indexed by fixed keys. For practical
purposes, a hash table can be considered to have constant storage and retrieval times, even when the table contains
a very large number of items.
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Employs(x,y)

Employs(x,Richard) Employs(AIMA.org,y)

Employs(AIMA.org,Richard)

Employs(x,y)

Employs(John,John)

Employs(x,x)Employs(x,John) Employs(John,y)

(a) (b)

Figure 9.2 (a) The subsumption lattice whose lowest node is the sentence
Employs(AIMA.org ,Richard). (b) The subsumption lattice for the sentence
Employs(John, John).

9.3 FORWARD CHAINING

A forward-chaining algorithm for propositional definite clauses was given in Section 7.5.
The idea is simple: start with the atomic sentences in the knowledge base and apply Modus
Ponens in the forward direction, adding new atomic sentences, until no further inferences can
be made. Here, we explain how the algorithm is applied to first-order definite clauses and
how it can be implemented efficiently. Definite clauses such as Situation ⇒ Response are
especially useful for systems that make inferences in response to newly arrived information.
Many systems can be defined this way, and reasoning with forward chaining can be much
more efficient than resolution theorem proving. Therefore it is often worthwhile to try to build
a knowledge base using only definite clauses so that the cost of resolution can be avoided.

First-order definite clauses

First-order definite clauses closely resemble propositional definite clauses (page 217): they
are disjunctions of literals of which exactly one is positive. A definite clause either is atomic
or is an implication whose antecedent is a conjunction of positive literals and whose conse-
quent is a single positive literal. The following are first-order definite clauses:

King(x) ∧Greedy(x) ⇒ Evil(x) .
King(John) .
Greedy(y) .

Unlike propositional literals, first-order literals can include variables, in which case those
variables are assumed to be universally quantified. (Typically, we omit universal quantifiers
when writing definite clauses.) Definite clauses are a suitable normal form for use with
Generalized Modus Ponens.

Not every knowledge base can be converted into a set of definite clauses, because of the
single-positive-literal restriction, but many can. Consider the following problem:

The law says that it is a crime for an American to sell weapons to hostile nations. The
country Nono, an enemy of America, has some missiles, and all of its missiles were sold
to it by Colonel West, who is American.
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We will prove that West is a criminal. First, we will represent these facts as first-order definite
clauses. The next section shows how the forward-chaining algorithm solves the problem.

“. . . it is a crime for an American to sell weapons to hostile nations”:

American(x) ∧Weapon(y) ∧ Sells(x, y, z) ∧ Hostile(z) ⇒ Criminal(x) . (9.3)

“Nono . . . has some missiles.” The sentence ∃x Owns(Nono, x)∧Missile(x) is transformed
into two definite clauses by Existential Elimination, introducing a new constant M1:

Owns(Nono,M1) (9.4)

Missile(M1). (9.5)

“All of its missiles were sold to it by Colonel West”:

Missile(x) ∧Owns(Nono, x) ⇒ Sells(West , x,Nono) . (9.6)

We will also need to know that missiles are weapons:

Missile(x)⇒Weapon(x) (9.7)

and we must know that an enemy of America counts as “hostile”:

Enemy(x,America) ⇒ Hostile(x) . (9.8)

“West, who is American . . .”:

American(West) . (9.9)

“The country Nono, an enemy of America . . .”:

Enemy(Nono,America) . (9.10)

This knowledge base contains no function symbols and is therefore an instance of the class
of Datalog knowledge bases—that is, sets of first-order definite clauses with no functionDATALOG

symbols. We will see that the absence of function symbols makes inference much easier.

A simple forward-chaining algorithm

The first forward chaining algorithm we will consider is a very simple one, as shown in
Figure 9.3. Starting from the known facts, it triggers all the rules whose premises are satisfied,
adding their conclusions to the known facts. The process repeats until the query is answered
(assuming that just one answer is required) or no new facts are added. Notice that a fact is
not “new” if it is just a renaming of a known fact. One sentence is a renaming of another ifRENAMING

they are identical except for the names of the variables. For example, Likes(x, IceCream)
and Likes(y, IceCream) are renamings of each other because they differ only in the choice
of x or y; their meanings are identical: everyone likes ice cream.

We will use our crime problem to illustrate how FOL-FC-ASK works. The implication
sentences are (9.3), (9.6), (9.7), and (9.8). Two iterations are required:

• On the first iteration, rule (9.3) has unsatisfied premises.
Rule (9.6) is satisfied with {x/M1}, and Sells(West ,M1,Nono) is added.
Rule (9.7) is satisfied with {x/M1}, and Weapon(M1) is added.
Rule (9.8) is satisfied with {x/Nono}, and Hostile(Nono) is added.
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function FOL-FC-ASK(KB , α) returns a substitution or false

inputs: KB , the knowledge base, a set of first-order definite clauses
α, the query, an atomic sentence

local variables: new , the new sentences inferred on each iteration

repeat until new is empty
new←{}
for each sentence r in KB do

(p1 ∧ . . . ∧ pn ⇒ q)← STANDARDIZE-APART(r )
for each θ such that SUBST(θ,p1 ∧ . . . ∧ pn) = SUBST(θ,p′

1
∧ . . . ∧ p′

n
)

for some p′

1
, . . . , p′

n
in KB

q ′← SUBST(θ, q)
if q ′ is not a renaming of some sentence already in KB or new then do

add q ′ to new

φ←UNIFY(q ′, α)
if φ is not fail then return φ

add new to KB

return false

Figure 9.3 A conceptually straightforward, but very inefficient, forward-chaining algo-
rithm. On each iteration, it adds to KB all the atomic sentences that can be inferred in one
step from the implication sentences and the atomic sentences already in KB .

Hostile(Nono)

Enemy(Nono,America)Owns(Nono,M1)Missile(M1)American(West)

Weapon(M1)

Criminal(West)

Sells(West,M1,Nono)

Figure 9.4 The proof tree generated by forward chaining on the crime example. The initial
facts appear at the bottom level, facts inferred on the first iteration in the middle level, and
facts inferred on the second iteration at the top level.

• On the second iteration, rule (9.3) is satisfied with {x/West , y/M1, z/Nono}, and
Criminal(West) is added.

Figure 9.4 shows the proof tree that is generated. Notice that no new inferences are possible
at this point because every sentence that could be concluded by forward chaining is already
contained explicitly in the KB. Such a knowledge base is called a fixed point of the inference
process. Fixed points reached by forward chaining with first-order definite clauses are similar
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to those for propositional forward chaining (page 219); the principal difference is that a first-
order fixed point can include universally quantified atomic sentences.

FOL-FC-ASK is easy to analyze. First, it is sound, because every inference is just an
application of Generalized Modus Ponens, which is sound. Second, it is complete for definite
clause knowledge bases; that is, it answers every query whose answers are entailed by any
knowledge base of definite clauses. For Datalog knowledge bases, which contain no function
symbols, the proof of completeness is fairly easy. We begin by counting the number of
possible facts that can be added, which determines the maximum number of iterations. Let k
be the maximum arity (number of arguments) of any predicate, p be the number of predicates,
and n be the number of constant symbols. Clearly, there can be no more than pnk distinct
ground facts, so after this many iterations the algorithm must have reached a fixed point. Then
we can make an argument very similar to the proof of completeness for propositional forward
chaining. (See page 219.) The details of how to make the transition from propositional to
first-order completeness are given for the resolution algorithm in Section 9.5.

For general definite clauses with function symbols, FOL-FC-ASK can generate in-
finitely many new facts, so we need to be more careful. For the case in which an answer to
the query sentence q is entailed, we must appeal to Herbrand’s theorem to establish that the
algorithm will find a proof. (See Section 9.5 for the resolution case.) If the query has no
answer, the algorithm could fail to terminate in some cases. For example, if the knowledge
base includes the Peano axioms

NatNum(0)
∀n NatNum(n) ⇒ NatNum(S(n))

then forward chaining adds NatNum(S(0)), NatNum(S(S(0))), NatNum(S(S(S(0)))),
and so on. This problem is unavoidable in general. As with general first-order logic, entail-
ment with definite clauses is semidecidable.

Efficient forward chaining

The forward chaining algorithm in Figure 9.3 is designed for ease of understanding rather
than for efficiency of operation. There are three possible sources of complexity. First, the
“inner loop” of the algorithm involves finding all possible unifiers such that the premise of
a rule unifies with a suitable set of facts in the knowledge base. This is often called pattern
matching and can be very expensive. Second, the algorithm rechecks every rule on everyPATTERN MATCHING

iteration to see whether its premises are satisfied, even if very few additions are made to the
knowledge base on each iteration. Finally, the algorithm might generate many facts that are
irrelevant to the goal. We will address each of these sources in turn.

Matching rules against known facts

The problem of matching the premise of a rule against the facts in the knowledge base might
seem simple enough. For example, suppose we want to apply the rule

Missile(x)⇒Weapon(x) .
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Diff (wa,nt) ∧Diff (wa, sa) ∧

Diff (nt , q)Diff (nt , sa) ∧

Diff (q,nsw) ∧Diff (q, sa) ∧

Diff (nsw , v) ∧Diff (nsw , sa) ∧

Diff (v, sa) ⇒ Colorable()

Diff (Red ,Blue) Diff (Red ,Green)

Diff (Green,Red) Diff (Green,Blue)

Diff (Blue,Red) Diff (Blue,Green)

(a) (b)

Figure 9.5 (a) Constraint graph for coloring the map of Australia (from Figure5.1). (b)
The map-coloring CSP expressed as a single definite clause. Note that the domains of the
variables are defined implicitly by the constants given in the ground facts for Diff .

Then we need to find all the facts that unify with Missile(x); in a suitably indexed knowledge
base, this can be done in constant time per fact. Now consider a rule such as

Missile(x) ∧Owns(Nono, x) ⇒ Sells(West , x,Nono) .

Again, we can find all the objects owned by Nono in constant time per object; then, for each
object, we could check if whether is a missile. If the knowledge base contains many objects
owned by Nono and very few missiles, however, it would be better to find all the missiles first
and then check whether they are owned by Nono. This is the conjunct ordering problem:CONJUNCT

ORDERING

find an ordering to solve the conjuncts of the rule premise so that the total cost is minimized.
It turns out that finding the optimal ordering is NP-hard, but good heuristics are available. For
example, the most constrained variable heuristic used for CSPs in Chapter 5 would suggest
ordering the conjuncts to look for missiles first if there are fewer missiles than objects that
are owned by Nono.

The connection between pattern matching and constraint satisfaction is actually very
close. We can view each conjunct as a constraint on the variables that it contains—for ex-
ample, Missile(x) is a unary constraint on x. Extending this idea, we can express every
finite-domain CSP as a single definite clause together with some associated ground facts.
Consider the map-coloring problem from Figure 5.1, shown again in Figure 9.5(a). An equiv-
alent formulation as a single definite clause is given in Figure 9.5(b). Clearly, the conclusion
Colorable() can be inferred only if the CSP has a solution. Because CSPs in general include
3SAT problems as special cases, we can conclude that matching a definite clause against a
set of facts is NP-hard.

It might seem rather depressing that forward chaining has an NP-hard matching problem
in its inner loop. There are three ways to cheer ourselves up:
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• We can remind ourselves that most rules in real-world knowledge bases are small and
simple (like the rules in our crime example) rather than large and complex (like the
CSP formulation in Figure 9.5). It is common in the database world to assume that both
the sizes of rules and the arities of predicates are bounded by a constant and to worry
only about data complexity—that is, the complexity of inference as a function of theDATA COMPLEXITY

number of ground facts in the database. It is easy to show that the data complexity of
forward chaining is polynomial.

• We can consider subclasses of rules for which matching is efficient. Essentially every
Datalog clause can be viewed as defining a CSP, so matching will be tractable just
when the corresponding CSP is tractable. Chapter 5 describes several tractable families
of CSPs. For example, if the constraint graph (the graph whose nodes are variables
and whose links are constraints) forms a tree, then the CSP can be solved in linear
time. Exactly the same result holds for rule matching. For instance, if we remove South
Australia from the map in Figure 9.5, the resulting clause is

Diff (wa, nt) ∧Diff (nt , q) ∧Diff (q, nsw) ∧Diff (nsw , v) ⇒ Colorable()

which corresponds to the reduced CSP shown in Figure 5.11. Algorithms for solving
tree-structured CSPs can be applied directly to the problem of rule matching.

• We can work hard to eliminate redundant rule matching attempts in the forward chain-
ing algorithm, which is the subject of the next section.

Incremental forward chaining

When we showed how forward chaining works on the crime example, we cheated; in partic-
ular, we omitted some of the rule matching done by the algorithm shown in Figure 9.3. For
example, on the second iteration, the rule

Missile(x)⇒Weapon(x)

matches against Missile(M1) (again), and of course the conclusion Weapon(M1) is already
known so nothing happens. Such redundant rule matching can be avoided if we make the
following observation: Every new fact inferred on iteration t must be derived from at least
one new fact inferred on iteration t − 1. This is true because any inference that does not
require a new fact from iteration t− 1 could have been done at iteration t− 1 already.

This observation leads naturally to an incremental forward chaining algorithm where,
at iteration t, we check a rule only if its premise includes a conjunct pi that unifies with a fact
p′i newly inferred at iteration t− 1. The rule matching step then fixes pi to match with p′i, but
allows the other conjuncts of the rule to match with facts from any previous iteration. This
algorithm generates exactly the same facts at each iteration as the algorithm in Figure 9.3, but
is much more efficient.

With suitable indexing, it is easy to identify all the rules that can be triggered by any
given fact, and indeed many real systems operate in an “update” mode wherein forward chain-
ing occurs in response to each new fact that is TELLed to the system. Inferences cascade
through the set of rules until the fixed point is reached, and then the process begins again for
the next new fact.
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Typically, only a small fraction of the rules in the knowledge base are actually triggered
by the addition of a given fact. This means that a great deal of redundant work is done in con-
structing partial matches repeatedly that have some unsatisfied premises. Our crime example
is rather too small to show this effectively, but notice that a partial match is constructed on
the first iteration between the rule

American(x) ∧Weapon(y) ∧ Sells(x, y, z) ∧ Hostile(z) ⇒ Criminal(x)

and the fact American(West). This partial match is then discarded and rebuilt on the second
iteration (when the rule succeeds). It would be better to retain and gradually complete the
partial matches as new facts arrive, rather than discarding them.

The rete algorithm3 was the first to address this problem seriously. The algorithmRETE

preprocesses the set of rules in the knowledge base to construct a sort of dataflow network in
which each node is a literal from a rule premise. Variable bindings flow through the network
and are filtered out when they fail to match a literal. If two literals in a rule share a variable—
for example, Sells(x, y, z) ∧ Hostile(z) in the crime example—then the bindings from each
literal are filtered through an equality node. A variable binding reaching a node for an n-
ary literal such as Sells(x, y, z) might have to wait for bindings for the other variables to be
established before the process can continue. At any given point, the state of a rete network
captures all the partial matches of the rules, avoiding a great deal of recomputation.

Rete networks, and various improvements thereon, have been a key component of so-
called production systems, which were among the earliest forward chaining systems inPRODUCTION

SYSTEMS

widespread use.4 The XCON system (originally called R1, McDermott, 1982) was built us-
ing a production system architecture. XCON contained several thousand rules for designing
configurations of computer components for customers of the Digital Equipment Corporation.
It was one of the first clear commercial successes in the emerging field of expert systems.
Many other similar systems have been built using the same underlying technology, which has
been implemented in the general-purpose language OPS-5.

Production systems are also popular in cognitive architectures—that is, models of hu-COGNITIVE
ARCHITECTURES

man reasoning—such as ACT (Anderson, 1983) and SOAR (Laird et al., 1987). In such sys-
tems, the “working memory” of the system models human short-term memory, and the pro-
ductions are part of long-term memory. On each cycle of operation, productions are matched
against the working memory of facts. A production whose conditions are satisfied can add or
delete facts in working memory. In contrast to the typical situation in databases, production
systems often have many rules and relatively few facts. With suitably optimized matching
technology, some modern systems can operate in real time with over a million rules.

Irrelevant facts

The final source of inefficiency in forward chaining appears to be intrinsic to the approach
and also arises in the propositional context. (See Section 7.5.) Forward chaining makes
all allowable inferences based on the known facts, even if they are irrelevant to the goal at
hand. In our crime example, there were no rules capable of drawing irrelevant conclusions,

3 Rete is Latin for net. The English pronunciation rhymes with treaty.
4 The word production in production systems denotes a condition–action rule.
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so the lack of directedness was not a problem. In other cases (e.g., if we have several rules
describing the eating habits of Americans and the prices of missiles), FOL-FC-ASK will
generate many irrelevant conclusions.

One way to avoid drawing irrelevant conclusions is to use backward chaining, as de-
scribed in Section 9.4. Another solution is to restrict forward chaining to a selected subset
of rules; this approach was discussed in the propositional context. A third approach has
emerged in the deductive database community, where forward chaining is the standard tool.
The idea is to rewrite the rule set, using information from the goal, so that only relevant
variable bindings—those belonging to a so-called magic set—are considered during forwardMAGIC SET

inference. For example, if the goal is Criminal(West), the rule that concludes Criminal(x)
will be rewritten to include an extra conjunct that constrains the value of x:

Magic(x) ∧ American(x) ∧Weapon(y) ∧ Sells(x, y, z) ∧Hostile(z) ⇒ Criminal(x) .

The fact Magic(West) is also added to the KB. In this way, even if the knowledge base
contains facts about millions of Americans, only Colonel West will be considered during the
forward inference process. The complete process for defining magic sets and rewriting the
knowledge base is too complex to go into here, but the basic idea is to perform a sort of
“generic” backward inference from the goal in order to work out which variable bindings
need to be constrained. The magic sets approach can therefore be thought of as a kind of
hybrid between forward inference and backward preprocessing.

9.4 BACKWARD CHAINING

The second major family of logical inference algorithms uses the backward chaining ap-
proach introduced in Section 7.5. These algorithms work backward from the goal, chaining
through rules to find known facts that support the proof. We describe the basic algorithm, and
then we describe how it is used in logic programming, which is the most widely used form of
automated reasoning. We will also see that backward chaining has some disadvantages com-
pared with forward chaining, and we look at ways to overcome them. Finally, we will look at
the close connection between logic programming and constraint satisfaction problems.

A backward chaining algorithm

Figure 9.6 shows a simple backward-chaining algorithm, FOL-BC-ASK. It is called with a
list of goals containing a single element, the original query, and returns the set of all substi-
tutions satisfying the query. The list of goals can be thought of as a “stack” waiting to be
worked on; if all of them can be satisfied, then the current branch of the proof succeeds. The
algorithm takes the first goal in the list and finds every clause in the knowledge base whose
positive literal, or head, unifies with the goal. Each such clause creates a new recursive call
in which the premise, or body, of the clause is added to the goal stack. Remember that facts
are clauses with a head but no body, so when a goal unifies with a known fact, no new sub-
goals are added to the stack and the goal is solved. Figure 9.7 is the proof tree for deriving
Criminal(West) from sentences (9.3) through (9.10).
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function FOL-BC-ASK(KB , goals , θ) returns a set of substitutions
inputs: KB , a knowledge base

goals , a list of conjuncts forming a query (θ already applied)
θ, the current substitution, initially the empty substitution { }

local variables: answers , a set of substitutions, initially empty

if goals is empty then return {θ}
q ′← SUBST(θ, FIRST(goals))
for each sentence r in KB where STANDARDIZE-APART(r ) = (p1 ∧ . . . ∧ pn ⇒ q)

and θ′←UNIFY(q , q ′) succeeds
new goals← [p1, . . . , pn|REST(goals)]
answers← FOL-BC-ASK(KB ,new goals , COMPOSE(θ′, θ)) ∪ answers

return answers

Figure 9.6 A simple backward-chaining algorithm.

Hostile(Nono)

Enemy(Nono,America)Owns(Nono,M1)Missile(M1)

Criminal(West)

Missile(y)

Weapon(y) Sells(West,M1,z)American(West)

{y/M1} { }{ }{ }

 {z/Nono}{ }

Figure 9.7 Proof tree constructed by backward chaining to prove that West is a criminal.
The tree should be read depth first, left to right. To prove Criminal(West), we have to prove
the four conjuncts below it. Some of these are in the knowledge base, and others require
further backward chaining. Bindings for each successful unification are shown next to the
corresponding subgoal. Note that once one subgoal in a conjunction succeeds, its substitution
is applied to subsequent subgoals. Thus, by the time FOL-BC-ASK gets to the last conjunct,
originally Hostile(z), z is already bound to Nono.

The algorithm uses composition of substitutions. COMPOSE(θ1, θ2) is the substitutionCOMPOSITION

whose effect is identical to the effect of applying each substitution in turn. That is,

SUBST(COMPOSE(θ1, θ2), p) = SUBST(θ2, SUBST(θ1, p)) .

In the algorithm, the current variable bindings, which are stored in θ, are composed with the
bindings resulting from unifying the goal with the clause head, giving a new set of current
bindings for the recursive call.
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Backward chaining, as we have written it, is clearly a depth-first search algorithm. This
means that its space requirements are linear in the size of the proof (neglecting, for now, the
space required to accumulate the solutions). It also means that backward chaining (unlike
forward chaining) suffers from problems with repeated states and incompleteness. We will
discuss these problems and some potential solutions, but first we will see how backward
chaining is used in logic programming systems.

Logic programming

Logic programming is a technology that comes fairly close to embodying the declarative
ideal described in Chapter 7: that systems should be constructed by expressing knowledge in
a formal language and that problems should be solved by running inference processes on that
knowledge. The ideal is summed up in Robert Kowalski’s equation,

Algorithm = Logic + Control .

Prolog is by far the most widely used logic programming language. Its users number in thePROLOG

hundreds of thousands. It is used primarily as a rapid-prototyping language and for symbol-
manipulation tasks such as writing compilers (Van Roy, 1990) and parsing natural language
(Pereira and Warren, 1980). Many expert systems have been written in Prolog for legal,
medical, financial, and other domains.

Prolog programs are sets of definite clauses written in a notation somewhat different
from standard first-order logic. Prolog uses uppercase letters for variables and lowercase
for constants. Clauses are written with the head preceding the body; “:-” is used for left-
implication, commas separate literals in the body, and a period marks the end of a sentence:

criminal(X) :- american(X), weapon(Y), sells(X,Y,Z), hostile(Z).

Prolog includes “syntactic sugar” for list notation and arithmetic. As an example, here is a
Prolog program for append(X,Y,Z), which succeeds if list Z is the result of appending
lists X and Y:

append([],Y,Y).
append([A|X],Y,[A|Z]) :- append(X,Y,Z).

In English, we can read these clauses as (1) appending an empty list with a list Y produces
the same list Y and (2) [A|Z] is the result of appending [A|X] onto Y, provided that Z
is the result of appending X onto Y. This definition of append appears fairly similar to the
corresponding definition in Lisp, but is actually much more powerful. For example, we can
ask the query append(A,B,[1,2]): what two lists can be appended to give [1,2]? We
get back the solutions

A=[] B=[1,2]
A=[1] B=[2]
A=[1,2] B=[]

The execution of Prolog programs is done via depth-first backward chaining, where
clauses are tried in the order in which they are written in the knowledge base. Some aspects
of Prolog fall outside standard logical inference:
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• There is a set of built-in functions for arithmetic. Literals using these function symbols
are “proved” by executing code rather than doing further inference. For example, the
goal “X is 4+3” succeeds with X bound to 7. On the other hand, the goal “5 is X+Y”
fails, because the built-in functions do not do arbitrary equation solving.5

• There are built-in predicates that have side effects when executed. These include input–
output predicates and the assert/retract predicates for modifying the knowledge
base. Such predicates have no counterpart in logic and can produce some confusing
effects—for example, if facts are asserted in a branch of the proof tree that eventually
fails.

• Prolog allows a form of negation called negation as failure. A negated goal not P is
considered proved if the system fails to prove P. Thus, the sentence

alive(X) :- not dead(X).

can be read as “Everyone is alive if not provably dead.”

• Prolog has an equality operator, =, but it lacks the full power of logical equality. An
equality goal succeeds if the two terms are unifiable and fails otherwise. So X+Y=2+3
succeeds with X bound to 2 and Y bound to 3, but morningstar=eveningstar
fails. (In classical logic, the latter equality might or might not be true.) No facts or rules
about equality can be asserted.

• The occur check is omitted from Prolog’s unification algorithm. This means that some
unsound inferences can be made; these are seldom a problem except when using Prolog
for mathematical theorem proving.

The decisions made in the design of Prolog represent a compromise between declarativeness
and execution efficiency—inasmuch as efficiency was understood at the time Prolog was
designed. We will return to this subject after looking at how Prolog is implemented.

Efficient implementation of logic programs

The execution of a Prolog program can happen in two modes: interpreted and compiled.
Interpretation essentially amounts to running the FOL-BC-ASK algorithm from Figure 9.6,
with the program as the knowledge base. We say “essentially,” because Prolog interpreters
contain a variety of improvements designed to maximize speed. Here we consider only two.

First, instead of constructing the list of all possible answers for each subgoal before
continuing to the next, Prolog interpreters generate one answer and a “promise” to generate
the rest when the current answer has been fully explored. This promise is called a choice
point. When the depth-first search completes its exploration of the possible solutions arisingCHOICE POINT

from the current answer and backs up to the choice point, the choice point is expanded to
yield a new answer for the subgoal and a new choice point. This approach saves both time
and space. It also provides a very simple interface for debugging because at all times there is
only a single solution path under consideration.

Second, our simple implementation of FOL-BC-ASK spends a good deal of time gen-
erating and composing substitutions. Prolog implements substitutions using logic variables

5 Note that if the Peano axioms are provided, such goals can be solved by inference within a Prolog program.
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procedure APPEND(ax , y ,az , continuation)

trail←GLOBAL-TRAIL-POINTER()
if ax = [ ] and UNIFY(y ,az ) then CALL(continuation)
RESET-TRAIL(trail )
a←NEW-VARIABLE(); x←NEW-VARIABLE(); z←NEW-VARIABLE()
if UNIFY(ax , [a — x ]) and UNIFY(az , [a — z ]) then APPEND(x , y , z , continuation)

Figure 9.8 Pseudocode representing the result of compiling the Append predicate. The
function NEW-VARIABLE returns a new variable, distinct from all other variables so far used.
The procedure CALL(continuation) continues execution with the specified continuation.

that can remember their current binding. At any point in time, every variable in the program
either is unbound or is bound to some value. Together, these variables and values implicitly
define the substitution for the current branch of the proof. Extending the path can only add
new variable bindings, because an attempt to add a different binding for an already bound
variable results in a failure of unification. When a path in the search fails, Prolog will back
up to a previous choice point, and then it might have to unbind some variables. This is done
by keeping track of all the variables that have been bound in a stack called the trail. As eachTRAIL

new variable is bound by UNIFY-VAR, the variable is pushed onto the trail. When a goal fails
and it is time to back up to a previous choice point, each of the variables is unbound as it is
removed from the trail.

Even the most efficient Prolog interpreters require several thousand machine instruc-
tions per inference step because of the cost of index lookup, unification, and building the
recursive call stack. In effect, the interpreter always behaves as if it has never seen the pro-
gram before; for example, it has to find clauses that match the goal. A compiled Prolog
program, on the other hand, is an inference procedure for a specific set of clauses, so it knows
what clauses match the goal. Prolog basically generates a miniature theorem prover for each
different predicate, thereby eliminating much of the overhead of interpretation. It is also pos-
sible to open-code the unification routine for each different call, thereby avoiding explicitOPEN-CODE

analysis of term structure. (For details of open-coded unification, see Warren et al. (1977).)
The instruction sets of today’s computers give a poor match with Prolog’s semantics,

so most Prolog compilers compile into an intermediate language rather than directly into ma-
chine language. The most popular intermediate language is the Warren Abstract Machine, or
WAM, named after David H. D. Warren, one of the implementors of the first Prolog com-
piler. The WAM is an abstract instruction set that is suitable for Prolog and can be either
interpreted or translated into machine language. Other compilers translate Prolog into a high-
level language such as Lisp or C and then use that language’s compiler to translate to machine
language. For example, the definition of the Append predicate can be compiled into the code
shown in Figure 9.8. There are several points worth mentioning:

• Rather than having to search the knowledge base for Append clauses, the clauses be-
come a procedure and the inferences are carried out simply by calling the procedure.
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• As described earlier, the current variable bindings are kept on a trail. The first step of the
procedure saves the current state of the trail, so that it can be restored by RESET-TRAIL

if the first clause fails. This will undo any bindings generated by the first call to UNIFY.

• The trickiest part is the use of continuations to implement choice points. You can thinkCONTINUATIONS

of a continuation as packaging up a procedure and a list of arguments that together
define what should be done next whenever the current goal succeeds. It would not
do just to return from a procedure like APPEND when the goal succeeds, because it
could succeed in several ways, and each of them has to be explored. The continuation
argument solves this problem because it can be called each time the goal succeeds.
In the APPEND code, if the first argument is empty, then the APPEND predicate has
succeeded. We then CALL the continuation, with the appropriate bindings on the trail,
to do whatever should be done next. For example, if the call to APPEND were at the top
level, the continuation would print the bindings of the variables.

Before Warren’s work on the compilation of inference in Prolog, logic programming was
too slow for general use. Compilers by Warren and others allowed Prolog code to achieve
speeds that are competitive with C on a variety of standard benchmarks (Van Roy, 1990).
Of course, the fact that one can write a planner or natural language parser in a few dozen
lines of Prolog makes it somewhat more desirable than C for prototyping most small-scale AI
research projects.

Parallelization can also provide substantial speedup. There are two principal sources of
parallelism. The first, called OR-parallelism, comes from the possibility of a goal unifyingOR-PARALLELISM

with many different clauses in the knowledge base. Each gives rise to an independent branch
in the search space that can lead to a potential solution, and all such branches can be solved
in parallel. The second, called AND-parallelism, comes from the possibility of solvingAND-PARALLELISM

each conjunct in the body of an implication in parallel. AND-parallelism is more difficult to
achieve, because solutions for the whole conjunction require consistent bindings for all the
variables. Each conjunctive branch must communicate with the other branches to ensure a
global solution.

Redundant inference and infinite loops

We now turn to the Achilles heel of Prolog: the mismatch between depth-first search and
search trees that include repeated states and infinite paths. Consider the following logic pro-
gram that decides if a path exists between two points on a directed graph:

path(X,Z) :- link(X,Z).
path(X,Z) :- path(X,Y), link(Y,Z).

A simple three-node graph, described by the facts link(a,b) and link(b,c), is shown
in Figure 9.9(a). With this program, the query path(a,c) generates the proof tree shown
in Figure 9.10(a). On the other hand, if we put the two clauses in the order

path(X,Z) :- path(X,Y), link(Y,Z).
path(X,Z) :- link(X,Z).
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(a) (b)

A B C

A1

J4

Figure 9.9 (a) Finding a path from A to C can lead Prolog into an infinite loop. (b) A
graph in which each node is connected to two random successors in the next layer. Finding a
path from A1 to J4 requires 877 inferences.
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fail
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path(a,Y) link(Y,c)

path(a,Y’) link(Y’,Y)
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Figure 9.10 (a) Proof that a path exists from A to C. (b) Infinite proof tree generated
when the clauses are in the “wrong” order.

then Prolog follows the infinite path shown in Figure 9.10(b). Prolog is therefore incomplete
as a theorem prover for definite clauses—even for Datalog programs, as this example shows—
because, for some knowledge bases, it fails to prove sentences that are entailed. Notice that
forward chaining does not suffer from this problem: once path(a,b), path(b,c), and
path(a,c) are inferred, forward chaining halts.

Depth-first backward chaining also has problems with redundant computations. For
example, when finding a path from A1 to J4 in Figure 9.9(b), Prolog performs 877 inferences,
most of which involve finding all possible paths to nodes from which the goal is unreachable.
This is similar to the repeated-state problem discussed in Chapter 3. The total amount of
inference can be exponential in the number of ground facts that are generated. If we apply
forward chaining instead, at most n2 path(X,Y) facts can be generated linking n nodes.
For the problem in Figure 9.9(b), only 62 inferences are needed.

Forward chaining on graph search problems is an example of dynamic programming,DYNAMIC
PROGRAMMING

in which the solutions to subproblems are constructed incrementally from those of smaller
subproblems and are cached to avoid recomputation. We can obtain a similar effect in a back-
ward chaining system using memoization—that is, caching solutions to subgoals as they are
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found and then reusing those solutions when the subgoal recurs, rather than repeating the
previous computation. This is the approach taken by tabled logic programming systems,TABLED LOGIC

PROGRAMMING

which use efficient storage and retrieval mechanisms to perform memoization. Tabled logic
programming combines the goal-directedness of backward chaining with the dynamic pro-
gramming efficiency of forward chaining. It is also complete for Datalog programs, which
means that the programmer need worry less about infinite loops.

Constraint logic programming

In our discussion of forward chaining (Section 9.3), we showed how constraint satisfaction
problems (CSPs) can be encoded as definite clauses. Standard Prolog solves such problems
in exactly the same way as the backtracking algorithm given in Figure 5.3.

Because backtracking enumerates the domains of the variables, it works only for fi-
nite domain CSPs. In Prolog terms, there must be a finite number of solutions for any goal
with unbound variables. (For example, the goal diff(q,sa), which says that Queensland
and South Australia must be different colors, has six solutions if three colors are allowed.)
Infinite-domain CSPs—for example with integer or real-valued variables—require quite dif-
ferent algorithms, such as bounds propagation or linear programming.

The following clause succeeds if three numbers satisfy the triangle inequality:

triangle(X,Y,Z) :-
X>=0, Y>=0, Z>=0, X+Y>=Z, Y+Z>=X, X+Z>=Y.

If we ask Prolog the query triangle(3,4,5), this works fine. On the other hand, if we
ask triangle(3,4,Z), no solution will be found, because the subgoal Z>=0 cannot be
handled by Prolog. The difficulty is that variables in Prolog must be in one of two states:
unbound or bound to a particular term.

Binding a variable to a particular term can be viewed as an extreme form of constraint,
namely an equality constraint. Constraint logic programming (CLP) allows variables to beCONSTRAINT LOGIC

PROGRAMMING

constrained rather than bound. A solution to a constraint logic program is the most specific
set of constraints on the query variables that can be derived from the knowledge base. For
example, the solution to the triangle(3,4,Z) query is the constraint 7 >= Z >= 1.
Standard logic programs are just a special case of CLP in which the solution constraints must
be equality constraints—that is bindings.

CLP systems incorporate various constraint-solving algorithms for the constraints al-
lowed in the language. For example, a system that allows linear inequalities on real-valued
variables might include a linear programming algorithm for solving those constraints. CLP
systems also adopt a much more flexible approach to solving standard logic programming
queries. For example, instead of depth-first, left-to-right backtracking, they might use any of
the more efficient algorithms discussed in Chapter 5, including heuristic conjunct ordering,
backjumping, cutset conditioning, and so on. CLP systems therefore combine elements of
constraint satisfaction algorithms, logic programming, and deductive databases.

CLP systems can also take advantage of the variety of CSP search optimizations de-
scribed in Chapter 5, such as variable and value ordering, forward checking, and intelligent
backtracking. Several systems have been defined that allow the programmer more control
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over the search order for inference. For example, the MRS Language (Genesereth and Smith,
1981; Russell, 1985) allows the programmer to write metarules to determine which conjunctsMETARULES

are tried first. The user could write a rule saying that the goal with the fewest variables should
be tried first or could write domain-specific rules for particular predicates.

9.5 RESOLUTION

The last of our three families of logical systems is based on resolution. We saw in Chapter 7
that propositional resolution is a refutation complete inference procedure for propositional
logic. In this section, we will see how to extend resolution to first-order logic.

The question of the existence of complete proof procedures is of direct concern to math-
ematicians. If a complete proof procedure can be found for mathematical statements, two
things follow: first, all conjectures can be established mechanically; second, all of mathe-
matics can be established as the logical consequence of a set of fundamental axioms. The
question of completeness has therefore generated some of the most important mathematical
work of the 20th century. In 1930, the German mathematician Kurt Gödel proved the first
completeness theorem for first-order logic, showing that any entailed sentence has a finiteCOMPLETENESS

THEOREM

proof. (No really practical proof procedure was found until J. A. Robinson published the
resolution algorithm in 1965.) In 1931, Gödel proved an even more famous incompleteness
theorem. The theorem states that a logical system that includes the principle of induction—INCOMPLETENESS

THEOREM

without which very little of discrete mathematics can be constructed—is necessarily incom-
plete. Hence, there are sentences that are entailed, but have no finite proof within the system.
The needle may be in the metaphorical haystack, but no procedure can guarantee that it will
be found.

Despite Gödel’s theorem, resolution-based theorem provers have been applied widely to
derive mathematical theorems, including several for which no proof was known previously.
Theorem provers have also been used to verify hardware designs and to generate logically
correct programs, among other applications.

Conjunctive normal form for first-order logic

As in the propositional case, first-order resolution requires that sentences be in conjunctive
normal form (CNF)—that is, a conjunction of clauses, where each clause is a disjunction of
literals.6 Literals can contain variables, which are assumed to be universally quantified. For
example, the sentence

∀x American(x) ∧Weapon(y) ∧ Sells(x, y, z) ∧ Hostile(z) ⇒ Criminal(x)

becomes, in CNF,

¬American(x) ∨ ¬Weapon(y) ∨ ¬Sells(x, y, z) ∨ ¬Hostile(z) ∨ Criminal(x) .

6 A clause can also be represented as an implication with a conjunction of atoms on the left and a disjunction of
atoms on the right, as shown in Exercise 7.12. This form, sometimes called Kowalski form when written with a
right-to-left implication symbol (Kowalski, 1979b), is often much easier to read.
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Every sentence of first-order logic can be converted into an inferentially equivalent CNF
sentence. In particular, the CNF sentence will be unsatisfiable just when the original sentence
is unsatisfiable, so we have a basis for doing proofs by contradiction on the CNF sentences.

The procedure for conversion to CNF is very similar to the propositional case, which
we saw on page 215. The principal difference arises from the need to eliminate existential
quantifiers. We will illustrate the procedure by translating the sentence “Everyone who loves
all animals is loved by someone,” or

∀x [∀ y Animal(y) ⇒ Loves(x, y)] ⇒ [∃ y Loves(y, x)] .

The steps are as follows:

♦ Eliminate implications:

∀x [¬∀ y ¬Animal(y) ∨ Loves(x, y)] ∨ [∃ y Loves(y, x)] .

♦ Move ¬ inwards: In addition to the usual rules for negated connectives, we need rules
for negated quantifiers. Thus, we have

¬∀x p becomes ∃x ¬p
¬∃x p becomes ∀x ¬p .

Our sentence goes through the following transformations:

∀x [∃ y ¬(¬Animal(y) ∨ Loves(x, y))] ∨ [∃ y Loves(y, x)] .
∀x [∃ y ¬¬Animal(y) ∧ ¬Loves(x, y)] ∨ [∃ y Loves(y, x)] .
∀x [∃ y Animal(y) ∧ ¬Loves(x, y)] ∨ [∃ y Loves(y, x)] .

Notice how a universal quantifier (∀ y) in the premise of the implication has become
an existential quantifier. The sentence now reads “Either there is some animal that x
doesn’t love, or (if this is not the case) someone loves x.” Clearly, the meaning of the
original sentence has been preserved.

♦ Standardize variables: For sentences like (∀x P (x)) ∨ (∃x Q(x)) which use
the same variable name twice, change the name of one of the variables. This avoids
confusion later when we drop the quantifiers. Thus, we have

∀x [∃ y Animal(y) ∧ ¬Loves(x, y)] ∨ [∃ z Loves(z, x)] .

♦ Skolemize: Skolemization is the process of removing existential quantifiers by elimi-SKOLEMIZATION

nation. In the simple case, it is just like the Existential Instantiation rule of Section 9.1:
translate ∃x P (x) into P (A), where A is a new constant. If we apply this rule to our
sample sentence, however, we obtain

∀x [Animal(A) ∧ ¬Loves(x,A)] ∨ Loves(B, x)

which has the wrong meaning entirely: it says that everyone either fails to love a par-
ticular animal A or is loved by some particular entity B. In fact, our original sentence
allows each person to fail to love a different animal or to be loved by a different person.
Thus, we want the Skolem entities to depend on x:

∀x [Animal(F (x)) ∧ ¬Loves(x, F (x))] ∨ Loves(G(x), x) .

Here F and G are Skolem functions. The general rule is that the arguments of theSKOLEM FUNCTION
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Skolem function are all the universally quantified variables in whose scope the exis-
tential quantifier appears. As with Existential Instantiation, the Skolemized sentence is
satisfiable exactly when the original sentence is satisfiable.

♦ Drop universal quantifiers: At this point, all remaining variables must be universally
quantified. Moreover, the sentence is equivalent to one in which all the universal quan-
tifiers have been moved to the left. We can therefore drop the universal quantifiers:

[Animal(F (x)) ∧ ¬Loves(x, F (x))] ∨ Loves(G(x), x) .

♦ Distribute ∧ over ∨:

[Animal(F (x)) ∨ Loves(G(x), x)] ∧ [¬Loves(x, F (x)) ∨ Loves(G(x), x)] .

This step may also require flattening out nested conjunctions and disjunctions.

The sentence is now in CNF and consists of two clauses. It is quite unreadable. (It may
help to explain that the Skolem function F (x) refers to the animal potentially unloved by x,
whereas G(x) refers to someone who might love x.) Fortunately, humans seldom need look
at CNF sentences—the translation process is easily automated.

The resolution inference rule

The resolution rule for first-order clauses is simply a lifted version of the propositional reso-
lution rule given on page 214. Two clauses, which are assumed to be standardized apart so
that they share no variables, can be resolved if they contain complementary literals. Propo-
sitional literals are complementary if one is the negation of the other; first-order literals are
complementary if one unifies with the negation of the other. Thus we have

`1 ∨ · · · ∨ `k, m1 ∨ · · · ∨mn

SUBST(θ, `1 ∨ · · · ∨ `i−1 ∨ `i+1 ∨ · · · ∨ `k ∨m1 ∨ · · · ∨mj−1 ∨mj+1 ∨ · · · ∨mn)

where UNIFY(`i,¬mj)= θ. For example, we can resolve the two clauses

[Animal(F (x)) ∨ Loves(G(x), x)] and [¬Loves(u, v) ∨ ¬Kills(u, v)]

by eliminating the complementary literals Loves(G(x), x) and ¬Loves(u, v), with unifier
θ = {u/G(x), v/x}, to produce the resolvent clause

[Animal(F (x)) ∨ ¬Kills(G(x), x)] .

The rule we have just given is the binary resolution rule, because it resolves exactly two lit-BINARY RESOLUTION

erals. The binary resolution rule by itself does not yield a complete inference procedure. The
full resolution rule resolves subsets of literals in each clause that are unifiable. An alternative
approach is to extend factoring—the removal of redundant literals—to the first-order case.
Propositional factoring reduces two literals to one if they are identical; first-order factoring
reduces two literals to one if they are unifiable. The unifier must be applied to the entire
clause. The combination of binary resolution and factoring is complete.

Example proofs

Resolution proves that KB |= α by proving KB ∧ ¬α unsatisfiable, i.e., by deriving the
empty clause. The algorithmic approach is identical to the propositional case, described in
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¬American(x) ∨ ¬Weapon(y) ∨ ¬Sells(x,y,z) ∨ ¬Hostile(z) ∨ Criminal(x) ¬Criminal(West)

¬Enemy(Nono,America)Enemy(Nono,America)

¬Missile(x) ∨ Weapon(x) ¬Weapon(y) ∨ ¬Sells(West,y,z) ∨ ¬Hostile(z)

Missile(M1) ¬Missile(y) ∨ ¬Sells(West,y,z) ∨ ¬Hostile(z)

¬Missile(x) ∨ ¬Owns(Nono,x) ∨ Sells(West,x,Nono) ¬Sells(West,M1,z) ∨ ¬Hostile(z)

¬American(West) ∨ ¬Weapon(y) ∨ ¬Sells(West,y,z) ∨ ¬Hostile(z)American(West)

¬Missile(M1) ∨ ¬Owns(Nono,M1) ∨ ¬Hostile(Nono)Missile(M1)

¬Owns(Nono,M1) ∨ ¬Hostile(Nono)Owns(Nono,M1)

¬Enemy(x,America) ∨ Hostile(x) ¬Hostile(Nono)

Figure 9.11 A resolution proof that West is a criminal.

Figure 7.12, so we will not repeat it here. Instead, we will give two example proofs. The first
is the crime example from Section 9.3. The sentences in CNF are

¬American(x) ∨ ¬Weapon(y) ∨ ¬Sells(x, y, z) ∨ ¬Hostile(z) ∨ Criminal(x) .
¬Missile(x) ∨ ¬Owns(Nono, x) ∨ Sells(West , x,Nono) .
¬Enemy(x,America) ∨ Hostile(x) .
¬Missile(x) ∨Weapon(x) .
Owns(Nono,M1) . Missile(M1) .
American(West) . Enemy(Nono,America) .

We also include the negated goal ¬Criminal(West). The resolution proof is shown in Fig-
ure 9.11. Notice the structure: single “spine” beginning with the goal clause, resolving against
clauses from the knowledge base until the empty clause is generated. This is characteristic
of resolution on Horn clause knowledge bases. In fact, the clauses along the main spine
correspond exactly to the consecutive values of the goals variable in the backward chaining
algorithm of Figure 9.6. This is because we always chose to resolve with a clause whose pos-
itive literal unified with the leftmost literal of the “current” clause on the spine; this is exactly
what happens in backward chaining. Thus, backward chaining is really just a special case of
resolution with a particular control strategy to decide which resolution to perform next.

Our second example makes use of Skolemization and involves clauses that are not def-
inite clauses. This results in a somewhat more complex proof structure. In English, the
problem is as follows:

Everyone who loves all animals is loved by someone.
Anyone who kills an animal is loved by no one.
Jack loves all animals.
Either Jack or Curiosity killed the cat, who is named Tuna.
Did Curiosity kill the cat?
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First, we express the original sentences, some background knowledge, and the negated goal
G in first-order logic:

A. ∀x [∀ y Animal(y) ⇒ Loves(x, y)] ⇒ [∃ y Loves(y, x)]

B. ∀x [∃ y Animal(y) ∧Kills(x, y)] ⇒ [∀ z ¬Loves(z, x)]

C. ∀x Animal(x) ⇒ Loves(Jack , x)

D. Kills(Jack ,Tuna) ∨Kills(Curiosity,Tuna)

E. Cat(Tuna)

F. ∀x Cat(x)⇒ Animal(x)

¬G. ¬Kills(Curiosity ,Tuna)

Now we apply the conversion procedure to convert each sentence to CNF:

A1. Animal(F (x)) ∨ Loves(G(x), x)

A2. ¬Loves(x, F (x)) ∨ Loves(G(x), x)

B. ¬Animal(y) ∨ ¬Kills(x, y) ∨ ¬Loves(z, x)

C. ¬Animal(x) ∨ Loves(Jack , x)

D. Kills(Jack ,Tuna) ∨Kills(Curiosity,Tuna)

E. Cat(Tuna)

F. ¬Cat(x) ∨Animal(x)

¬G. ¬Kills(Curiosity,Tuna)

The resolution proof that Curiosity killed the cat is given in Figure 9.12. In English, the proof
could be paraphrased as follows:

Suppose Curiosity did not kill Tuna. We know that either Jack or Curiosity did; thus
Jack must have. Now, Tuna is a cat and cats are animals, so Tuna is an animal. Because
anyone who kills an animal is loved by no one, we know that no one loves Jack. On the
other hand, Jack loves all animals, so someone loves him; so we have a contradiction.
Therefore, Curiosity killed the cat.

The proof answers the question “Did Curiosity kill the cat?” but often we want to pose more
general questions, such as “Who killed the cat?” Resolution can do this, but it takes a little

¬Loves(y, Jack) Loves(G(Jack), Jack)

¬Kills(Curiosity, Tuna)Kills(Jack, Tuna) ∨ Kills(Curiosity, Tuna)¬Cat(x) ∨ Animal(x)Cat(Tuna)

¬Animal(F(Jack)) ∨ Loves(G(Jack), Jack) Animal(F(x)) ∨ Loves(G(x), x) ¬Loves(y, x) ∨ ¬Kills(x, Tuna)

Kills(Jack, Tuna)¬Loves(y, x) ∨ ¬Animal(z) ∨ ¬Kills(x, z)Animal(Tuna) ¬Loves(x,F(x)) ∨ Loves(G(x), x) ¬Animal(x) ∨ Loves(Jack, x)

Figure 9.12 A resolution proof that Curiosity killed the cat. Notice the use of factoring in
the derivation of the clause Loves(G(Jack), Jack).



300 Chapter 9. Inference in First-Order Logic

more work to obtain the answer. The goal is ∃w Kills(w,Tuna), which, when negated,
becomes ¬Kills(w,Tuna) in CNF. Repeating the proof in Figure 9.12 with the new negated
goal, we obtain a similar proof tree, but with the substitution {w/Curiosity} in one of the
steps. So, in this case, finding out who killed the cat is just a matter of keeping track of the
bindings for the query variables in the proof.

Unfortunately, resolution can produce nonconstructive proofs for existential goals.NONCONSTRUCTIVE
PROOF

For example, ¬Kills(w,Tuna) resolves with Kills(Jack ,Tuna) ∨Kills(Curiosity,Tuna)
to give Kills(Jack ,Tuna), which resolves again with ¬Kills(w,Tuna) to yield the empty
clause. Notice that w has two different bindings in this proof; resolution is telling us that,
yes, someone killed Tuna—either Jack or Curiosity. This is no great surprise! One so-
lution is to restrict the allowed resolution steps so that the query variables can be bound
only once in a given proof; then we need to be able to backtrack over the possible bind-
ings. Another solution is to add a special answer literal to the negated goal, which be-ANSWER LITERAL

comes ¬Kills(w,Tuna) ∨ Answer(w). Now, the resolution process generates an answer
whenever a clause is generated containing just a single answer literal. For the proof in Fig-
ure 9.12, this is Answer(Curiosity). The nonconstructive proof would generate the clause
Answer(Curiosity) ∨ Answer(Jack), which does not constitute an answer.

Completeness of resolution

This section gives a completeness proof of resolution. It can be safely skipped by those who
are willing to take it on faith.

We will show that resolution is refutation-complete, which means that if a set of sen-REFUTATION
COMPLETENESS

tences is unsatisfiable, then resolution will always be able to derive a contradiction. Resolu-
tion cannot be used to generate all logical consequences of a set of sentences, but it can be
used to establish that a given sentence is entailed by the set of sentences. Hence, it can be
used to find all answers to a given question, using the negated-goal method that we described
earlier in the Chapter.

We will take it as given that any sentence in first-order logic (without equality) can
be rewritten as a set of clauses in CNF. This can be proved by induction on the form of
the sentence, using atomic sentences as the base case (Davis and Putnam, 1960). Our goal
therefore is to prove the following: if S is an unsatisfiable set of clauses, then the application
of a finite number of resolution steps to S will yield a contradiction.

Our proof sketch follows the original proof due to Robinson, with some simplifications
from Genesereth and Nilsson (1987). The basic structure of the proof is shown in Figure 9.13;
it proceeds as follows:

1. First, we observe that if S is unsatisfiable, then there exists a particular set of ground
instances of the clauses of S such that this set is also unsatisfiable (Herbrand’s theorem).

2. We then appeal to the ground resolution theorem given in Chapter 7, which states that
propositional resolution is complete for ground sentences.

3. We then use a lifting lemma to show that, for any propositional resolution proof using
the set of ground sentences, there is a corresponding first-order resolution proof using
the first-order sentences from which the ground sentences were obtained.
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Resolution can find a contradiction in S'

There is a resolution proof for the contradiction in S'

Herbrand’s theorem

Some set S' of ground instances is unsatisfiable

Any set of sentences S is representable in clausal form

Assume S is unsatisfiable, and in clausal form

Lifting lemma

Ground resolution
theorem

Figure 9.13 Structure of a completeness proof for resolution.

To carry out the first step, we will need three new concepts:

♦ Herbrand universe: If S is a set of clauses, then HS , the Herbrand universe of S, isHERBRAND
UNIVERSE

the set of all ground terms constructible from the following:

a. The function symbols in S, if any.
b. The constant symbols in S, if any; if none, then the constant symbol A.

For example, if S contains just the clause ¬P (x, F (x,A))∨¬Q(x,A)∨R(x,B), then
HS is the following infinite set of ground terms:

{A,B,F (A,A), F (A,B), F (B,A), F (B,B), F (A,F (A,A)), . . .} .

♦ Saturation: If S is a set of clauses and P is a set of ground terms, then P (S), theSATURATION

saturation of S with respect to P , is the set of all ground clauses obtained by applying
all possible consistent substitutions of ground terms in P with variables in S.

♦ Herbrand base: The saturation of a set S of clauses with respect to its Herbrand uni-HERBRAND BASE

verse is called the Herbrand base of S, written as HS(S). For example, if S contains
solely the clause just given, then HS(S) is the infinite set of clauses

{¬P (A,F (A,A)) ∨ ¬Q(A,A) ∨R(A,B),
¬P (B,F (B,A)) ∨ ¬Q(B,A) ∨R(B,B),
¬P (F (A,A), F (F (A,A), A)) ∨ ¬Q(F (A,A), A) ∨R(F (A,A), B),
¬P (F (A,B), F (F (A,B), A)) ∨ ¬Q(F (A,B), A) ∨R(F (A,B), B), . . . }

These definitions allow us to state a form of Herbrand’s theorem (Herbrand, 1930):HERBRAND’S
THEOREM

If a set S of clauses is unsatisfiable, then there exists a finite subset of HS(S) that
is also unsatisfiable.

Let S′ be this finite subset of ground sentences. Now, we can appeal to the ground resolution
theorem (page 217) to show that the resolution!closure RC (S ′) contains the empty clause.
That is, running propositional resolution to completion on S ′ will derive a contradiction.

Now that we have established that there is always a resolution proof involving some
finite subset of the Herbrand base of S, the next step is to show that there is a resolution
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GÖDEL’S INCOMPLETENESS THEOREM

By slightly extending the language of first-order logic to allow for the mathemat-
ical induction schema in arithmetic, Gödel was able to show, in his incomplete-
ness theorem, that there are true arithmetic sentences that cannot be proved.

The proof of the incompleteness theorem is somewhat beyond the scope of
this book, occupying, as it does, at least 30 pages, but we can give a hint here. We
begin with the logical theory of numbers. In this theory, there is a single constant,
0, and a single function, S (the successor function). In the intended model, S(0)
denotes 1, S(S(0)) denotes 2, and so on; the language therefore has names for all
the natural numbers. The vocabulary also includes the function symbols +, ×, and
Expt (exponentiation) and the usual set of logical connectives and quantifiers. The
first step is to notice that the set of sentences that we can write in this language can
be enumerated. (Imagine defining an alphabetical order on the symbols and then
arranging, in alphabetical order, each of the sets of sentences of length 1, 2, and
so on.) We can then number each sentence α with a unique natural number #α
(the Gödel number). This is crucial: number theory contains a name for each of
its own sentences. Similarly, we can number each possible proof P with a Gödel
number G(P ), because a proof is simply a finite sequence of sentences.

Now suppose we have a recursively enumerable set A of sentences that are
true statements about the natural numbers. Recalling that A can be named by a
given set of integers, we can imagine writing in our language a sentence α(j, A) of
the following sort:

∀ i i is not the Gödel number of a proof of the sentence whose Gödel
number is j, where the proof uses only premises in A.

Then let σ be the sentence α(#σ,A), that is, a sentence that states its own unprov-
ability from A. (That this sentence always exists is true but not entirely obvious.)

Now we make the following ingenious argument: Suppose that σ is provable
from A; then σ is false (because σ says it cannot be proved). But then we have a
false sentence that is provable from A, so A cannot consist of only true sentences—
a violation of our premise. Therefore σ is not provable from A. But this is exactly
what σ itself claims; hence σ is a true sentence.

So, we have shown (barring 291

2
pages) that for any set of true sentences of

number theory, and in particular any set of basic axioms, there are other true sen-
tences that cannot be proved from those axioms. This establishes, among other
things, that we can never prove all the theorems of mathematics within any given
system of axioms. Clearly, this was an important discovery for mathematics. Its
significance for AI has been widely debated, beginning with speculations by Gödel
himself. We take up the debate in Chapter 26.
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proof using the clauses of S itself, which are not necessarily ground clauses. We start by
considering a single application of the resolution rule. Robinson’s basic lemma implies the
following fact:

Let C1 and C2 be two clauses with no shared variables, and let C ′

1 and C ′

2 be
ground instances of C1 and C2. If C ′ is a resolvent of C ′

1 and C ′

2, then there exists
a clause C such that (1) C is a resolvent of C1 and C2 and (2) C ′ is a ground
instance of C.

This is called a lifting lemma, because it lifts a proof step from ground clauses up to generalLIFTING LEMMA

first-order clauses. In order to prove his basic lifting lemma, Robinson had to invent unifi-
cation and derive all of the properties of most general unifiers. Rather than repeat the proof
here, we simply illustrate the lemma:

C1 = ¬P (x, F (x,A)) ∨ ¬Q(x,A) ∨R(x,B)

C2 = ¬N(G(y), z) ∨ P (H(y), z)

C ′

1 = ¬P (H(B), F (H(B), A)) ∨ ¬Q(H(B), A) ∨R(H(B), B)

C ′

2 = ¬N(G(B), F (H(B), A)) ∨ P (H(B), F (H(B), A))

C ′ = ¬N(G(B), F (H(B), A)) ∨ ¬Q(H(B), A) ∨R(H(B), B)

C = ¬N(G(y), F (H(y), A)) ∨ ¬Q(H(y), A) ∨R(H(y), B) .

We see that indeed C ′ is a ground instance of C. In general, for C ′

1 and C ′

2 to have any
resolvents, they must be constructed by first applying to C1 and C2 the most general unifier
of a pair of complementary literals in C1 and C2. From the lifting lemma, it is easy to derive
a similar statement about any sequence of applications of the resolution rule:

For any clause C ′ in the resolution closure of S ′ there is a clause C in the resolu-
tion closure of S, such that C ′ is a ground instance of C and the derivation of C
is the same length as the derivation of C ′.

From this fact, it follows that if the empty clause appears in the resolution closure of S ′, it
must also appear in the resolution closure of S. This is because the empty clause cannot be a
ground instance of any other clause. To recap: we have shown that if S is unsatisfiable, then
there is a finite derivation of the empty clause using the resolution rule.

The lifting of theorem proving from ground clauses to first-order clauses provides a vast
increase in power. This increase comes from the fact that the first-order proof need instantiate
variables only as far as necessary for the proof, whereas the ground-clause methods were
required to examine a huge number of arbitrary instantiations.

Dealing with equality

None of the inference methods described so far in this chapter handle equality. There are
three distinct approaches that can be taken. The first approach is to axiomatize equality—to
write down sentences about the equality relation in the knowledge base. We need to say that
equality is reflexive, symmetric, and transitive, and we also have to say that we can substitute
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equals for equals in any predicate or function. So we need three basic axioms, and then one
for each predicate and function:

∀x x= x
∀x, y x= y ⇒ y = x
∀x, y, z x= y ∧ y = z ⇒ x= z
∀x, y x= y ⇒ (P1(x) ⇔ P1(y))
∀x, y x= y ⇒ (P2(x) ⇔ P2(y))

...
∀w, x, y, z w = y ∧ x= z ⇒ (F1(w, x)=F1(y, z))
∀w, x, y, z w = y ∧ x= z ⇒ (F2(w, x)=F2(y, z))

...
Given these sentences, a standard inference procedure such as resolution can perform tasks
requiring equality reasoning, such as solving mathematical equations.

Another way to deal with equality is with an additional inference rule. The simplest
rule, demodulation, takes a unit clause x= y and substitutes y for any term that unifies with
x in some other clause. More formally, we have

♦ Demodulation: For any terms x, y, and z, where UNIFY(x, z) = θ and mn[z] is aDEMODULATION

literal containing z:
x= y, m1 ∨ · · · ∨mn[z]

m1 ∨ · · · ∨mn[SUBST(θ, y)]
.

Demodulation is typically used for simplifying expressions using collections of assertions
such as x + 0= x, x1 = x, and so on. The rule can also be extended to handle non-unit
clauses in which an equality literal appears:

♦ Paramodulation: For any terms x, y, and z, where UNIFY(x, z) = θ,PARAMODULATION

`1 ∨ · · · ∨ `k ∨ x= y, m1 ∨ · · · ∨mn[z]

SUBST(θ, `1 ∨ · · · ∨ `k ∨m1 ∨ · · · ∨mn[y])
.

Unlike demodulation, paramodulation yields a complete inference procedure for first-order
logic with equality.

A third approach handles equality reasoning entirely within an extended unification
algorithm. That is, terms are unifiable if they are provably equal under some substitution,
where “provably” allows for some amount of equality reasoning. For example, the terms
1 + 2 and 2 + 1 normally are not unifiable, but a unification algorithm that knows that x +
y = y + x could unify them with the empty substitution. Equational unification of this kindEQUATIONAL

UNIFICATION

can be done with efficient algorithms designed for the particular axioms used (commutativity,
associativity, and so on), rather than through explicit inference with those axioms. Theorem
provers using this technique are closely related to the constraint logic programming systems
described in Section 9.4.

Resolution strategies

We know that repeated applications of the resolution inference rule will eventually find a
proof if one exists. In this subsection, we examine strategies that help find proofs efficiently.
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Unit preference

This strategy prefers to do resolutions where one of the sentences is a single literal (also
known as a unit clause). The idea behind the strategy is that we are trying to produce an
empty clause, so it might be a good idea to prefer inferences that produce shorter clauses.
Resolving a unit sentence (such as P ) with any other sentence (such as ¬P ∨ ¬Q ∨ R)
always yields a clause (in this case, ¬Q ∨ R) that is shorter than the other clause. When
the unit preference strategy was first tried for propositional inference in 1964, it led to a
dramatic speedup, making it feasible to prove theorems that could not be handled without
the preference. Unit preference by itself does not, however, reduce the branching factor in
medium-sized problems enough to make them solvable by resolution. It is, nonetheless, a
useful heuristic that can be combined with other strategies.

Unit resolution is a restricted form of resolution in which every resolution step mustUNIT RESOLUTION

involve a unit clause. Unit resolution is incomplete in general, but complete for Horn knowl-
edge bases. Unit resolution proofs on Horn knowledge bases resemble forward chaining.

Set of support

Preferences that try certain resolutions first are helpful, but in general it is more effective
to try to eliminate some potential resolutions altogether. The set-of-support strategy does
just that. It starts by identifying a subset of the sentences called the set of support. EverySET OF SUPPORT

resolution combines a sentence from the set of support with another sentence and adds the
resolvent into the set of support. If the set of support is small relative to the whole knowledge
base, the search space will be reduced dramatically.

We have to be careful with this approach, because a bad choice for the set of support
will make the algorithm incomplete. However, if we choose the set of support S so that
the remainder of the sentences are jointly satisfiable, then set-of-support resolution will be
complete. A common approach is to use the negated query as the set of support, on the
assumption that the original knowledge base is consistent. (After all, if it is not consistent,
then the fact that the query follows from it is vacuous.) The set-of-support strategy has the
additional advantage of generating proof trees that are often easy for humans to understand,
because they are goal-directed.

Input resolution

In the input resolution strategy, every resolution combines one of the input sentences (fromINPUT RESOLUTION

the KB or the query) with some other sentence. The proof in Figure 9.11 uses only input res-
olutions and has the characteristic shape of a single “spine” with single sentences combining
onto the spine. Clearly, the space of proof trees of this shape is smaller than the space of all
proof graphs. In Horn knowledge bases, Modus Ponens is a kind of input resolution strategy,
because it combines an implication from the original KB with some other sentences. Thus, it
is no surprise that input resolution is complete for knowledge bases that are in Horn form, but
incomplete in the general case. The linear resolution strategy is a slight generalization thatLINEAR RESOLUTION

allows P and Q to be resolved together either if P is in the original KB or if P is an ancestor
of Q in the proof tree. Linear resolution is complete.
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Subsumption

The subsumption method eliminates all sentences that are subsumed by (i.e., more specificSUBSUMPTION

than) an existing sentence in the KB. For example, if P (x) is in the KB, then there is no sense
in adding P (A) and even less sense in adding P (A) ∨ Q(B). Subsumption helps keep the
KB small, and thus helps keep the search space small.

Theorem provers

Theorem provers (also known as automated reasoners) differ from logic programming lan-
guages in two ways. First, most logic programming languages handle only Horn clauses,
whereas theorem provers accept full first-order logic. Second, Prolog programs intertwine
logic and control. The programmer’s choice A :- B, C instead of A :- C, B affects
the execution of the program. In most theorem provers, the syntactic form chosen for sen-
tences does not affect the results. Theorem provers still need control information to operate
efficiently, but that information is usually kept distinct from the knowledge base, rather than
being part of the knowledge representation itself. Most of the research in theorem provers
involves finding control strategies that are generally useful, as well as increasing the speed.

Design of a theorem prover

In this section, we describe the theorem prover OTTER (Organized Techniques for Theorem-
proving and Effective Research) (McCune, 1992), with particular attention to its control strat-
egy. In preparing a problem for OTTER, the user must divide the knowledge into four parts:

• A set of clauses known as the set of support (or sos), which defines the important
facts about the problem. Every resolution step resolves a member of the set of support
against another axiom, so the search is focused on the set of support.

• A set of usable axioms that are outside the set of support. These provide background
knowledge about the problem area. The boundary between what is part of the problem
(and thus in sos) and what is background (and thus in the usable axioms) is up to the
user’s judgment.

• A set of equations known as rewrites or demodulators. Although demodulators are
equations, they are always applied in the left to right direction. Thus, they define a
canonical form into which all terms will be simplified. For example, the demodulator
x + 0= x says that every term of the form x + 0 should be replaced by the term x.

• A set of parameters and clauses that defines the control strategy. In particular, the user
specifies a heuristic function to control the search and a filtering function to eliminate
some subgoals as uninteresting.

OTTER works by continually resolving an element of the set of support against one of the
usable axioms. Unlike Prolog, it uses a form of best-first search. Its heuristic function mea-
sures the “weight” of each clause, where lighter clauses are preferred. The exact choice of
heuristic is up to the user, but generally, the weight of a clause should be correlated with its
size or difficulty. Unit clauses are treated as light; the search can thus be seen as a generaliza-
tion of the unit preference strategy. At each step, OTTER moves the “lightest” clause in the
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set of support to the usable list and adds to the usable list some immediate consequences of
resolving the lightest clause with elements of the usable list. OTTER halts when it has found
a refutation or when there are no more clauses in the set of support. The algorithm is shown
in more detail in Figure 9.14.

procedure OTTER(sos ,usable)
inputs: sos , a set of support—clauses defining the problem (a global variable)

usable , background knowledge potentially relevant to the problem

repeat
clause← the lightest member of sos

move clause from sos to usable

PROCESS(INFER(clause ,usable), sos)
until sos = [ ] or a refutation has been found

function INFER(clause ,usable) returns clauses

resolve clause with each member of usable

return the resulting clauses after applying FILTER

procedure PROCESS(clauses , sos)

for each clause in clauses do
clause← SIMPLIFY(clause)
merge identical literals
discard clause if it is a tautology
sos← [clause — sos]
if clause has no literals then a refutation has been found
if clause has one literal then look for unit refutation

Figure 9.14 Sketch of the OTTER theorem prover. Heuristic control is applied in the
selection of the “lightest” clause and in the FILTER function that eliminates uninteresting
clauses from consideration.

Extending Prolog

An alternative way to build a theorem prover is to start with a Prolog compiler and extend it
to get a sound and complete reasoner for full first-order logic. This was the approach taken
in the Prolog Technology Theorem Prover, or PTTP (Stickel, 1988). PTTP includes five
significant changes to Prolog to restore completeness and expressiveness:

• The occurs check is put back into the unification routine to make it sound.

• The depth-first search is replaced by an iterative deepening search. This makes the
search strategy complete and takes only a constant factor more time.

• Negated literals (such as ¬P (x)) are allowed. In the implementation, there are two
separate routines, one trying to prove P and one trying to prove ¬P .
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• A clause with n atoms is stored as n different rules. For example, A ⇐ B ∧ C would
also be stored as ¬B ⇐ C ∧ ¬A and as ¬C ⇐ B ∧ ¬A. This technique, known as
locking, means that the current goal need be unified with only the head of each clause,LOCKING

yet it still allows for proper handling of negation.

• Inference is made complete (even for non-Horn clauses) by the addition of the linear
input resolution rule: If the current goal unifies with the negation of one of the goals on
the stack, then that goal can be considered solved. This is a way of reasoning by con-
tradiction. Suppose the original goal is P and this is reduced by a series of inferences
to the goal ¬P . This establishes that ¬P ⇒ P , which is logically equivalent to P .

Despite these changes, PTTP retains the features that make Prolog fast. Unifications are still
done by modifying variables directly, with unbinding done by unwinding the trail during
backtracking. The search strategy is still based on input resolution, meaning that every reso-
lution is against one of the clauses given in the original statement of the problem (rather than
a derived clause). This makes it feasible to compile all the clauses in the original statement
of the problem.

The main drawback of PTTP is that the user has to relinquish all control over the search
for solutions. Each inference rule is used by the system both in its original form and in the
contrapositive form. This can lead to unintuitive searches. For example, consider the rule

(f(x, y)= f(a, b))⇐ (x= a) ∧ (y = b) .

As a Prolog rule, this is a reasonable way to prove that two f terms are equal. But PTTP
would also generate the contrapositive:

(x 6= a)⇐ (f(x, y) 6= f(a, b)) ∧ (y = b) .

It seems that this is a wasteful way to prove that any two terms x and a are different.

Theorem provers as assistants

So far, we have thought of a reasoning system as an independent agent that has to make
decisions and act on its own. Another use of theorem provers is as an assistant, providing
advice to, say, a mathematician. In this mode the mathematician acts as a supervisor, mapping
out the strategy for determining what to do next and asking the theorem prover to fill in
the details. This alleviates the problem of semi-decidability to some extent, because the
supervisor can cancel a query and try another approach if the query is taking too much time.
A theorem prover can also act as a proof-checker, where the proof is given by a human as aPROOF-CHECKER

series of fairly large steps; the individual inferences required to show that each step is sound
are filled in by the system.

A Socratic reasoner is a theorem prover whose ASK function is incomplete, but whichSOCRATIC
REASONER

can always arrive at a solution if asked the right series of questions. Thus, Socratic reasoners
make good assistants, provided that there is a supervisor to make the right series of calls to
ASK. ONTIC (McAllester, 1989) is a Socratic reasoning system for mathematics.
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Practical uses of theorem provers

Theorem provers have come up with novel mathematical results. The SAM (Semi-Automated
Mathematics) program was the first, proving a lemma in lattice theory (Guard et al., 1969).
The AURA program has also answered open questions in several areas of mathematics (Wos
and Winker, 1983). The Boyer–Moore theorem prover (Boyer and Moore, 1979) has been
used and extended over many years and was used by Natarajan Shankar to give the first fully
rigorous formal proof of Gödel’s Incompleteness Theorem (Shankar, 1986). The OTTER pro-
gram is one of the strongest theorem provers; it has been used to solve several open questions
in combinatorial logic. The most famous of these concerns Robbins algebra. In 1933, Her-ROBBINS ALGEBRA

bert Robbins proposed a simple set of axioms that appeared to define Boolean algebra, but no
proof of this could be found (despite serious work by several mathematicians including Al-
fred Tarski himself). On October 10, 1996, after eight days of computation, EQP (a version
of OTTER) found a proof (McCune, 1997).

Theorem provers can be applied to the problems involved in the verification and syn-VERIFICATION

thesis of both hardware and software, because both domains can be given correct axiom-SYNTHESIS

atizations. Thus, theorem proving research is carried out in the fields of hardware design,
programming languages, and software engineering—not just in AI. In the case of software,
the axioms state the properties of each syntactic element of the programming language. (Rea-
soning about programs is quite similar to reasoning about actions in the situation calculus.)
An algorithm is verified by showing that its outputs meet the specifications for all inputs. The
RSA public key encryption algorithm and the Boyer–Moore string-matching algorithm have
been verified this way (Boyer and Moore, 1984). In the case of hardware, the axioms describe
the interactions between signals and circuit elements. (See Chapter 8 for an example.) The
design of a 16-bit adder has been verified by AURA (Wojcik, 1983). Logical reasoners de-
signed specially for verification have been able to verify entire CPUs, including their timing
properties (Srivas and Bickford, 1990).

The formal synthesis of algorithms was one of the first uses of theorem provers, as
outlined by Cordell Green (1969a), who built on earlier ideas by Simon (1963). The idea
is to prove a theorem to the effect that “there exists a program p satisfying a certain speci-
fication.” If the proof is constrained to be constructive, the program can be extracted. Al-
though fully automated deductive synthesis, as it is called, has not yet become feasible forDEDUCTIVE

SYNTHESIS

general-purpose programming, hand-guided deductive synthesis has been successful in de-
signing several novel and sophisticated algorithms. Synthesis of special-purpose programs is
also an active area of research. In the area of hardware synthesis, the AURA theorem prover
has been applied to design circuits that are more compact than any previous design (Woj-
ciechowski and Wojcik, 1983). For many circuit designs, propositional logic is sufficient
because the set of interesting propositions is fixed by the set of circuit elements. The appli-
cation of propositional inference in hardware synthesis is now a standard technique having
many large-scale deployments (see, e.g., Nowick et al. (1993)).

These same techniques are now starting to be applied to software verification as well,
by systems such as the SPIN model checker (Holzmann, 1997). For example, the Remote
Agent spacecraft control program was verified before and after flight (Havelund et al., 2000).
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9.6 SUMMARY

We have presented an analysis of logical inference in first-order logic and a number of algo-
rithms for doing it.

• A first approach uses inference rules for instantiating quantifiers in order to proposi-
tionalize the inference problem. Typically, this approach is very slow.

• The use of unification to identify appropriate substitutions for variables eliminates the
instantiation step in first-order proofs, making the process much more efficient.

• A lifted version of Modus Ponens uses unification to provide a natural and powerful
inference rule, generalized Modus Ponens. The forward chaining and backward
chaining algorithms apply this rule to sets of definite clauses.

• Generalized Modus Ponens is complete for definite clauses, although the entailment
problem is semidecidable. For Datalog programs consisting of function-free definite
clauses, entailment is decidable.

• Forward chaining is used in deductive databases, where it can be combined with re-
lational database operations. It is also used in production systems, which perform
efficient updates with very large rule sets.

• Forward chaining is complete for Datalog programs and runs in polynomial time.

• Backward chaining is used in logic programming systems such as Prolog, which em-
ploy sophisticated compiler technology to provide very fast inference.

• Backward chaining suffers from redundant inferences and infinite loops; these can be
alleviated by memoization.

• The generalized resolution inference rule provides a complete proof system for first-
order logic, using knowledge bases in conjunctive normal form.

• Several strategies exist for reducing the search space of a resolution system without
compromising completeness. Efficient resolution-based theorem provers have been
used to prove interesting mathematical theorems and to verify and synthesize software
and hardware.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

Logical inference was studied extensively in Greek mathematics. The type of inference most
carefully studied by Aristotle was the syllogism, which is a kind of inference rule. Aristotle’sSYLLOGISM

syllogisms did include elements of first-order logic, such as quantification, but were restricted
to unary predicates. Syllogisms were categorized by “figures” and “moods,” depending on the
order of the terms (which we would call predicates) in the sentences, the degree of generality
(which we would today interpret through quantifiers) applied to each term, and whether each
term is negated. The most fundamental syllogism is that of the first mood of the first figure:
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All S are M .
All M are P .
Therefore, all S are P .

Aristotle tried to prove the validity of other syllogisms by “reducing” them to those of the
first figure. He was much less precise in describing what this “reduction” should involve than
he was in characterizing the syllogistic figures and moods themselves.

Gottlob Frege, who developed full first-order logic in 1879, based his system of in-
ference on a large collection of logically valid schemas plus a single inference rule, Modus
Ponens. Frege took advantage of the fact that the effect of an inference rule of the form “From
P , infer Q” can be simulated by applying Modus Ponens to P along with a logically valid
schema P ⇒ Q. This “axiomatic” style of exposition, using Modus Ponens plus a number
of logically valid schemas, was employed by a number of logicians after Frege; most notably,
it was used in Principia Mathematica (Whitehead and Russell, 1910).

Inference rules, as distinct from axiom schemas, were the focus of the natural deduc-
tion approach, introduced by Gerhard Gentzen (1934) and by Stanisław Jaśkowski (1934).
Natural deduction is called “natural” because it does not require conversion to (unread-
able) normal form and because its inference rules are intended to appear natural to hu-
mans. Prawitz (1965) offers a book-length treatment of natural deduction. Gallier (1986)
uses Gentzen’s approach to expound the theoretical underpinnings of automated deduction.

The invention of clausal form was a crucial step in the development of a deep mathe-
matical analysis of first-order logic. Whitehead and Russell (1910) expounded the so-called
rules of passage (the actual term is from Herbrand (1930)) that are used to move quantifiers
to the front of formulas. Skolem constants and Skolem functions were introduced, appropri-
ately enough, by Thoralf Skolem (1920). The general procedure for skolemization is given
by Skolem (1928), along with the important notion of the Herbrand universe.

Herbrand’s theorem, named after the French logician Jacques Herbrand (1930), has
played a vital role in the development of automated reasoning methods, both before and after
Robinson’s introduction of resolution. This is reflected in our reference to the “Herbrand
universe” rather than the “Skolem universe,” even though Skolem really invented the concept.
Herbrand can also be regarded as the inventor of unification. Gödel (1930) built on the ideas
of Skolem and Herbrand to show that first-order logic has a complete proof procedure. Alan
Turing (1936) and Alonzo Church (1936) simultaneously showed, using very different proofs,
that validity in first-order logic was not decidable. The excellent text by Enderton (1972)
explains all of these results in a rigorous yet moderately understandable fashion.

Although McCarthy (1958) had suggested the use of first-order logic for representa-
tion and reasoning in AI, the first such systems were developed by logicians interested in
mathematical theorem proving. It was Abraham Robinson who proposed the use of propo-
sitionalization and Herbrand’s theorem, and Gilmore (1960) who wrote the first program
based on this approach. Davis and Putnam (1960) used clausal form and produced a program
that attempted to find refutations by substituting members of the Herbrand universe for vari-
ables to produce ground clauses and then looking for propositional inconsistencies among the
ground clauses. Prawitz (1960) developed the key idea of letting the quest for propositional
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inconsistency drive the search process, and generating terms from the Herbrand universe only
when it was necessary to do so in order to establish propositional inconsistency. After fur-
ther development by other researchers, this idea led J. A. Robinson (no relation) to develop
the resolution method (Robinson, 1965). The so-called inverse method developed at about
the same time by the Soviet researcher S. Maslov (1964, 1967), based on somewhat differ-
ent principles, offers similar computational advantages over propositionalization. Wolfgang
Bibel’s (1981) connection method can be viewed as an extension of this approach.

After the development of resolution, work on first-order inference proceeded in several
different directions. In AI, resolution was adopted for question-answering systems by Cordell
Green and Bertram Raphael (1968). A somewhat less formal approach was taken by Carl He-
witt (1969). His PLANNER language, although never fully implemented, was a precursor to
logic programming and included directives for forward and backward chaining and for nega-
tion as failure. A subset known as MICRO-PLANNER (Sussman and Winograd, 1970) was
implemented and used in the SHRDLU natural language understanding system (Winograd,
1972). Early AI implementations put a good deal of effort into data structures that would al-
low efficient retrieval of facts; this work is covered in AI programming texts (Charniak et al.,
1987; Norvig, 1992; Forbus and de Kleer, 1993).

By the early 1970s, forward chaining was well established in AI as an easily under-
standable alternative to resolution. It was used in a wide variety of systems, ranging from
Nevins’s geometry theorem prover (Nevins, 1975) to the R1 expert system for VAX config-
uration (McDermott, 1982). AI applications typically involved large numbers of rules, so
it was important to develop efficient rule-matching technology, particularly for incremental
updates. The technology for production systems was developed to support such applica-
tions. The production system language OPS-5 (Forgy, 1981; Brownston et al., 1985) was
used for R1 and for the SOAR cognitive architecture (Laird et al., 1987). OPS-5 incorporated
the rete match process (Forgy, 1982). SOAR, which generates new rules to cache the results
of previous computations, can create very large rule sets—over 1,000,000 rules in the case
of the TACAIR-SOAR system for controlling simulated fighter aircraft (Jones et al., 1998).
CLIPS (Wygant, 1989) was a C-based production system language developed at NASA that
allowed better integration with other software, hardware, and sensor systems and was used
for spacecraft automation and several military applications.

The area of research known as deductive databases has also contributed a great deal
to our understanding of forward inference. It began with a workshop in Toulouse in 1977,
organized by Jack Minker, that brought together experts in logical inference and database
systems (Gallaire and Minker, 1978). A recent historical survey (Ramakrishnan and Ullman,
1995) says, “Deductive [database] systems are an attempt to adapt Prolog, which has a ‘small
data’ view of the world, to a ‘large data’ world.” Thus, it aims to meld relational database
technology, which is designed for retrieving large sets of facts, with Prolog-based inference
technology, which typically retrieves one fact at a time. Texts on deductive databases include
Ullman (1989) and Ceri et al. (1990).

Influential work by Chandra and Harel (1980) and Ullman (1985) led to the adoption of
Datalog as a standard language for deductive databases. “Bottom-up” inference, or forward
chaining, also became the standard—partly because it avoids the problems with nontermi-
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nation and redundant computation that occur with backward chaining and partly because it
has a more natural implementation in terms of the basic relational database operations. The
development of the magic sets technique for rule rewriting by Bancilhon et al. (1986) al-
lowed forward chaining to borrow the advantage of goal-directedness from backward chain-
ing. Equalizing the arms race, tabled logic programming methods (see page 313) borrow the
advantage of dynamic programming from forward chaining.

Much of our understanding of the complexity of logical inference has come from the
deductive database community. Chandra and Merlin (1977) first showed that matching a
single nonrecursive rule (a conjunctive query in database terminology) can be NP-hard.CONJUNCTIVE

QUERY

Kuper and Vardi (1993) proposed data complexity—that is, complexity as a function ofDATA COMPLEXITY

database size, viewing rule size as constant—as a suitable measure for query answering.
Gottlob et al. (1999b) discuss the connection between conjunctive queries and constraint
satisfaction, showing how hypertree decomposition can optimize the matching process.

As mentioned earlier, backward chaining for logical inference appeared in Hewitt’s
PLANNER language (1969). Logic programming per se evolved independently of this ef-
fort. A restricted form of linear resolution called SL-resolution was developed by KowalskiSL-RESOLUTION

and Kuehner (1971), building on Loveland’s model elimination technique (1968); when ap-
plied to definite clauses, it becomes SLD-resolution, which lends itself to the interpretationSLD-RESOLUTION

of definite clauses as programs (Kowalski, 1974, 1979a, 1979b). Meanwhile, in 1972, the
French researcher Alain Colmerauer had developed and implemented Prolog for the purpose
of parsing natural language—Prolog’s clauses were intended initially as context-free gram-
mar rules (Roussel, 1975; Colmerauer et al., 1973). Much of the theoretical background
for logic programming was developed by Kowalski, working with Colmerauer. The semantic
definition using least fixed points is due to Van Emden and Kowalski (1976). Kowalski (1988)
and Cohen (1988) provide good historical overviews of the origins of Prolog. Foundations
of Logic Programming (Lloyd, 1987) is a theoretical analysis of the underpinnings of Prolog
and other logic programming languages.

Efficient Prolog compilers are generally based on the Warren Abstract Machine (WAM)
model of computation developed by David H. D. Warren (1983). Van Roy (1990) showed
that the application of additional compiler techniques, such as type inference, made Prolog
programs competitive with C programs in terms of speed. The Japanese Fifth Generation
project, a 10-year research effort beginning in 1982, was based completely on Prolog as the
means to develop intelligent systems.

Methods for avoiding unnecessary looping in recursive logic programs were developed
independently by Smith et al. (1986) and Tamaki and Sato (1986). The latter paper also
included memoization for logic programs, a method developed extensively as tabled logic
programming by David S. Warren. Swift and Warren (1994) show how to extend the WAM
to handle tabling, enabling Datalog programs to execute an order of magnitude faster than
forward-chaining deductive database systems.

Early theoretical work on constraint logic programming was done by Jaffar and Lassez
(1987). Jaffar et al. (1992a) developed the CLP(R) system for handling real-valued con-
straints. Jaffar et al. (1992b) generalized the WAM to produce the CLAM (Constraint Logic
Abstract Machine) for specifying implementations of CLP. Ait-Kaci and Podelski (1993)
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describe a sophisticated language called LIFE, which combines CLP with functional pro-
gramming and with inheritance reasoning. Kohn (1991) describes an ambitious project to
use constraint logic programming as the foundation for a real-time control architecture, with
applications to fully automatic pilots.

There are a number of textbooks on logic programming and Prolog. Logic for Problem
Solving (Kowalski, 1979b) is an early text on logic programming in general. Prolog texts in-
clude Clocksin and Mellish (1994), Shoham (1994), and Bratko (2001). Marriott and Stuckey
(1998) provide excellent coverage of CLP. Until its demise in 2000, the Journal of Logic Pro-
gramming was the journal of record; it has now been replaced by Theory and Practice of
Logic Programming. Logic programming conferences include the International Conference
on Logic Programming (ICLP) and the International Logic Programming Symposium (ILPS).

Research into mathematical theorem proving began even before the first complete
first-order systems were developed. Herbert Gelernter’s Geometry Theorem Prover (Gelern-
ter, 1959) used heuristic search methods combined with diagrams for pruning false subgoals
and was able to prove some quite intricate results in Euclidean geometry. Since that time,
however, there has not been very much interaction between theorem proving and AI.

Early work concentrated on completeness. Following Robinson’s seminal paper, the
demodulation and paramodulation rules for equality reasoning were introduced by Wos et al.
(1967) and Wos and Robinson (1968), respectively. These rules were also developed indepen-
dently in the context of term rewriting systems (Knuth and Bendix, 1970). The incorporation
of equality reasoning into the unification algorithm is due to Gordon Plotkin (1972); it was
also a feature of QLISP (Sacerdoti et al., 1976). Jouannaud and Kirchner (1991) survey equa-
tional unification from a term rewriting perspective. Efficient algorithms for standard unifi-
cation were developed by Martelli and Montanari (1976) and Paterson and Wegman (1978).

In addition to equality reasoning, theorem provers have incorporated a variety of special-
purpose decision procedures. Nelson and Oppen (1979) proposed an influential scheme for
integrating such procedures into a general reasoning system; other methods include Stickel’s
(1985) “theory resolution” and Manna and Waldinger’s (1986) “special relations.”

A number of control strategies have been proposed for resolution, beginning with the
unit preference strategy (Wos et al., 1964). The set of support strategy was proposed by Wos
et al. (1965), to provide a degree of goal-directedness in resolution. Linear resolution first
appeared in Loveland (1970). Genesereth and Nilsson (1987, Chapter 5) provide a short but
thorough analysis of a wide variety of control strategies.

Guard et al. (1969) describe the early SAM theorem prover, which helped to solve an
open problem in lattice theory. Wos and Winker (1983) give an overview of the contributions
of the AURA theorem prover toward solving open problems in various areas of mathematics
and logic. McCune (1992) follows up on this, recounting the accomplishments of AURA’s
successor, OTTER, in solving open problems. Weidenbach (2001) describes SPASS, one of
the strongest current theorem provers. A Computational Logic (Boyer and Moore, 1979) is
the basic reference on the Boyer-Moore theorem prover. Stickel (1988) covers the Prolog
Technology Theorem Prover (PTTP), which combines the advantages of Prolog compilation
with the completeness of model elimination (Loveland, 1968). SETHEO (Letz et al., 1992)
is another widely used theorem prover based on this approach; it can perform several million
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inferences per second on 2000-model workstations. LEANTAP (Beckert and Posegga, 1995)
is an efficient theorem prover implemented in only 25 lines of Prolog.

Early work in automated program synthesis was done by Simon (1963), Green (1969a),
and Manna and Waldinger (1971). The transformational system of Burstall and Darling-
ton (1977) used equational reasoning for recursive program synthesis. KIDS (Smith, 1990,
1996) is one of the strongest modern systems; it operates as an expert assistant. Manna and
Waldinger (1992) give a tutorial introduction to the current state of the art, with emphasis on
their own deductive approach. Automating Software Design (Lowry and McCartney, 1991)
collects a number of papers in the area. The use of logic in hardware design is surveyed
by Kern and Greenstreet (1999); Clarke et al. (1999) cover model checking for hardware
verification.

Computability and Logic (Boolos and Jeffrey, 1989) is a good reference on complete-
ness and undecidability. Many early papers in mathematical logic are to be found in From
Frege to Gödel: A Source Book in Mathematical Logic (van Heijenoort, 1967). The journal
of record for the field of pure mathematical logic (as opposed to automated deduction) is
The Journal of Symbolic Logic. Textbooks geared toward automated deduction include the
classic Symbolic Logic and Mechanical Theorem Proving (Chang and Lee, 1973), as well as
more recent works by Wos et al. (1992), Bibel (1993), and Kaufmann et al. (2000). The an-
thology Automation of Reasoning (Siekmann and Wrightson, 1983) includes many important
early papers on automated deduction. Other historical surveys have been written by Loveland
(1984) and Bundy (1999). The principal journal for the field of theorem proving is the Jour-
nal of Automated Reasoning; the main conference is the annual Conference on Automated
Deduction (CADE). Research in theorem proving is also strongly related to the use of logic in
analyzing programs and programming languages, for which the principal conference is Logic
in Computer Science.

EXERCISES

9.1 Prove from first principles that Universal Instantiation is sound and that Existential
Instantiation produces an inferentially equivalent knowledge base.

9.2 From Likes(Jerry, IceCream) it seems reasonable to infer ∃x Likes(x, IceCream).
Write down a general inference rule, Existential Introduction, that sanctions this inference.EXISTENTIAL

INTRODUCTION

State carefully the conditions that must be satisfied by the variables and terms involved.

9.3 Suppose a knowledge base contains just one sentence, ∃x AsHighAs(x,Everest).
Which of the following are legitimate results of applying Existential Instantiation?

a. AsHighAs(Everest ,Everest).

b. AsHighAs(Kilimanjaro,Everest).

c. AsHighAs(Kilimanjaro,Everest) ∧AsHighAs(BenNevis,Everest)
(after two applications).
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9.4 For each pair of atomic sentences, give the most general unifier if it exists:

a. P (A,B,B), P (x, y, z).

b. Q(y,G(A,B)), Q(G(x, x), y).

c. Older(Father(y), y), Older(Father(x), John).

d. Knows(Father(y), y), Knows(x, x).

9.5 Consider the subsumption lattices shown in Figure 9.2.

a. Construct the lattice for the sentence Employs(Mother(John),Father(Richard)).

b. Construct the lattice for the sentence Employs(IBM , y) (“Everyone works for IBM”).
Remember to include every kind of query that unifies with the sentence.

c. Assume that STORE indexes each sentence under every node in its subsumption lattice.
Explain how FETCH should work when some of these sentences contain variables; use
as examples the sentences in (a) and (b) and the query Employs(x,Father(x)).

9.6 Suppose we put into a logical database a segment of the U.S. census data listing the age,
city of residence, date of birth, and mother of every person, using social security numbers as
identifying constants for each person. Thus, George’s age is given by Age(443-65-1282, 56).
Which of the indexing schemes S1–S5 following enable an efficient solution for which of the
queries Q1–Q4 (assuming normal backward chaining)?

♦ S1: an index for each atom in each position.

♦ S2: an index for each first argument.

♦ S3: an index for each predicate atom.

♦ S4: an index for each combination of predicate and first argument.

♦ S5: an index for each combination of predicate and second argument and an index for
each first argument (nonstandard).

♦ Q1: Age(443-44-4321, x)

♦ Q2: ResidesIn(x,Houston)

♦ Q3: Mother(x, y)

♦ Q4: Age(x, 34) ∧ ResidesIn(x,TinyTownUSA)

9.7 One might suppose that we can avoid the problem of variable conflict in unification
during backward chaining by standardizing apart all of the sentences in the knowledge base
once and for all. Show that, for some sentences, this approach cannot work. (Hint: Consider
a sentence, one part of which unifies with another.)

9.8 Explain how to write any given 3-SAT problem of arbitrary size using a single first-order
definite clause and no more than 30 ground facts.

9.9 Write down logical representations for the following sentences, suitable for use with
Generalized Modus Ponens:
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a. Horses, cows, and pigs are mammals.

b. An offspring of a horse is a horse.

c. Bluebeard is a horse.

d. Bluebeard is Charlie’s parent.

e. Offspring and parent are inverse relations.

f. Every mammal has a parent.

9.10 In this question we will use the sentences you wrote in Exercise 9.9 to answer a ques-
tion using a backward-chaining algorithm.

a. Draw the proof tree generated by an exhaustive backward-chaining algorithm for the
query ∃h Horse(h), where clauses are matched in the order given.

b. What do you notice about this domain?

c. How many solutions for h actually follow from your sentences?

d. Can you think of a way to find all of them? (Hint: You might want to consult Smith
et al. (1986).)

9.11 A popular children’s riddle is “Brothers and sisters have I none, but that man’s father
is my father’s son.” Use the rules of the family domain (Chapter 8) to show who that man is.
You may apply any of the inference methods described in this chapter. Why do you think that
this riddle is difficult?

9.12 Trace the execution of the backward chaining algorithm in Figure 9.6 when it is applied
to solve the crime problem. Show the sequence of values taken on by the goals variable, and
arrange them into a tree.

9.13 The following Prolog code defines a predicate P:

P(X,[X|Y]).
P(X,[Y|Z]) :- P(X,Z).

a. Show proof trees and solutions for the queries P(A,[1,2,3]) and P(2,[1,A,3]).

b. What standard list operation does P represent?

9.14 In this exercise, we will look at sorting in Prolog.

a. Write Prolog clauses that define the predicate sorted(L), which is true if and only if
list L is sorted in ascending order.

b. Write a Prolog definition for the predicate perm(L,M), which is true if and only if L
is a permutation of M.

c. Define sort(L,M) (M is a sorted version of L) using perm and sorted.

d. Run sort on longer and longer lists until you lose patience. What is the time complex-
ity of your program?

e. Write a faster sorting algorithm, such as insertion sort or quicksort, in Prolog.
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9.15 In this exercise, we will look at the recursive application of rewrite rules, using logic
programming. A rewrite rule (or demodulator in OTTER terminology) is an equation with a
specified direction. For example, the rewrite rule x+0→ x suggests replacing any expression
that matches x + 0 with the expression x. The application of rewrite rules is a central part
of equational reasoning systems. We will use the predicate rewrite(X,Y) to represent
rewrite rules. For example, the earlier rewrite rule is written as rewrite(X+0,X). Some
terms are primitive and cannot be further simplified; thus, we will write primitive(0) to
say that 0 is a primitive term.

a. Write a definition of a predicate simplify(X,Y), that is true when Y is a simplified
version of X—that is, when no further rewrite rules are applicable to any subexpression
of Y.

b. Write a collection of rules for the simplification of expressions involving arithmetic
operators, and apply your simplification algorithm to some sample expressions.

c. Write a collection of rewrite rules for symbolic differentiation, and use them along with
your simplification rules to differentiate and simplify expressions involving arithmetic
expressions, including exponentiation.

9.16 In this exercise, we will consider the implementation of search algorithms in Prolog.
Suppose that successor(X,Y) is true when state Y is a successor of state X; and that
goal(X) is true when X is a goal state. Write a definition for solve(X,P), which means
that P is a path (list of states) beginning with X, ending in a goal state, and consisting of a
sequence of legal steps as defined by successor. You will find that depth-first search is
the easiest way to do this. How easy would it be to add heuristic search control?

9.17 How can resolution be used to show that a sentence is valid? Unsatisfiable?

9.18 From “Horses are animals,” it follows that “The head of a horse is the head of an
animal.” Demonstrate that this inference is valid by carrying out the following steps:

a. Translate the premise and the conclusion into the language of first-order logic. Use three
predicates: HeadOf (h, x) (meaning “h is the head of x”), Horse(x), and Animal(x).

b. Negate the conclusion, and convert the premise and the negated conclusion into con-
junctive normal form.

c. Use resolution to show that the conclusion follows from the premise.

9.19 Here are two sentences in the language of first-order logic:

(A): ∀x ∃ y (x ≥ y)

(B): ∃ y ∀x (x ≥ y)

a. Assume that the variables range over all the natural numbers 0, 1, 2, . . . ,∞ and that the
“≥” predicate means “is greater than or equal to.” Under this interpretation, translate
(A) and (B) into English.

b. Is (A) true under this interpretation?
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c. Is (B) true under this interpretation?

d. Does (A) logically entail (B)?

e. Does (B) logically entail (A)?

f. Using resolution, try to prove that (A) follows from (B). Do this even if you think that
(B) does not logically entail (A); continue until the proof breaks down and you cannot
proceed (if it does break down). Show the unifying substitution for each resolution step.
If the proof fails, explain exactly where, how, and why it breaks down.

g. Now try to prove that (B) follows from (A).

9.20 Resolution can produce nonconstructive proofs for queries with variables, so we had
to introduce special mechanisms to extract definite answers. Explain why this issue does not
arise with knowledge bases containing only definite clauses.

9.21 We said in this chapter that resolution cannot be used to generate all logical conse-
quences of a set of sentences. Can any algorithm do this?


