
8 FIRST-ORDER LOGIC

In which we notice that the world is blessed with many objects, some of which are
related to other objects, and in which we endeavor to reason about them.

In Chapter 7, we showed how a knowledge-based agent could represent the world in which it
operates and deduce what actions to take. We used propositional logic as our representation
language because it sufficed to illustrate the basic concepts of logic and knowledge-based
agents. Unfortunately, propositional logic is too puny a language to represent knowledge
of complex environments in a concise way. In this chapter, we examine first-order logic,1FIRST-ORDER LOGIC

which is sufficiently expressive to represent a good deal of our commonsense knowledge.
It also either subsumes or forms the foundation of many other representation languages and
has been studied intensively for many decades. We begin in Section 8.1 with a discussion of
representation languages in general; Section 8.2 covers the syntax and semantics of first-order
logic; Sections 8.3 and 8.4 illustrate the use of first-order logic for simple representations.

8.1 REPRESENTATION REVISITED

In this section, we will discuss the nature of representation languages. Our discussion will
motivate the development of first-order logic, a much more expressive language than the
propositional logic introduced in Chapter 7. We will look at propositional logic and at other
kinds of languages to understand what works and what fails. Our discussion will be cursory,
compressing centuries of thought, trial, and error into a few paragraphs.

Programming languages (such as C++ or Java or Lisp) are by far the largest class of
formal languages in common use. Programs themselves represent, in a direct sense, only
computational processes. Data structures within programs can represent facts; for example,
a program could use a 4 × 4 array to represent the contents of the wumpus world. Thus,
the programming language statement World[2,2]←Pit is a fairly natural way to assert that
there is a pit in square [2,2]. (Such representations might be considered ad hoc; database
systems were developed precisely to provide a more general, domain-independent way to

1 Also called first-order predicate calculus, sometimes abbreviated as FOL or FOPC.

240

Section 8.1. Representation Revisited 241

store and retrieve facts.) What programming languages lack is any general mechanism for
deriving facts from other facts; each update to a data structure is done by a domain-specific
procedure whose details are derived by the programmer from his or her own knowledge of
the domain. This procedural approach can be contrasted with the declarative nature of
propositional logic, in which knowledge and inference are separate, and inference is entirely
domain-independent.

A second drawback of data structures in programs (and of databases, for that matter)
is the lack of any easy way to say, for example, “There is a pit in [2,2] or [3,1]” or “If the
wumpus is in [1,1] then he is not in [2,2].” Programs can store a single value for each variable,
and some systems allow the value to be “unknown,” but they lack the expressiveness required
to handle partial information.

Propositional logic is a declarative language because its semantics is based on a truth
relation between sentences and possible worlds. It also has sufficient expressive power to
deal with partial information, using disjunction and negation. Propositional logic has a third
property that is desirable in representation languages, namely compositionality. In a com-COMPOSITIONALITY

positional language, the meaning of a sentence is a function of the meaning of its parts. For
example, “S1,4 ∧ S1,2” is related to the meanings of “S1,4” and “S1,2.” It would be very
strange if “S1,4” meant that there is a stench in square [1,4] and “S1,2” meant that there is a
stench in square [1,2], but “S1,4∧S1,2” meant that France and Poland drew 1–1 in last week’s
ice hockey qualifying match. Clearly, noncompositionality makes life much more difficult for
the reasoning system.

As we saw in Chapter 7, propositional logic lacks the expressive power to describe an
environment with many objects concisely. For example, we were forced to write a separate
rule about breezes and pits for each square, such as

B1,1 ⇔ (P1,2 ∨ P2,1) .

In English, on the other hand, it seems easy enough to say, once and for all, “Squares adjacent
to pits are breezy.” The syntax and semantics of English somehow make it possible to describe
the environment concisely.

A moment’s thought suggests that natural languages (such as English or Spanish) are
very expressive indeed. We managed to write almost this whole book in natural language,
with only occasional lapses into other languages (including logic, mathematics, and the lan-
guage of diagrams). There is a long tradition in linguistics and the philosophy of language
that views natural language as essentially a declarative knowledge representation language
and attempts to pin down its formal semantics. Such a research program, if successful, would
be of great value to artificial intelligence because it would allow a natural language (or some
derivative) to be used within representation and reasoning systems.

The modern view of natural language is that it serves a somewhat different purpose,
namely as a medium for communication rather than pure representation. When a speaker
points and says, “Look!” the listener comes to know that, say, Superman has finally appeared
over the rooftops. Yet we would not want to say that the sentence “Look!” encoded that fact.
Rather, the meaning of the sentence depends both on the sentence itself and on the context in
which the sentence was spoken. Clearly, one could not store a sentence such as “Look!” in

242 Chapter 8. First-Order Logic

a knowledge base and expect to recover its meaning without also storing a representation of
the context—which raises the question of how the context itself can be represented. Natural
languages are also noncompositional—the meaning of a sentence such as “Then she saw it”
can depend on a context constructed by many preceding and succeeding sentences. Finally,
natural languages suffer from ambiguity, which would cause difficulties for thinking. As
Pinker (1995) puts it: “When people think about spring, surely they are not confused as to
whether they are thinking about a season or something that goes boing—and if one word can
correspond to two thoughts, thoughts can’t be words.”

Our approach will be to adopt the foundation of propositional logic—a declarative,
compositional semantics that is context-independent and unambiguous—and build a more
expressive logic on that foundation, borrowing representational ideas from natural language
while avoiding its drawbacks. When we look at the syntax of natural language, the most
obvious elements are nouns and noun phrases that refer to objects (squares, pits, wumpuses)OBJECTS

and verbs and verb phrases that refer to relations among objects (is breezy, is adjacent to,RELATIONS

shoots). Some of these relations are functions—relations in which there is only one “value”FUNCTIONS

for a given “input.” It is easy to start listing examples of objects, relations, and functions:

• Objects: people, houses, numbers, theories, Ronald McDonald, colors, baseball games,
wars, centuries . . .

• Relations: these can be unary relations or properties such as red, round, bogus, prime,PROPERTIES

multistoried . . ., or more general n-ary relations such as brother of, bigger than, inside,
part of, has color, occurred after, owns, comes between, . . .

• Functions: father of, best friend, third inning of, one more than, beginning of . . .

Indeed, almost any assertion can be thought of as referring to objects and properties or rela-
tions. Some examples follow:

• “One plus two equals three”
Objects: one, two, three, one plus two; Relation: equals; Function: plus. (“One plus
two” is a name for the object that is obtained by applying the function “plus” to the
objects “one” and “two.” Three is another name for this object.)

• “Squares neighboring the wumpus are smelly.”
Objects: wumpus, squares; Property: smelly; Relation: neighboring.

• “Evil King John ruled England in 1200.”
Objects: John, England, 1200; Relation: ruled; Properties: evil, king.

The language of first-order logic, whose syntax and semantics we will define in the next
section, is built around objects and relations. It has been so important to mathematics, philos-
ophy, and artificial intelligence precisely because those fields—and indeed, much of everyday
human existence—can be usefully thought of as dealing with objects and the relations among
them. First-order logic can also express facts about some or all of the objects in the uni-
verse. This enables one to represent general laws or rules, such as the statement “Squares
neighboring the wumpus are smelly.”

The primary difference between propositional and first-order logic lies in the ontologi-
cal commitment made by each language—that is, what it assumes about the nature of reality.ONTOLOGICAL

COMMITMENT

Section 8.1. Representation Revisited 243

THE LANGUAGE OF THOUGHT

Philosophers and psychologists have long pondered how it is that humans and other
animals represent knowledge. It is clear that the evolution of natural language
has played an important role in developing this ability in humans. On the other
hand, much psychological evidence suggests that humans do not employ language
directly in their internal representations. For example, which of the following two
phrases formed the opening of Section 8.1?

“In this section, we will discuss the nature of representation languages . . .”

“This section covers the topic of knowledge representation languages . . .”

Wanner (1974) found that subjects made the right choice in such tests at chance
level—about 50% of the time—but remembered the content of what they read with
better than 90% accuracy. This suggests that people process the words to form
some kind of nonverbal representation, which we call memory.

The exact mechanism by which language enables and shapes the representa-
tion of ideas in humans remains a fascinating question. The famous Sapir–Whorf
hypothesis claims that the language we speak profoundly influences the way in
which we think and make decisions, in particular by setting up the category struc-
ture by which we divide up the world into different sorts of objects. Whorf (1956)
claimed that Eskimos have many words for snow and thus experience snow in a
different way from speakers of other languages. Some linguists dispute the factual
basis for this claim—Pullum (1991) argues that Inuit, Yupik, and other related lan-
guages seem to have about the same number of words for snow-related concepts
as English—while others support it (Fortescue, 1984). It seems unarguably true
that populations having greater familiarity with some aspects of the world develop
much more detailed vocabularies—for example, field entomologists divide what
most of us call beetles into hundreds of thousands of species and are personally
familiar with many of these. (The evolutionary biologist J. B. S. Haldane once
complained of “An inordinate fondness for beetles” on the part of the Creator.)
Moreover, expert skiers have many terms for snow—powder, chowder, mashed
potatoes, crud, corn, cement, crust, sugar, asphalt, corduroy, fluff, glop, and so
on—that represent distinctions unfamiliar to the lay person. What is unclear is the
direction of causality—do skiers become aware of the distinctions only by learning
the words, or do the distinctions emerge from individual experience and become
matched with the labels current in the community? This question is especially im-
portant in the study of child development. As yet, we have little understanding of
the extent to which learning language and learning to think are intertwined. For
example, does the knowledge of a name for a concept, such as bachelor, make it
easier to construct and reason with more complex concepts that include that name,
such as eligible bachelor?

244 Chapter 8. First-Order Logic

For example, propositional logic assumes that there are facts that either hold or do not hold
in the world. Each fact can be in one of two states: true or false.2 First-order logic assumes
more; namely, that the world consists of objects with certain relations among them that do or
do not hold. Special-purpose logics make still further ontological commitments; for example,
temporal logic assumes that facts hold at particular times and that those times (which mayTEMPORAL LOGIC

be points or intervals) are ordered. Thus, special-purpose logics give certain kinds of objects
(and the axioms about them) “first-class” status within the logic, rather than simply defin-
ing them within the knowledge base. Higher-order logic views the relations and functionsHIGHER-ORDER

LOGIC

referred to by first-order logic as objects in themselves. This allows one to make assertions
about all relations—for example, one could wish to define what it means for a relation to
be transitive. Unlike most special-purpose logics, higher-order logic is strictly more expres-
sive than first-order logic, in the sense that some sentences of higher-order logic cannot be
expressed by any finite number of first-order logic sentences.

A logic can also be characterized by its epistemological commitments—the possibleEPISTEMOLOGICAL
COMMITMENTS

states of knowledge that it allows with respect to each fact. In both propositional and first-
order logic, a sentence represents a fact and the agent either believes the sentence to be true,
believes it to be false, or has no opinion. These logics therefore have three possible states
of knowledge regarding any sentence. Systems using probability theory, on the other hand,
can have any degree of belief, ranging from 0 (total disbelief) to 1 (total belief).3 For ex-
ample, a probabilistic wumpus-world agent might believe that the wumpus is in [1,3] with
probability 0.75. The ontological and epistemological commitments of five different logics
are summarized in Figure 8.1.

Language Ontological Commitment Epistemological Commitment
(What exists in the world) (What an agent believes about facts)

Propositional logic facts true/false/unknown
First-order logic facts, objects, relations true/false/unknown
Temporal logic facts, objects, relations, times true/false/unknown
Probability theory facts degree of belief ∈ [0, 1]
Fuzzy logic facts with degree of truth ∈ [0, 1] known interval value

Figure 8.1 Formal languages and their ontological and epistemological commitments.

In the next section, we will launch into the details of first-order logic. Just as a student of
physics requires some familiarity with mathematics, a student of AI must develop a talent for
working with logical notation. On the other hand, it is also important not to get too concerned
with the specifics of logical notation—after all, there are dozens of different versions. The
main things to keep hold of are how the language facilitates concise representations and how
its semantics leads to sound reasoning procedures.

2 In contrast, facts in fuzzy logic have a degree of truth between 0 and 1. For example, the sentence “Vienna is
a large city” might be true in our world only to degree 0.6.
3 It is important not to confuse the degree of belief in probability theory with the degree of truth in fuzzy logic.
Indeed, some fuzzy systems allow uncertainty (degree of belief) about degrees of truth.

Section 8.2. Syntax and Semantics of First-Order Logic 245

8.2 SYNTAX AND SEMANTICS OF FIRST-ORDER LOGIC

We begin this section by specifying more precisely the way in which the possible worlds
of first-order logic reflect the ontological commitment to objects and relations. Then we
introduce the various elements of the language, explaining their semantics as we go along.

Models for first-order logic

Recall from Chapter 7 that the models of a logical language are the formal structures that
constitute the possible worlds under consideration. Models for propositional logic are just sets
of truth values for the proposition symbols. Models for first-order logic are more interesting.
First, they have objects in them! The domain of a model is the set of objects it contains;DOMAIN

these objects are sometimes called domain elements. Figure 8.2 shows a model with fiveDOMAIN ELEMENTS

objects: Richard the Lionheart, King of England from 1189 to 1199; his younger brother, the
evil King John, who ruled from 1199 to 1215; the left legs of Richard and John; and a crown.

The objects in the model may be related in various ways. In the figure, Richard and
John are brothers. Formally speaking, a relation is just the set of tuples of objects that areTUPLES

related. (A tuple is a collection of objects arranged in a fixed order and is written with angle
brackets surrounding the objects.) Thus, the brotherhood relation in this model is the set

{ 〈Richard the Lionheart, King John〉, 〈King John, Richard the Lionheart〉 } . (8.1)

(Here we have named the objects in English, but you may, if you wish, mentally substitute the
pictures for the names.) The crown is on King John’s head, so the “on head” relation contains

R J
$

left leg

on headbrother

brother

person person
king

crown

left leg

Figure 8.2 A model containing five objects, two binary relations, three unary relations
(indicated by labels on the objects), and one unary function, left-leg.

246 Chapter 8. First-Order Logic

just one tuple, 〈the crown, King John〉. The “brother” and “on head” relations are binary
relations—that is, they relate pairs of objects. The model also contains unary relations, or
properties: the “person” property is true of both Richard and John; the “king” property is true
only of John (presumably because Richard is dead at this point); and the “crown” property is
true only of the crown.

Certain kinds of relationships are best considered as functions, in that a given object
must be related to exactly one object in this way. For example, each person has one left leg,
so the model has a unary “left leg” function that includes the following mappings:

〈Richard the Lionheart〉 → Richard’s left leg
〈King John〉 → John’s left leg .

(8.2)

Strictly speaking, models in first-order logic require total functions, that is, there must be aTOTAL FUNCTIONS

value for every input tuple. Thus, the crown must have a left leg and so must each of the left
legs. There is a technical solution to this awkward problem involving an additional “invisible”
object that is the left leg of everything that has no left leg, including itself. Fortunately, as
long as one makes no assertions about the left legs of things that have no left legs, these
technicalities are of no import.

Symbols and interpretations

We turn now to the syntax of the language. The impatient reader can obtain a complete
description from the formal grammar of first-order logic in Figure 8.3.

The basic syntactic elements of first-order logic are the symbols that stand for objects,
relations, and functions. The symbols, therefore, come in three kinds: constant symbols,CONSTANT SYMBOLS

which stand for objects; predicate symbols, which stand for relations; and function sym-PREDICATE
SYMBOLS

bols, which stand for functions. We adopt the convention that these symbols will begin withFUNCTION SYMBOLS

uppercase letters. For example, we might use the constant symbols Richard and John; the
predicate symbols Brother , OnHead , Person , King , and Crown; and the function symbol
LeftLeg . As with proposition symbols, the choice of names is entirely up to the user. Each
predicate and function symbol comes with an arity that fixes the number of arguments.ARITY

The semantics must relate sentences to models in order to determine truth. For this to
happen, we need an interpretation that specifies exactly which objects, relations and func-INTERPRETATION

tions are referred to by the constant, predicate, and function symbols. One possible interpre-
tation for our example—which we will call the intended interpretation—is as follows:INTENDED

INTERPRETATION

• Richard refers to Richard the Lionheart and John refers to the evil King John.

• Brother refers to the brotherhood relation, that is, the set of tuples of objects given in
Equation (8.1); OnHead refers to the “on head” relation that holds between the crown
and King John; Person , King , and Crown refer to the sets of objects that are persons,
kings, and crowns.

• LeftLeg refers to the “left leg” function, that is, the mapping given in Equation (8.2).

There are many other possible interpretations relating these symbols to this particular model.
For example, one interpretation maps Richard to the crown and John to King John’s left
leg. There are five objects in the model, so there are 25 possible interpretations just for the

Section 8.2. Syntax and Semantics of First-Order Logic 247

Sentence → AtomicSentence

| (Sentence Connective Sentence)

| Quantifier Variable, . . . Sentence

| ¬ Sentence

AtomicSentence → Predicate(Term, . . .) | Term = Term

Term → Function(Term, . . .)

| Constant

| Variable

Connective → ⇒| ∧ | ∨ | ⇔

Quantifier → ∀ | ∃

Constant → A | X1 | John | · · ·

Variable → a | x | s | · · ·

Predicate → Before | HasColor | Raining | · · ·

Function → Mother | LeftLeg | · · ·

Figure 8.3 The syntax of first-order logic with equality, specified in Backus–Naur form.
(See page 984 if you are not familiar with this notation.) The syntax is strict about parenthe-
ses; the comments about parentheses and operator precedence on page 205 apply equally to
first-order logic.

constant symbols Richard and John . Notice that not all the objects need have a name—for
example, the intended interpretation does not name the crown or the legs. It is also possible
for an object to have several names; there is an interpretation under which both Richard and
John refer to the crown. If you find this possibility confusing, remember that, in propositional
logic, it is perfectly possible to have a model in which Cloudy and Sunny are both true; it is
the job of the knowledge base to rule out models that are inconsistent with our knowledge.

The truth of any sentence is determined by a model and an interpretation for the sen-
tence’s symbols. Therefore, entailment, validity, and so on are defined in terms of all possible
models and all possible interpretations. It is important to note that the number of domain ele-
ments in each model may be unbounded—for example, the domain elements may be integers
or real numbers. Hence, the number of possible models is unbounded, as is the number of
interpretations. Checking entailment by the enumeration of all possible models, which works
for propositional logic, is not an option for first-order logic. Even if the number of objects is
restricted, the number of combinations can be very large. With the symbols in our example,
there roughly 1025 combinations for a domain with five objects. (See Exercise 8.5.)

248 Chapter 8. First-Order Logic

Terms

A term is a logical expression that refers to an object. Constant symbols are therefore terms,TERM

but it is not always convenient to have a distinct symbol to name every object. For example,
in English we might use the expression “King John’s left leg” rather than giving a name
to his leg. This is what function symbols are for: instead of using a constant symbol, we
use LeftLeg(John). In the general case, a complex term is formed by a function symbol
followed by a parenthesized list of terms as arguments to the function symbol. It is important
to remember that a complex term is just a complicated kind of name. It is not a “subroutine
call” that “returns a value.” There is no LeftLeg subroutine that takes a person as input and
returns a leg. We can reason about left legs (e.g., stating the general rule that everyone has one
and then deducing that John must have one) without ever providing a definition of LeftLeg .
This is something that cannot be done with subroutines in programming languages.4

The formal semantics of terms is straightforward. Consider a term f(t1, . . . , tn). The
function symbol f refers to some function in the model (call it F); the argument terms refer
to objects in the domain (call them d1, . . . , dn); and the term as a whole refers to the object
that is the value of the function F applied to d1, . . . , dn. For example, suppose the LeftLeg

function symbol refers to the function shown in Equation (8.2) and John refers to King John,
then LeftLeg(John) refers to King John’s left leg. In this way, the interpretation fixes the
referent of every term.

Atomic sentences

Now that we have both terms for referring to objects and predicate symbols for referring to
relations, we can put them together to make atomic sentences that state facts. An atomic
sentence is formed from a predicate symbol followed by a parenthesized list of terms:

Brother(Richard , John).

This states, under the intended interpretation given earlier, that Richard the Lionheart is the
brother of King John.5 Atomic sentences can have complex terms as arguments. Thus,

Married(Father(Richard),Mother(John))

states that Richard the Lionheart’s father is married to King John’s mother (again, under a
suitable interpretation).

An atomic sentence is true in a given model, under a given interpretation, if the relation
referred to by the predicate symbol holds among the objects referred to by the arguments.

4 λ-expressions provide a useful notation in which new function symbols are constructed “on the fly.” For
example, the function that squares its argument can be written as (λx x×x) and can be applied to arguments
just like any other function symbol. A λ-expression can also be defined and used as a predicate symbol. (See
Chapter 22.) The lambda operator in Lisp plays exactly the same role. Notice that the use of λ in this way does
not increase the formal expressive power of first-order logic, because any sentence that includes a λ-expression
can be rewritten by “plugging in” its arguments to yield an equivalent sentence.
5 We will usually follow the argument ordering convention that P (x, y) is interpreted as “x is a P of y.”

Section 8.2. Syntax and Semantics of First-Order Logic 249

Complex sentences

We can use logical connectives to construct more complex sentences, just as in propositional
calculus. The semantics of sentences formed with logical connectives is identical to that in
the propositional case. Here are four sentences that are true in the model of Figure 8.2 under
our intended interpretation:

¬Brother(LeftLeg(Richard), John)
Brother(Richard , John) ∧ Brother(John,Richard)
King(Richard) ∨King(John)
¬King(Richard) ⇒ King(John) .

Quantifiers

Once we have a logic that allows objects, it is only natural to want to express properties of
entire collections of objects, instead of enumerating the objects by name. Quantifiers let usQUANTIFIERS

do this. First-order logic contains two standard quantifiers, called universal and existential.

Universal quantification (∀)

Recall the difficulty we had in Chapter 7 with the expression of general rules in proposi-
tional logic. Rules such as “Squares neighboring the wumpus are smelly” and “All kings are
persons” are the bread and butter of first-order logic. We will deal with the first of these in
Section 8.3. The second rule, “All kings are persons,” is written in first-order logic as

∀x King(x) ⇒ Person(x) .

∀ is usually pronounced “For all . . .”. (Remember that the upside-down A stands for “all.”)
Thus, the sentence says, “For all x, if x is a king, then x is a person.” The symbol x is called
a variable. By convention, variables are lowercase letters. A variable is a term all by itself,VARIABLE

and as such can also serve as the argument of a function—for example, LeftLeg(x). A term
with no variables is called a ground term.GROUND TERM

Intuitively, the sentence ∀x P , where P is any logical expression, says that P is true for
every object x. More precisely, ∀x P is true in a given model under a given interpretation if
P is true in all possible extended interpretations constructed from the given interpretation,EXTENDED

INTERPRETATION

where each extended interpretation specifies a domain element to which x refers.
This sounds complicated, but it is really just a careful way of stating the intuitive mean-

ing of universal quantification. Consider the model shown in Figure 8.2 and the intended
interpretation that goes with it. We can extend the interpretation in five ways:

x→ Richard the Lionheart,
x→ King John,
x→ Richard’s left leg,
x→ John’s left leg,
x→ the crown.

The universally quantified sentence ∀x King(x) ⇒ Person(x) is true under the original
interpretation if the sentence King(x)⇒ Person(x) is true in each of the five extended inter-

250 Chapter 8. First-Order Logic

pretations. That is, the universally quantified sentence is equivalent to asserting the following
five sentences:

Richard the Lionheart is a king ⇒ Richard the Lionheart is a person.
King John is a king ⇒ King John is a person.
Richard’s left leg is a king ⇒ Richard’s left leg is a person.
John’s left leg is a king ⇒ John’s left leg is a person.
The crown is a king ⇒ the crown is a person.

Let us look carefully at this set of assertions. Since, in our model, King John is the only
king, the second sentence asserts that he is a person, as we would hope. But what about the
other four sentences, which appear to make claims about legs and crowns? Is that part of the
meaning of “All kings are persons”? In fact, the other four assertions are true in the model,
but make no claim whatsoever about the personhood qualifications of legs, crowns, or indeed
Richard. This is because none of these objects is a king. Looking at the truth table for ⇒
(Figure 7.8), we see that the implication is true whenever its premise is false—regardless
of the truth of the conclusion. Thus, by asserting the universally quantified sentence, which
is equivalent to asserting a whole list of individual implications, we end up asserting the
conclusion of the rule just for those objects for whom the premise is true and saying nothing
at all about those individuals for whom the premise is false. Thus, the truth-table entries for
⇒ turn out to be perfect for writing general rules with universal quantifiers.

A common mistake, made frequently even by diligent readers who have read this para-
graph several times, is to use conjunction instead of implication. The sentence

∀x King(x) ∧ Person(x)

would be equivalent to asserting

Richard the Lionheart is a king ∧ Richard the Lionheart is a person,
King John is a king ∧ King John is a person,
Richard’s left leg is a king ∧ Richard’s left leg is a person,

and so on. Obviously, this does not capture what we want.

Existential quantification (∃)

Universal quantification makes statements about every object. Similarly, we can make a state-
ment about some object in the universe without naming it, by using an existential quantifier.
To say, for example, that King John has a crown on his head, we write

∃x Crown(x) ∧OnHead(x, John) .

∃x is pronounced “There exists an x such that . . .” or “For some x . . .”.
Intuitively, the sentence ∃x P says that P is true for at least one object x. More

precisely, ∃x P is true in a given model under a given interpretation if P is true in at least
one extended interpretation that assigns x to a domain element. For our example, this means

Section 8.2. Syntax and Semantics of First-Order Logic 251

that at least one of the following must be true:

Richard the Lionheart is a crown ∧ Richard the Lionheart is on John’s head;
King John is a crown ∧ King John is on John’s head;
Richard’s left leg is a crown ∧ Richard’s left leg is on John’s head;
John’s left leg is a crown ∧ John’s left leg is on John’s head;
The crown is a crown ∧ the crown is on John’s head.

The fifth assertion is true in the model, so the original existentially quantified sentence is
true in the model. Notice that, by our definition, the sentence would also be true in a model
in which King John was wearing two crowns. This is entirely consistent with the original
sentence “King John has a crown on his head.” 6

Just as⇒ appears to be the natural connective to use with ∀, ∧ is the natural connective
to use with ∃. Using ∧ as the main connective with ∀ led to an overly strong statement in
the example in the previous section; using⇒ with ∃ usually leads to a very weak statement,
indeed. Consider the following sentence:

∃x Crown(x) ⇒ OnHead(x, John) .

On the surface, this might look like a reasonable rendition of our sentence. Applying the
semantics, we see that the sentence says that at least one of the following assertions is true:

Richard the Lionheart is a crown ⇒ Richard the Lionheart is on John’s head;
King John is a crown ⇒ King John is on John’s head;
Richard’s left leg is a crown ⇒ Richard’s left leg is on John’s head;

and so on. Now an implication is true if both premise and conclusion are true, or if its
premise is false. So if Richard the Lionheart is not a crown, then the first assertion is true
and the existential is satisfied. So, an existentially quantified implication sentence is true in
any model containing an object for which the premise of the implication is false; hence such
sentences really do not say much at all.

Nested quantifiers

We will often want to express more complex sentences using multiple quantifiers. The sim-
plest case is where the quantifiers are of the same type. For example, “Brothers are siblings”
can be written as

∀x ∀ y Brother(x, y) ⇒ Sibling(x, y) .

Consecutive quantifiers of the same type can be written as one quantifier with several vari-
ables. For example, to say that siblinghood is a symmetric relationship, we can write

∀x, y Sibling(x, y) ⇔ Sibling(y, x) .

In other cases we will have mixtures. “Everybody loves somebody” means that for every
person, there is someone that person loves:

∀x ∃ y Loves(x, y) .

6 There is a variant of the existential quantifier, usually written ∃
1 or ∃!, that means “There exists exactly one.”

The same meaning can be expressed using equality statements, as we show in Section 8.2.

252 Chapter 8. First-Order Logic

On the other hand, to say “There is someone who is loved by everyone,” we write

∃ y ∀x Loves(x, y) .

The order of quantification is therefore very important. It becomes clearer if we insert paren-
theses. ∀x (∃ y Loves(x, y)) says that everyone has a particular property, namely, the prop-
erty that somebody loves them. On the other hand, ∃x (∀ y Loves(x, y)) says that someone
in the world has a particular property, namely the property of being loved by everybody.

Some confusion can arise when two quantifiers are used with the same variable name.
Consider the sentence

∀x [Crown(x) ∨ (∃x Brother(Richard , x))] .

Here the x in Brother(Richard , x) is existentially quantified. The rule is that the variable
belongs to the innermost quantifier that mentions it; then it will not be subject to any other
quantification.7 Another way to think of it is this: ∃x Brother(Richard , x) is a sentence
about Richard (that he has a brother), not about x; so putting a ∀x outside it has no effect. It
could equally well have been written ∃ z Brother(Richard , z). Because this can be a source
of confusion, we will always use different variables.

Connections between ∀ and ∃

The two quantifiers are actually intimately connected with each other, through negation. As-
serting that everyone dislikes parsnips is the same as asserting there does not exist someone
who likes them, and vice versa:

∀x ¬Likes(x,Parsnips) is equivalent to ¬∃x Likes(x,Parsnips) .

We can go one step further: “Everyone likes ice cream” means that there is no one who does
not like ice cream:

∀x Likes(x, IceCream) is equivalent to ¬∃x ¬Likes(x, IceCream) .

Because ∀ is really a conjunction over the universe of objects and ∃ is a disjunction, it should
not be surprising that they obey de Morgan’s rules. The de Morgan rules for quantified and
unquantified sentences are as follows:

∀x ¬P ≡ ¬∃x P ¬P ∧ ¬Q ≡ ¬(P ∨Q)
¬∀x P ≡ ∃x ¬P ¬(P ∧Q) ≡ ¬P ∨ ¬Q
∀x P ≡ ¬∃x ¬P P ∧Q ≡ ¬(¬P ∨ ¬Q)
∃x P ≡ ¬∀x ¬P P ∨Q ≡ ¬(¬P ∧ ¬Q) .

Thus, we do not really need both ∀ and ∃, just as we do not really need both ∧ and ∨. Still,
readability is more important than parsimony, so we will keep both of the quantifiers.

7 It is the potential for interference between quantifiers using the same variable name that motivates the slightly
baroque mechanism of extended interpretations in the semantics of quantified sentences. The more intuitively
obvious approach of substituting objects for every occurrence of x fails in our example because the x in
Brother(Richard , x) would be “captured” by the substitution. Extended interpretations handle this correctly
because the inner quantifier’s assignment for x overrides the outer quantifier’s.

Section 8.3. Using First-Order Logic 253

Equality

First-order logic includes one more way to make atomic sentences, other than using a pred-
icate and terms as described earlier. We can use the equality symbol to make statements toEQUALITY SYMBOL

the effect that two terms refer to the same object. For example,

Father(John)=Henry

says that the object referred to by Father(John) and the object referred to by Henry are the
same. Because an interpretation fixes the referent of any term, determining the truth of an
equality sentence is simply a matter of seeing that the referents of the two terms are the same
object.

The equality symbol can be used to state facts about a given function, as we just did for
the Father symbol. It can also be used with negation to insist that two terms are not the same
object. To say that Richard has at least two brothers, we would write

∃x, y Brother(x,Richard) ∧ Brother(y,Richard) ∧ ¬(x= y) .

The sentence

∃x, y Brother(x,Richard) ∧ Brother(y,Richard) ,

does not have the intended meaning. In particular, it is true in the model of Figure 8.2, where
Richard has only one brother. To see this, consider the extended interpretation in which both
x and y are assigned to King John. The addition of ¬(x= y) rules out such models. The
notation x 6= y is sometimes used as an abbreviation for ¬(x= y).

8.3 USING FIRST-ORDER LOGIC

Now that we have defined an expressive logical language, it is time to learn how to use it. The
best way to do this is through examples. We have seen some simple sentences illustrating the
various aspects of logical syntax; in this section, we will provide more systematic represen-
tations of some simple domains. In knowledge representation, a domain is just some part ofDOMAINS

the world about which we wish to express some knowledge.
We will begin with a brief description of the TELL/ASK interface for first-order knowl-

edge bases. Then we will look at the domains of family relationships, numbers, sets, and lists,
and at the wumpus world. The next section contains a more substantial example (electronic
circuits) and Chapter 10 covers everything in the universe.

Assertions and queries in first-order logic

Sentences are added to a knowledge base using TELL, exactly as in propositional logic. Such
sentences are called assertions. For example, we can assert that John is a king and that kingsASSERTIONS

are persons:

TELL(KB , King(John)) .
TELL(KB , ∀x King(x) ⇒ Person(x)) .

254 Chapter 8. First-Order Logic

We can ask questions of the knowledge base using ASK. For example,

ASK(KB , King(John))

returns true. Questions asked using ASK are called queries or goals (not to be confusedQUERIES

GOALS with goals as used to describe an agent’s desired states). Generally speaking, any query that
is logically entailed by the knowledge base should be answered affirmatively. For example,
given the two assertions in the preceding paragraph, the query

ASK(KB , Person(John))

should also return true. We can also ask quantified queries, such as

ASK(KB , ∃x Person(x)) .

The answer to this query could be true, but this is neither helpful nor amusing. (It is rather
like answering “Can you tell me the time?” with “Yes.”) A query with existential variables
is asking “Is there an x such that . . .,” and we solve it by providing such an x. The standard
form for an answer of this sort is a substitution or binding list, which is a set of variable/termSUBSTITUTION

BINDING LIST pairs. In this particular case, given just the two assertions, the answer would be {x/John}.
If there is more than one possible answer, a list of substitutions can be returned.

The kinship domain

The first example we consider is the domain of family relationships, or kinship. This domain
includes facts such as “Elizabeth is the mother of Charles” and “Charles is the father of
William” and rules such as “One’s grandmother is the mother of one’s parent.”

Clearly, the objects in our domain are people. We will have two unary predicates,
Male and Female. Kinship relations—parenthood, brotherhood, marriage, and so on—will
be represented by binary predicates: Parent , Sibling , Brother , Sister , Child , Daughter ,
Son , Spouse, Wife, Husband , Grandparent , Grandchild , Cousin , Aunt , and Uncle . We
will use functions for Mother and Father , because every person has exactly one of each of
these (at least according to nature’s design).

We can go through each function and predicate, writing down what we know in terms
of the other symbols. For example, one’s mother is one’s female parent:

∀m, c Mother(c)=m ⇔ Female(m) ∧ Parent(m, c) .

One’s husband is one’s male spouse:

∀w, h Husband(h,w) ⇔ Male(h) ∧ Spouse(h,w) .

Male and female are disjoint categories:

∀x Male(x) ⇔ ¬Female(x) .

Parent and child are inverse relations:

∀ p, c Parent(p, c) ⇔ Child(c, p) .

A grandparent is a parent of one’s parent:

∀ g, c Grandparent(g, c) ⇔ ∃ p Parent(g, p) ∧ Parent(p, c) .

Section 8.3. Using First-Order Logic 255

A sibling is another child of one’s parents:

∀x, y Sibling(x, y) ⇔ x 6= y ∧ ∃ p Parent(p, x) ∧ Parent(p, y) .

We could go on for several more pages like this, and Exercise 8.11 asks you to do just that.
Each of these sentences can be viewed as an axiom of the kinship domain. AxiomsAXIOM

are commonly associated with purely mathematical domains—we will see some axioms for
numbers shortly—but they are needed in all domains. They provide the basic factual informa-
tion from which useful conclusions can be derived. Our kinship axioms are also definitions;DEFINITION

they have the form ∀x, y P (x, y) ⇔ The axioms define the Mother function and the
Husband , Male, Parent , Grandparent , and Sibling predicates in terms of other predicates.
Our definitions “bottom out” at a basic set of predicates (Child , Spouse, and Female) in
terms of which the others are ultimately defined. This is a very natural way in which to build
up the representation of a domain, and it is analogous to the way in which software packages
are built up by successive definitions of subroutines from primitive library functions. No-
tice that there is not necessarily a unique set of primitive predicates; we could equally well
have used Parent , Spouse, and Male. In some domains, as we will see, there is no clearly
identifiable basic set.

Not all logical sentences about a domain are axioms. Some are theorems—that is, theyTHEOREM

are entailed by the axioms. For example, consider the assertion that siblinghood is symmetric:

∀x, y Sibling(x, y) ⇔ Sibling(y, x) .

Is this an axiom or a theorem? In fact, it is a theorem that follows logically from the axiom
that defines siblinghood. If we ASK the knowledge base this sentence, it should return true.

From a purely logical point of view, a knowledge base need contain only axioms and
no theorems, because the theorems do not increase the set of conclusions that follow from
the knowledge base. From a practical point of view, theorems are essential to reduce the
computational cost of deriving new sentences. Without them, a reasoning system has to start
from first principles every time, rather like a physicist having to rederive the rules of calculus
for every new problem.

Not all axioms are definitions. Some provide more general information about certain
predicates without constituting a definition. Indeed, some predicates have no complete defi-
nition because we do not know enough to characterize them fully. For example, there is no
obvious way to complete the sentence:

∀x Person(x) ⇔ . . .

Fortunately, first-order logic allows us to make use of the Person predicate without com-
pletely defining it. Instead, we can write partial specifications of properties that every person
has and properties that make something a person:

∀x Person(x) ⇒ . . .
∀x . . . ⇒ Person(x) .

Axioms can also be “just plain facts,” such as Male(Jim) and Spouse(Jim,Laura).
Such facts form the descriptions of specific problem instances, enabling specific questions
to be answered. The answers to these questions will then be theorems that follow from the

256 Chapter 8. First-Order Logic

axioms. Often, one finds that the expected answers are not forthcoming—for example, from
Male(George) and Spouse(George,Laura), one expects to be able to infer Female(Laura);
but this does not follow from the axioms given earlier. This is a sign that an axiom is missing.
Exercise 8.8 asks you to supply it.

Numbers, sets, and lists

Numbers are perhaps the most vivid example of how a large theory can be built up from a
tiny kernel of axioms. We will describe here the theory of natural numbers or nonnegativeNATURAL NUMBERS

integers. We need a predicate NatNum that will be true of natural numbers; we need one
constant symbol, 0; and we need one function symbol, S (successor). The Peano axiomsPEANO AXIOMS

define natural numbers and addition.8 Natural numbers are defined recursively:

NatNum(0) .
∀n NatNum(n) ⇒ NatNum(S(n)) .

That is, 0 is a natural number, and for every object n, if n is a natural number then S(n) is
a natural number. So the natural numbers are 0, S(0), S(S(0)), and so on. We also need
axioms to constrain the successor function:

∀n 0 6= S(n) .
∀m,n m 6= n ⇒ S(m) 6= S(n) .

Now we can define addition in terms of the successor function:

∀m NatNum(m) ⇒ + (m, 0) = m .
∀m,n NatNum(m) ∧NatNum(n) ⇒ + (S(m), n) = S(+(m,n)) .

The first of these axioms says that adding 0 to any natural number m gives m itself. Notice
the use of the binary function symbol “+” in the term +(m, 0); in ordinary mathematics, the
term would be written m + 0 using infix notation. (The notation we have used for first-orderINFIX

logic is called prefix.) To make our sentences about numbers easier to read, we will allowPREFIX

the use of infix notation. We can also write S(n) as n + 1, so that the second axiom becomes

∀m,n NatNum(m) ∧NatNum(n) ⇒ (m + 1) + n = (m + n) + 1 .

This axiom reduces addition to repeated application of the successor function.
The use of infix notation is an example of syntactic sugar, that is, an extension toSYNTACTIC SUGAR

or abbreviation of the standard syntax that does not change the semantics. Any sentence that
uses sugar can be “de-sugared” to produce an equivalent sentence in ordinary first-order logic.

Once we have addition, it is straightforward to define multiplication as repeated addi-
tion, exponentiation as repeated multiplication, integer division and remainders, prime num-
bers, and so on. Thus, the whole of number theory (including cryptography) can be built up
from one constant, one function, one predicate and four axioms.

The domain of sets is also fundamental to mathematics as well as to commonsenseSETS

reasoning. (In fact, it is possible to build number theory on top of set theory.) We want to be
able to represent individual sets, including the empty set. We need a way to build up sets by

8 The Peano axioms also include the principle of induction, which is a sentence of second-order logic rather
than of first-order logic. The importance of this distinction is explained in Chapter 9.

Section 8.3. Using First-Order Logic 257

adding an element to a set or taking the union or intersection of two sets. We will want to
know whether an element is a member of a set and to be able to distinguish sets from objects
that are not sets.

We will use the normal vocabulary of set theory as syntactic sugar. The empty set is a
constant written as { }. There is one unary predicate, Set , which is true of sets. The binary
predicates are x∈ s (x is a member of set s) and s1 ⊆ s2 (set s1 is a subset, not necessarily
proper, of set s2). The binary functions are s1 ∩ s2 (the intersection of two sets), s1 ∪ s2

(the union of two sets), and {x|s} (the set resulting from adjoining element x to set s). One
possible set of axioms is as follows:

1. The only sets are the empty set and those made by adjoining something to a set:

∀ s Set(s) ⇔ (s= { }) ∨ (∃x, s2 Set(s2) ∧ s= {x|s2}) .

2. The empty set has no elements adjoined into it, in other words, there is no way to
decompose EmptySet into a smaller set and an element:

¬∃x, s {x|s}= { } .

3. Adjoining an element already in the set has no effect:

∀x, s x∈ s ⇔ s= {x|s} .

4. The only members of a set are the elements that were adjoined into it. We express
this recursively, saying that x is a member of s if and only if s is equal to some set s2

adjoined with some element y, where either y is the same as x or x is a member of s2:

∀x, s x∈ s ⇔ [∃ y, s2 (s= {y|s2} ∧ (x= y ∨ x∈ s2))] .

5. A set is a subset of another set if and only if all of the first set’s members are members
of the second set:

∀ s1, s2 s1 ⊆ s2 ⇔ (∀x x∈ s1 ⇒ x∈ s2) .

6. Two sets are equal if and only if each is a subset of the other:

∀ s1, s2 (s1 = s2) ⇔ (s1 ⊆ s2 ∧ s2 ⊆ s1) .

7. An object is in the intersection of two sets if and only if it is a member of both sets:

∀x, s1, s2 x∈ (s1 ∩ s2) ⇔ (x∈ s1 ∧ x∈ s2) .

8. An object is in the union of two sets if and only if it is a member of either set:

∀x, s1, s2 x∈ (s1 ∪ s2) ⇔ (x∈ s1 ∨ x∈ s2) .

Lists are similar to sets. The differences are that lists are ordered and the same element canLISTS

appear more than once in a list. We can use the vocabulary of Lisp for lists: Nil is the constant
list with no elements; Cons , Append , First , and Rest are functions; and Find is the pred-
icate that does for lists what Member does for sets. List? is a predicate that is true only of
lists. As with sets, it is common to use syntactic sugar in logical sentences involving lists. The
empty list is []. The term Cons(x, y), where y is a nonempty list, is written [x|y]. The term
Cons(x,Nil), (i.e., the list containing the element x), is written as [x]. A list of several ele-
ments, such as [A,B,C], corresponds to the nested term Cons(A,Cons(B,Cons(C,Nil))).
Exercise 8.14 asks you to write out the axioms for lists.

258 Chapter 8. First-Order Logic

The wumpus world

Some propositional logic axioms for the wumpus world were given in Chapter 7. The first-
order axioms in this section are much more concise, capturing in a very natural way exactly
what we want to say.

Recall that the wumpus agent receives a percept vector with five elements. The corre-
sponding first-order sentence stored in the knowledge base must include both the percept and
the time at which it occurred; otherwise the agent will get confused about when it saw what.
We will use integers for time steps. A typical percept sentence would be

Percept([Stench,Breeze,Glitter ,None,None], 5) .

Here, Percept is a binary predicate and Stench and so on are constants placed in a list. The
actions in the wumpus world can be represented by logical terms:

Turn(Right), Turn(Left), Forward , Shoot , Grab, Release, Climb .

To determine which is best, the agent program constructs a query such as

∃ a BestAction(a, 5) .

ASK should solve this query and return a binding list such as {a/Grab}. The agent program
can then return Grab as the action to take, but first it must TELL its own knowledge base that
it is performing a Grab.

The raw percept data implies certain facts about the current state. For example:

∀ t, s, g,m, c Percept([s,Breeze, g,m, c], t) ⇒ Breeze(t) ,
∀ t, s, b,m, c Percept([s, b,Glitter ,m, c], t) ⇒ Glitter(t) ,

and so on. These rules exhibit a trivial form of the reasoning process called perception, which
we study in depth in Chapter 24. Notice the quantification over time t. In propositional logic,
we would need copies of each sentence for each time step.

Simple “reflex” behavior can also be implemented by quantified implication sentences.
For example, we have

∀ t Glitter(t) ⇒ BestAction(Grab, t) .

Given the percept and rules from the preceding paragraphs, this would yield the desired con-
clusion BestAction(Grab, 5)—that is, Grab is the right thing to do. Notice the correspon-
dence between this rule and the direct percept–action connection in the circuit-based agent in
Figure 7.20; the circuit connection implicitly quantifies over time.

So far in this section, the sentences dealing with time have been synchronic (“sameSYNCHRONIC

time”) sentences, that is, they relate properties of a world state to other properties of the
same world state. Sentences that allow reasoning “across time” are called diachronic; forDIACHRONIC

example, the agent needs to know how to combine information about its previous location
with information about the action just taken in order to determine its current location. We
will defer discussion of diachronic sentences until Chapter 10; for now, just assume that the
required inferences have been made for location and other time-dependent predicates.

We have represented the percepts and actions; now it is time to represent the environ-
ment itself. Let us begin with objects. Obvious candidates are squares, pits, and the wumpus.

Section 8.3. Using First-Order Logic 259

We could name each square—Square1,2 and so on—but then the fact that Square1,2 and
Square1,3 are adjacent would have to be an “extra” fact, and we would need one such fact for
each pair of squares. It is better to use a complex term in which the row and column appear
as integers; for example, we can simply use the list term [1, 2]. Adjacency of any two squares
can be defined as

∀x, y, a, b Adjacent([x, y], [a, b]) ⇔
[a, b]∈{[x + 1, y], [x− 1, y], [x, y + 1], [x, y − 1]} .

We could also name each pit, but this would be inappropriate for a different reason: there
is no reason to distinguish among the pits.9 It is much simpler to use a unary predicate Pit

that is true of squares containing pits. Finally, since there is exactly one wumpus, a constant
Wumpus is just as good as a unary predicate (and perhaps more dignified from the wumpus’s
viewpoint). The wumpus lives in exactly one square, so it is a good idea to use a function
such as Home(Wumpus) to name that square. This completely avoids the cumbersome set
of sentences required in propositional logic to say that exactly one square contains a wumpus.
(It would be even worse for propositional logic with two wumpuses.)

The agent’s location changes over time, so we will write At(Agent , s, t) to mean that
the agent is at square s at time t. Given its current location, the agent can infer properties of
the square from properties of its current percept. For example, if the agent is at a square and
perceives a breeze, then that square is breezy:

∀ s, t At(Agent , s, t) ∧ Breeze(t) ⇒ Breezy(s) .

It is useful to know that a square is breezy because we know that the pits cannot move about.
Notice that Breezy has no time argument.

Having discovered which places are breezy (or smelly) and, very importantly, not breezy
(or not smelly), the agent can deduce where the pits are (and where the wumpus is). There
are two kinds of synchronic rules that could allow such deductions:

♦ Diagnostic rules:DIAGNOSTIC RULES

Diagnostic rules lead from observed effects to hidden causes. For finding pits, the ob-
vious diagnostic rules say that if a square is breezy, some adjacent square must contain
a pit, or

∀ s Breezy(s) ⇒ ∃ r Adjacent(r, s) ∧ Pit(r) ,

and that if a square is not breezy, no adjacent square contains a pit: 10

∀ s ¬Breezy(s) ⇒ ¬∃ r Adjacent(r, s) ∧ Pit(r) .

Combining these two, we obtain the biconditional sentence

∀ s Breezy(s) ⇔ ∃ r Adjacent(r, s) ∧ Pit(r) . (8.3)

9 Similarly, most of us do not name each bird that flies overhead as it migrates to warmer regions in winter. An
ornithologist wishing to study migration patterns, survival rates, and so on does name each bird, by means of a
ring on its leg, because individual birds must be tracked.
10 There is a natural human tendency to forget to write down negative information such as this. In conversation,
this tendency is entirely normal—it would be strange to say “There are two cups on the table and there are not
three or more,” even though “There are two cups on the table” is, strictly speaking, still true when there are three.
We will return to this topic in Chapter 10.

260 Chapter 8. First-Order Logic

♦ Causal rules:CAUSAL RULES

Causal rules reflect the assumed direction of causality in the world: some hidden prop-
erty of the world causes certain percepts to be generated. For example, a pit causes all
adjacent squares to be breezy:

∀ r Pit(r) ⇒ [∀ s Adjacent(r, s) ⇒ Breezy(s)]

and if all squares adjacent to a given square are pitless, the square will not be breezy:

∀ s [∀ r Adjacent(r, s) ⇒ ¬Pit(r)] ⇒ ¬Breezy(s) .

With some work, it is possible to show that these two sentences together are logically
equivalent to the biconditional sentence in Equation (8.3). The biconditional itself can
also be thought of as causal, because it states how the truth value of Breezy is generated
from the world state.

Systems that reason with causal rules are called model-based reasoning systems, becauseMODEL-BASED
REASONING

the causal rules form a model of how the environment operates. The distinction between
model-based and diagnostic reasoning is important in many areas of AI. Medical diagnosis
in particular has been an active area of research, in which approaches based on direct associ-
ations between symptoms and diseases (a diagnostic approach) have gradually been replaced
by approaches using an explicit model of the disease process and how it manifests itself in
symptoms. The issues come up again in Chapter 13.

Whichever kind of representation the agent uses, if the axioms correctly and completely
describe the way the world works and the way that percepts are produced, then any complete
logical inference procedure will infer the strongest possible description of the world state,
given the available percepts. Thus, the agent designer can concentrate on getting the knowl-
edge right, without worrying too much about the processes of deduction. Furthermore, we
have seen that first-order logic can represent the wumpus world no less concisely than the
original English-language description given in Chapter 7.

8.4 KNOWLEDGE ENGINEERING IN FIRST-ORDER LOGIC

The preceding section illustrated the use of first-order logic to represent knowledge in three
simple domains. This section describes the general process of knowledge base construction—
a process called knowledge engineering. A knowledge engineer is someone who investigatesKNOWLEDGE

ENGINEERING

a particular domain, learns what concepts are important in that domain, and creates a formal
representation of the objects and relations in the domain. We will illustrate the knowledge
engineering process in an electronic circuit domain that should already be fairly familiar,
so that we can concentrate on the representational issues involved. The approach we will
take is suitable for developing special-purpose knowledge bases whose domain is carefully
circumscribed and whose range of queries is known in advance. General-purpose knowledge
bases, which are intended to support queries across the full range of human knowledge, are
discussed in Chapter 10.

Section 8.4. Knowledge Engineering in First-Order Logic 261

The knowledge engineering process

Knowledge engineering projects vary widely in content, scope, and difficulty, but all such
projects include the following steps:

1. Identify the task. The knowledge engineer must delineate the range of questions that
the knowledge base will support and the kinds of facts that will be available for each
specific problem instance. For example, does the wumpus knowledge base need to be
able to choose actions or is it required to answer questions only about the contents
of the environment? Will the sensor facts include the current location? The task will
determine what knowledge must be represented in order to connect problem instances to
answers. This step is analogous to the PEAS process for designing agents in Chapter 2.

2. Assemble the relevant knowledge. The knowledge engineer might already be an expert
in the domain, or might need to work with real experts to extract what they know—a
process called knowledge acquisition. At this stage, the knowledge is not representedKNOWLEDGE

ACQUISITION

formally. The idea is to understand the scope of the knowledge base, as determined by
the task, and to understand how the domain actually works.

For the wumpus world, which is defined by an artificial set of rules, the relevant
knowledge is easy to identify. (Notice, however, that the definition of adjacency was
not supplied explicitly in the wumpus-world rules.) For real domains, the issue of
relevance can be quite difficult—for example, a system for simulating VLSI designs
might or might not need to take into account stray capacitances and skin effects.

3. Decide on a vocabulary of predicates, functions, and constants. That is, translate the
important domain-level concepts into logic-level names. This involves many questions
of knowledge engineering style. Like programming style, this can have a significant
impact on the eventual success of the project. For example, should pits be represented
by objects or by a unary predicate on squares? Should the agent’s orientation be a
function or a predicate? Should the wumpus’s location depend on time? Once the
choices have been made, the result is a vocabulary that is known as the ontology ofONTOLOGY

the domain. The word ontology means a particular theory of the nature of being or
existence. The ontology determines what kinds of things exist, but does not determine
their specific properties and interrelationships.

4. Encode general knowledge about the domain. The knowledge engineer writes down
the axioms for all the vocabulary terms. This pins down (to the extent possible) the
meaning of the terms, enabling the expert to check the content. Often, this step reveals
misconceptions or gaps in the vocabulary that must be fixed by returning to step 3 and
iterating through the process.

5. Encode a description of the specific problem instance. If the ontology is well thought
out, this step will be easy. It will involve writing simple atomic sentences about in-
stances of concepts that are already part of the ontology. For a logical agent, problem
instances are supplied by the sensors, whereas a “disembodied” knowledge base is sup-
plied with additional sentences in the same way that traditional programs are supplied
with input data.

262 Chapter 8. First-Order Logic

6. Pose queries to the inference procedure and get answers. This is where the reward is:
we can let the inference procedure operate on the axioms and problem-specific facts to
derive the facts we are interested in knowing.

7. Debug the knowledge base. Alas, the answers to queries will seldom be correct on
the first try. More precisely, the answers will be correct for the knowledge base as
written, assuming that the inference procedure is sound, but they will not be the ones
that the user is expecting. For example, if an axiom is missing, some queries will not be
answerable from the knowledge base. A considerable debugging process could ensue.
Missing axioms or axioms that are too weak can be identified easily by noticing places
where the chain of reasoning stops unexpectedly. For example, if the knowledge base
includes one of the diagnostic axioms for pits,

∀ s Breezy(s) ⇒ ∃ r Adjacent(r, s) ∧ Pit(r) ,

but not the other, then the agent will never be able to prove the absence of pits. Incor-
rect axioms can be identified because they are false statements about the world. For
example, the sentence

∀x NumOfLegs(x, 4) ⇒ Mammal(x)

is false for reptiles, amphibians, and, more important, tables. The falsehood of this
sentence can be determined independently of the rest of the knowledge base. In contrast,
a typical error in a program looks like this:

offset = position + 1 .

It is impossible to tell whether this statement is correct without looking at the rest of the
program to see whether, for example, offset is used to refer to the current position,
or to one beyond the current position, or whether the value of position is changed
by another statement and so offset should also be changed again.

To understand this seven-step process better, we now apply it to an extended example—the
domain of electronic circuits.

The electronic circuits domain

We will develop an ontology and knowledge base that allow us to reason about digital circuits
of the kind shown in Figure 8.4. We follow the seven-step process for knowledge engineering.

Identify the task

There are many reasoning tasks associated with digital circuits. At the highest level, one
analyzes the circuit’s functionality. For example, does the circuit in Figure 8.4 actually add
properly? If all the inputs are high, what is the output of gate A2? Questions about the
circuit’s structure are also interesting. For example, what are all the gates connected to the
first input terminal? Does the circuit contain feedback loops? These will be our tasks in this
section. There are more detailed levels of analysis, including those related to timing delays,
circuit area, power consumption, production cost, and so on. Each of these levels would
require additional knowledge.

Section 8.4. Knowledge Engineering in First-Order Logic 263

1
2

3

1

2

X1 X2

A1

A2

O1

C1

Figure 8.4 A digital circuit C1, purporting to be a one-bit full adder. The first two inputs
are the two bits to be added and the third input is a carry bit. The first output is the sum, and
the second output is a carry bit for the next adder. The circuit contains two XOR gates, two
AND gates and one OR gate.

Assemble the relevant knowledge

What do we know about digital circuits? For our purposes, they are composed of wires and
gates. Signals flow along wires to the input terminals of gates, and each gate produces a
signal on the output terminal that flows along another wire. To determine what these signals
will be, we need to know how the gates transform their input signals. There are four types
of gates: AND, OR, and XOR gates have two input terminals, and NOT gates have one. All
gates have one output terminal. Circuits, like gates, have input and output terminals.

To reason about functionality and connectivity, we do not need to talk about the wires
themselves, the paths the wires take, or the junctions where two wires come together. All
that matters is the connections between terminals—we can say that one output terminal is
connected to another input terminal without having to mention the wire that actually connects
them. There are many other factors of the domain that are irrelevant to our analysis, such as
the size, shape, color, or cost of the various components.

If our purpose were something other than verifying designs at the gate level, the ontol-
ogy would be different. For example, if we were interested in debugging faulty circuits, then
it would probably be a good idea to include the wires in the ontology, because a faulty wire
can corrupt the signal flowing along it. For resolving timing faults, we would need to include
gate delays. If we were interested in designing a product that would be profitable, then the
cost of the circuit and its speed relative to other products on the market would be important.

Decide on a vocabulary

We now know that we want to talk about circuits, terminals, signals, and gates. The next
step is to choose functions, predicates, and constants to represent them. We will start from
individual gates and move up to circuits.

First, we need to be able to distinguish a gate from other gates. This is handled by
naming gates with constants: X1,X2, and so on. Although each gate is connected into the
circuit in its own individual way, its behavior—the way it transforms input signals into output

264 Chapter 8. First-Order Logic

signals—depends only on its type. We can use a function to refer to the type of the gate.11 For
example, we can write Type(X1)=XOR. This introduces the constant XOR for a particular
type of gate; the other constants will be called OR, AND , and NOT . The Type function is
not the only way to encode the ontological distinction. We could have used a binary predicate,
Type(X1,XOR), or several individual type predicates, such as XOR(X1). Either of these
choices would work fine, but by choosing the function Type, we avoid the need for an axiom
which says that each individual gate can have only one type. The semantics of functions
already guarantees this.

Next we consider terminals. A gate or circuit can have one or more input terminals and
one or more output terminals. We could simply name each one with a constant, just as we
named gates. Thus, gate X1 could have terminals named X1In1,X1In2, and X1Out1. The
tendency to generate long compound names should be avoided, however. Calling something
X1In1 does not make it the first input of X1; we would still need to say this using an explicit
assertion. It is probably better to name the gate using a function, just as we named King
John’s left leg LeftLeg(John). Thus, let In(1,X1) denote the first input terminal for gate
X1. A similar function Out is used for output terminals.

The connectivity between gates can be represented by the predicate Connected , which
takes two terminals as arguments, as in Connected(Out(1,X1), In(1,X2)).

Finally, we need to know whether a signal is on or off. One possibility is to use a
unary predicate, On , which is true when the signal at a terminal is on. This makes it a little
difficult, however, to pose questions such as “What are all the possible values of the signals
at the output terminals of circuit C1 ?” We will therefore introduce as objects two “signal
values” 1 and 0, and a function Signal that takes a terminal as argument and denotes the
signal value for that terminal.

Encode general knowledge of the domain

One sign that we have a good ontology is that there are very few general rules which need
to be specified. A sign that we have a good vocabulary is that each rule can be stated clearly
and concisely. With our example, we need only seven simple rules to describe everything we
need to know about circuits:

1. If two terminals are connected, then they have the same signal:
∀ t1, t2 Connected(t1, t2) ⇒ Signal(t1)= Signal(t2)

2. The signal at every terminal is either 1 or 0 (but not both):
∀ t Signal(t)= 1 ∨ Signal(t)= 0
1 6= 0

3. Connected is a commutative predicate:
∀ t1, t2 Connected(t1, t2) ⇔ Connected(t2, t1)

4. An OR gate’s output is 1 if and only if any of its inputs is 1:
∀ g Type(g)=OR ⇒

Signal(Out(1, g))= 1 ⇔ ∃n Signal(In(n, g))=1

11 Note that we have used names beginning with appropriate letters—A1, X1, and so on—purely to make the
example easier to read. The knowledge base must still contain type information for the gates.

Section 8.4. Knowledge Engineering in First-Order Logic 265

5. An AND gate’s output is 0 if and only if any of its inputs is 0:
∀ g Type(g)=AND ⇒

Signal(Out(1, g))= 0 ⇔ ∃n Signal(In(n, g))=0

6. An XOR gate’s output is 1 if and only if its inputs are different:
∀ g Type(g)=XOR ⇒
Signal(Out(1, g))=1 ⇔ Signal(In(1, g)) 6= Signal(In(2, g))

7. A NOT gate’s output is different from its input:
∀ g (Type(g)=NOT) ⇒ Signal(Out(1, g)) 6= Signal(In(1, g))

Encode the specific problem instance

The circuit shown in Figure 8.4 is encoded as circuit C1 with the following description. First,
we categorize the gates:

Type(X1)=XOR Type(X2)=XOR

Type(A1)=AND Type(A2)=AND

Type(O1)=OR

Then, we show the connections between them:

Connected(Out(1,X1), In(1,X2)) Connected(In(1, C1), In(1,X1))
Connected(Out(1,X1), In(2, A2)) Connected(In(1, C1), In(1, A1))
Connected(Out(1, A2), In(1, O1)) Connected(In(2, C1), In(2,X1))
Connected(Out(1, A1), In(2, O1)) Connected(In(2, C1), In(2, A1))
Connected(Out(1,X2),Out(1, C1)) Connected(In(3, C1), In(2,X2))
Connected(Out(1, O1),Out(2, C1)) Connected(In(3, C1), In(1, A2)) .

Pose queries to the inference procedure

What combinations of inputs would cause the first output of C1 (the sum bit) to be 0 and the
second output of C1 (the carry bit) to be 1?

∃ i1, i2, i3 Signal(In(1, C1)) = i1 ∧ Signal(In(2, C1)) = i2 ∧ Signal(In(3, C1)) = i3
∧ Signal(Out(1, C1)) = 0 ∧ Signal(Out(2, C1)) = 1 .

The answers are substitutions for the variables i1, i2, and i3 such that the resulting sentence
is entailed by the knowledge base. There are three such substitutions:

{i1/1, i2/1, i3/0} {i1/1, i2/0, i3/1} {i1/0, i2/1, i3/1} .

What are the possible sets of values of all the terminals for the adder circuit?

∃ i1, i2, i3, o1, o2 Signal(In(1, C1)) = i1 ∧ Signal(In(2, C1)) = i2
∧ Signal(In(3, C1)) = i3 ∧ Signal(Out(1, C1)) = o1 ∧ Signal(Out(2, C1)) = o2 .

This final query will return a complete input–output table for the device, which can be used
to check that it does in fact add its inputs correctly. This is a simple example of circuit
verification. We can also use the definition of the circuit to build larger digital systems, forCIRCUIT

VERIFICATION

which the same kind of verification procedure can be carried out. (See Exercise 8.17.) Many
domains are amenable to the same kind of structured knowledge-base development, in which
more complex concepts are defined on top of simpler concepts.

266 Chapter 8. First-Order Logic

Debug the knowledge base

We can perturb the knowledge base in various ways to see what kinds of erroneous behaviors
emerge. For example, suppose we omit the assertion that 1 6= 0.12 Suddenly, the system will
be unable to prove any outputs for the circuit, except for the input cases 000 and 110. We can
pinpoint the problem by asking for the outputs of each gate. For example, we can ask

∃ i1, i2, o Signal(In(1, C1))= i1 ∧ Signal(In(2, C1))= i2 ∧ Signal(Out(1,X1))

which reveals that no outputs are known at X1 for the input cases 10 and 01. Then, we look
at the axiom for XOR gates, as applied to X1:

Signal(Out(1,X1))= 1 ⇔ Signal(In(1,X1)) 6= Signal(In(2,X1)) .

If the inputs are known to be, say, 1 and 0, then this reduces to

Signal(Out(1,X1))= 1 ⇔ 1 6= 0 .

Now the problem is apparent: the system is unable to infer that Signal(Out(1,X1))= 1, so
we need to tell it that 1 6= 0.

8.5 SUMMARY

This chapter has introduced first-order logic, a representation language that is far more pow-
erful than propositional logic. The important points are as follows:

• Knowledge representation languages should be declarative, compositional, expressive,
context-independent, and unambiguous.

• Logics differ in their ontological commitments and epistemological commitments.
While propositional logic commits only to the existence of facts, first-order logic com-
mits to the existence of objects and relations and thereby gains expressive power.

• A possible world, or model, for first-order logic is defined by a set of objects, the
relations among them, and the functions that can be applied to them.

• Constant symbols name objects, predicate symbols name relations, and function
symbols name functions. An interpretation specifies a mapping from symbols to the
model. Complex terms apply function symbols to terms to name an object. Given an
interpretation and a model, the truth of a sentence is determined.

• An atomic sentence consists of a predicate applied to one or more terms; it is true
just when the relation named by the predicate holds between the objects named by the
terms. Complex sentences use connectives just like propositional logic, and quantified
sentences allow the expression of general rules.

• Developing a knowledge base in first-order logic requires a careful process of analyzing
the domain, choosing a vocabulary, and encoding the axioms required to support the
desired inferences.

12 This kind of omission is quite common because humans typically assume that different names refer to different
things. Logic programming systems, described in Chapter 9, also make this assumption.

Section 8.5. Summary 267

BIBLIOGRAPHICAL AND HISTORICAL NOTES

Although even Aristotle’s logic deals with generalizations over objects, true first-order logic
dates from the introduction of quantifiers in Gottlob Frege’s (1879) Begriffschrift (“Concept
Writing” or “Conceptual Notation”). Frege’s ability to nest quantifiers was a big step forward,
but he used an awkward notation. (An example appears on the front cover of this book.) The
present notation for first-order logic is due substantially to Giuseppe Peano (1889), but the
semantics is virtually identical to Frege’s. Oddly enough, Peano’s axioms were due in large
measure to Grassmann (1861) and Dedekind (1888).

A major barrier to the development of first-order logic had been the concentration on
one-place predicates to the exclusion of many-place relational predicates. This fixation on
one-place predicates had been nearly universal in logical systems from Aristotle up to and
including Boole. The first systematic treatment of relations was given by Augustus de Morgan
(1864), who cited the following example to show the sorts of inferences that Aristotle’s logic
could not handle: “All horses are animals; therefore, the head of a horse is the head of an
animal.” This inference is inaccessible to Aristotle because any valid rule that can support
this inference must first analyze the sentence using the two-place predicate “x is the head
of y.” The logic of relations was studied in depth by Charles Sanders Peirce (1870), who also
developed first-order logic independently of Frege, although slightly later (Peirce, 1883).

Leopold Löwenheim (1915) gave a systematic treatment of model theory for first-order
logic in 1915. This paper also treated the equality symbol as an integral part of logic.
Löwenheim’s results were further extended by Thoralf Skolem (1920). Alfred Tarski (1935,
1956) gave an explicit definition of truth and model-theoretic satisfaction in first-order logic,
using set theory.

McCarthy (1958) was primarily responsible for the introduction of first-order logic as a
tool for building AI systems. The prospects for logic-based AI were advanced significantly by
Robinson’s (1965) development of resolution, a complete procedure for first-order inference
described in Chapter 9. The logicist approach took root at Stanford. Cordell Green (1969a,
1969b) developed a first-order reasoning system, QA3, leading to the first attempts to build
a logical robot at SRI (Fikes and Nilsson, 1971). First-order logic was applied by Zohar
Manna and Richard Waldinger (1971) for reasoning about programs and later by Michael
Genesereth (1984) for reasoning about circuits. In Europe, logic programming (a restricted
form of first-order reasoning) was developed for linguistic analysis (Colmerauer et al., 1973)
and for general declarative systems (Kowalski, 1974). Computational logic was also well
entrenched at Edinburgh through the LCF (Logic for Computable Functions) project (Gordon
et al., 1979). These developments are chronicled further in Chapters 9 and 10.

There are a number of good modern introductory texts on first-order logic. Quine (1982)
is one of the most readable. Enderton (1972) gives a more mathematically oriented perspec-
tive. A highly formal treatment of first-order logic, along with many more advanced topics
in logic, is provided by Bell and Machover (1977). Manna and Waldinger (1985) give a
readable introduction to logic from a computer science perspective. Gallier (1986) provides
an extremely rigorous mathematical exposition of first-order logic, along with a great deal

268 Chapter 8. First-Order Logic

of material on its use in automated reasoning. Logical Foundations of Artificial Intelligence
(Genesereth and Nilsson, 1987) provides both a solid introduction to logic and the first sys-
tematic treatment of logical agents with percepts and actions.

EXERCISES

8.1 A logical knowledge base represents the world using a set of sentences with no explicit
structure. An analogical representation, on the other hand, has physical structure that corre-
sponds directly to the structure of the thing represented. Consider a road map of your country
as an analogical representation of facts about the country. The two-dimensional structure of
the map corresponds to the two-dimensional surface of the area.

a. Give five examples of symbols in the map language.

b. An explicit sentence is a sentence that the creator of the representation actually writes
down. An implicit sentence is a sentence that results from explicit sentences because
of properties of the analogical representation. Give three examples each of implicit and
explicit sentences in the map language.

c. Give three examples of facts about the physical structure of your country that cannot be
represented in the map language.

d. Give two examples of facts that are much easier to express in the map language than in
first-order logic.

e. Give two other examples of useful analogical representations. What are the advantages
and disadvantages of each of these languages?

8.2 Consider a knowledge base containing just two sentences: P (a) and P (b). Does this
knowledge base entail ∀x P (x)? Explain your answer in terms of models.

8.3 Is the sentence ∃x, y x= y valid? Explain.

8.4 Write down a logical sentence such that every world in which it is true contains exactly
one object.

8.5 Consider a symbol vocabulary that contains c constant symbols, pk predicate symbols of
each arity k, and fk function symbols of each arity k, where 1 ≤ k ≤ A. Let the domain size
be fixed at D. For any given interpretation–model combination, each predicate or function
symbol is mapped onto a relation or function, respectively, of the same arity. You may assume
that the functions in the model allow some input tuples to have no value for the function (i.e.,
the value is the invisible object). Derive a formula for the number of possible interpretation–
model combinations for a domain with D elements. Don’t worry about eliminating redundant
combinations.

8.6 Represent the following sentences in first-order logic, using a consistent vocabulary
(which you must define):

a. Some students took French in spring 2001.

Section 8.5. Summary 269

b. Every student who takes French passes it.

c. Only one student took Greek in spring 2001.

d. The best score in Greek is always higher than the best score in French.

e. Every person who buys a policy is smart.

f. No person buys an expensive policy.

g. There is an agent who sells policies only to people who are not insured.

h. There is a barber who shaves all men in town who do not shave themselves.

i. A person born in the UK, each of whose parents is a UK citizen or a UK resident, is a
UK citizen by birth.

j. A person born outside the UK, one of whose parents is a UK citizen by birth, is a UK
citizen by descent.

k. Politicians can fool some of the people all of the time, and they can fool all of the people
some of the time, but they can’t fool all of the people all of the time.

8.7 Represent the sentence “All Germans speak the same languages” in predicate calculus.
Use Speaks(x, l), meaning that person x speaks language l.

8.8 What axiom is needed to infer the fact Female(Laura) given the facts Male(Jim) and
Spouse(Jim,Laura)?

8.9 Write a general set of facts and axioms to represent the assertion “Wellington heard
about Napoleon’s death” and to correctly answer the question “Did Napoleon hear about
Wellington’s death?”

8.10 Rewrite the propositional wumpus world facts from Section 7.5 into first-order logic.
How much more compact is this version?

8.11 Write axioms describing the predicates GrandChild , GreatGrandparent , Brother ,
Sister , Daughter , Son , Aunt , Uncle , BrotherInLaw , SisterInLaw , and FirstCousin.
Find out the proper definition of mth cousin n times removed, and write the definition in
first-order logic.

Now write down the basic facts depicted in the family tree in Figure 8.5. Using a suit-
able logical reasoning system, TELL it all the sentences you have written down, and ASK

it who are Elizabeth’s grandchildren, Diana’s brothers-in-law, and Zara’s great-grandparents.

8.12 Write down a sentence asserting that + is a commutative function. Does your sentence
follow from the Peano axioms? If so, explain why; if not, give a model in which the axioms
are true and your sentence is false.

8.13 Explain what is wrong with the following proposed definition of the set membership
predicate ∈ :

∀x, s x∈{x|s}
∀x, s x∈ s ⇒ ∀ y x∈{y|s} .

270 Chapter 8. First-Order Logic

Beatrice

Andrew

EugenieWilliam Harry

CharlesDiana

MumGeorge

PhilipElizabeth MargaretKyddSpencer

Peter

Mark

Zara

Anne Sarah Edward

Figure 8.5 A typical family tree. The symbol “=” connects spouses and arrows point to
children.

8.14 Using the set axioms as examples, write axioms for the list domain, including all the
constants, functions, and predicates mentioned in the chapter.

8.15 Explain what is wrong with the following proposed definition of adjacent squares in
the wumpus world:

∀x, y Adjacent([x, y], [x + 1, y]) ∧ Adjacent([x, y], [x, y + 1]) .

8.16 Write out the axioms required for reasoning about the wumpus’s location, using a
constant symbol Wumpus and a binary predicate In(Wumpus,Location). Remember that
there is only one wumpus.

8.17 Extend the vocabulary from Section 8.4 to define addition for n-bit binary numbers.
Then encode the description of the four-bit adder in Figure 8.6, and pose the queries needed
to verify that it is in fact correct.

8.18 The circuit representation in the chapter is more detailed than necessary if we care
only about circuit functionality. A simpler formulation describes any m-input, n-output gate
or circuit using a predicate with m+n arguments, such that the predicate is true exactly when

Z0

Z1

Z2

Z3
Z4

X0
Y0

X1
Y1

X2
Y2

X3
Y3

Ad0

Ad1

Ad2

Ad3

X0X1X2X3

Z0Z1Z2Z3Z4

Y0Y1Y2Y3+

Figure 8.6 A four-bit adder.

Section 8.5. Summary 271

the inputs and outputs are consistent. For example, NOT-gates are described by the binary
predicate NOT (i, o), for which NOT (0, 1) and NOT (1, 0) are known. Compositions of
gates are defined by conjunctions of gate predicates in which shared variables indicate direct
connections. For example, a NAND circuit can be composed from ANDs and NOT s:

∀ i1, i2, oa, o NAND(i1, i2, o) ⇔ AND(i1, i2, oa) ∧ NOT (oa, o) .

Using this representation, define the one-bit adder in Figure 8.4 and the four-bit adder in
Figure 8.6, and explain what queries you would use to verify the designs. What kinds of
queries are not supported by this representation that are supported by the representation in
Section 8.4?

8.19 Obtain a passport application for your country, identify the rules determining eligi-
bility for a passport, and translate them into first-order logic, following the steps outlined in
Section 8.4.

