MATHEMATICAL
BACKGROUND

A.1 COMPLEXITY ANALYSIS AND O() NOTATION

BENCHMARKING

ANALYSIS OF
ALGORITHMS

Computer scientists are often faced with the task of compaaigorithms to see how fast
they run or how much memory they require. There are two ampres to this task. The first
is benchmarking—running the algorithms on a computer and measuring speeddands
and memory consumption in bytes. Ultimately, this is whailyematters, but a benchmark
can be unsatisfactory because it is so specific: it meashespdrformance of a particular
program written in a particular language, running on a patéir computer, with a particular
compiler and particular input data. From the single reshdtt the benchmark provides, it
can be difficult to predict how well the algorithm would do ordifferent compiler, com-
puter, or data set. The second approach relies on a matlaheatalyss of algorithms,
independently of the particular implementation and inpstdiscussed below.

A.1.1 Asymptotic analysis

We will consider algorithm analysis through the followingagnple, a program to compute
the sum of a sequence of numbers:

function SUMMATION (sequence) returnsa number
sum 0
for i = 1to LENGTH(sequence) do
sum < sum + sequencel[i]
return sum

The first step in the analysis is to abstract over the inpubrdter to find some parameter or
parameters that characterize the size of the input. In ttasngle, the input can be charac-
terized by the length of the sequence, which we will eallThe second step is to abstract
over the implementation, to find some measure that refleeteutiming time of the algorithm

but is not tied to a particular compiler or computer. For thev®ATION program, this could

be just the number of lines of code executed, or it could beendetailed, measuring the
number of additions, assignments, array references, armthes executed by the algorithm.

1053

1054

Appendix A. Mathematical background

ASYMPTOTIC
ANALYSIS

COMPLEXITY
ANALYSIS

Either way gives us a characterization of the total numbestgs taken by the algorithm as
a function of the size of the input. We will call this charattation 7'(n). If we count lines
of code, we havd’(n) =2n + 2 for our example.

If all programs were as simple asJ8MATION, the analysis of algorithms would be a
trivial field. But two problems make it more complicated. gEjnit is rare to find a parameter
like n that completely characterizes the number of steps takem ygarithm. Instead, the
best we can usually do is compute the worst cBsgs:(n) or the average cask,,q(n).
Computing an average means that the analyst must assumeadsanieition of inputs.

The second problem is that algorithms tend to resist exaalysis. In that case, it is
necessary to fall back on an approximation. We say that the&TION algorithm isO(n),
meaning that its measure is at most a constant timegth the possible exception of a few
small values of.. More formally,

T(n)isO(f(n))if T(n) < kf(n) for somek, forall n > nyg .

The O() notation gives us what is called agymptotic analysis. We can say without ques-
tion that, as» asymptotically approaches infinity, @1n) algorithm is better than a@ (n?)
algorithm. A single benchmark figure could not substantsateh a claim.

The O() notation abstracts over constant factors, which makessieeto use, but less
precise, than th& () notation. For example, af(n?) algorithm will always be worse than
anO(n) in the long run, but if the two algorithms a#&n? + 1) and 7 (100n + 1000), then
the O(n?) algorithm is actually better for < 110.

Despite this drawback, asymptotic analysis is the most lideed tool for analyzing
algorithms. It is precisely because the analysis abstmaasboth the exact number of oper-
ations (by ignoring the constant factby and the exact content of the input (by considering
only its sizen) that the analysis becomes mathematically feasible.dfenotation is a good
compromise between precision and ease of analysis.

A.1.2 NP and inherently hard problems

The analysis of algorithms and th() notation allow us to talk about the efficiency of a
particular algorithm. However, they have nothing to sayulvhether there could be a better
algorithm for the problem at hand. The fieldadimplexity analysis analyzes problems rather
than algorithms. The first gross division is between prolsiémat can be solved in polynomial
time and problems that cannot be solved in polynomial tincepratter what algorithm is
used. The class of polynomial problems—those which can e timeO(n*) for some
k—is called P. These are sometimes called “easy” problentguse the class contains those
problems with running times lik&(log n) andO(n). But it also contains those with time
O(n'0), so the name “easy” should not be taken too literally.

Another important class of problems is NP, the class of ntardenistic polynomial
problems. A problem is in this class if there is some alganitinat can guess a solution and
then verify whether the guess is correct in polynomial tiriée idea is that if you have an
arbitrarily large number of processors, so that you can lirtha guesses at once, or you are
very lucky and always guess right the first time, then the Ndbl@ms become P problems.
One of the biggest open questions in computer science ishehtte class NP is equivalent

Section A.2.

Vectors, Matrices, and Linear Algebra 1055

NP-COMPLETE

CO-NP

CO-NP-COMPLETE

to the class P when one does not have the luxury of an infinitebeu of processors or
omniscient guessing. Most computer scientists are coaditicat P~ NP; that NP problems
are inherently hard and have no polynomial-time algorithBi# this has never been proven.

Those who are interested in deciding whether P = NP look abelass of NP called the
NP-complete problems. The word “complete” is used here in the sense ofstreatreme”
and thus refers to the hardest problems in the class NP. Ibéas proven that either all
the NP-complete problems are in P or none of them is. This m#ie class theoretically
interesting, but the class is also of practical interestabee many important problems are
known to be NP-complete. An example is the satisfiabilitybpgm: given a sentence of
propositional logic, is there an assignment of truth valiwethe proposition symbols of the
sentence that makes it true? Unless a miracle occurs and R thét® can be no algorithm
that solvesall satisfiability problems in polynomial time. However, Al isone interested in
whether there are algorithms that perform efficientlytgoical problems drawn from a pre-
determined distribution; as we saw in Chapter 7, there grarithms such as ALK SAT that
do quite well on many problems.

The clasgo-NP is the complement of NP, in the sense that, for every decisioblem
in NP, there is a corresponding problem in co-NP with the *y@® “no” answers reversed.
We know that P is a subset of both NP and co-NP, and it is belidvat there are problems
in co-NP that are not in P. Them-NP-complete problems are the hardest problems in co-NP.

The class #P (pronounced “sharp P”) is the set of countinglenas corresponding to
the decision problems in NP. Decision problems have a ygg@nswer: is there a solution
to this 3-SAT formula? Counting problems have an integemanshow many solutions are
there to this 3-SAT formula? In some cases, the countingl@nolis much harder than the
decision problem. For example, deciding whether a bigagiaph has a perfect matching
can be done in timé&(V E) (where the graph has vertices andt edges), but the counting
problem “how many perfect matches does this bipartite grege” is #P-complete, meaning
that it is hard as any problem in #P and thus at least as hanaydsR problem.

Another class is the class of PSPACE problems—those thairesg polynomial amount
of space, even on a nondeterministic machine. It is beli¢vaedP SPACE-hard problems are
worse than NP-complete problems, although it could turntioat NP = PSPACE, just as it
could turn out that P = NP.

A.2 VECTORS MATRICES, AND LINEAR ALGEBRA

VECTOR

Mathematicians defineaector as a member of a vector space, but we will use a more con-
crete definition: a vector is an ordered sequence of valueseXxample, in two-dimensional
space, we have vectors suchxas (3,4) andy = (0, 2). We follow the convention of bold-
face characters for vector names, although some authorarises or bars over the names:

Z ory. The elements of a vector can be accessed using subsaript&;, z2, . .., z,). One
confusing point: this book is synthesizing work from manyfeeids, which variously call
their sequences vectors, lists, or tuples, and variougythes notationg1, 2), [1, 2], or (1, 2).

1056

Appendix A. Mathematical background

MATRIX

IDENTITY MATRIX
TRANSPOSE
INVERSE
SINGULAR

The two fundamental operations on vectors are vector asddnd scalar multiplica-
tion. The vector addition +y is the elementwise sunx+y = (34 0,4+ 2) = (3,6). Scalar
multiplication multiplies each element by a constait= (5 x 3,5 x 4) = (15, 20).

The length of a vector is denotéx| and is computed by taking the square root of the
sum of the squares of the elementg:= /(3% + 42) = 5. The dot produck - y (also called
scalar product) of two vectors is the sum of the products ofesponding elements, that is,
X-y=). x;y; Orinour particular case;-y=3 x 0+ 4 x 2=8.

Vectors are often interpreted as directed line segmentswa) in ann-dimensional
Euclidean space. Vector addition is then equivalent toiptathe tail of one vector at the
head of the other, and the dot producty is equal to|x| |y| cosf, whered is the angle
betweerx andy.

A matrix is a rectangular array of values arranged into rows and cadunidere is a
matrix A of size3 x 4:

A1 Alg Az Ay
Azi Ass Axs Agy
Az1 A3z Azs Aszy

The first index ofA; ; specifies the row and the second the column. In programmimg la
guagesA; ; is often writtenAl i, j] orA[i][]].

The sum of two matrices is defined by adding their correspandiements; for example
(A+B);j =A;; +B;;. (The sum is undefined A andB have different sizes.) We can also
define the multiplication of a matrix by a scaldrA); ; = cA; ;. Matrix multiplication (the
product of two matrices) is more complicated. The produBtis defined only ifA is of size
a X bandB is of sizeb x c (i.e., the second matrix has the same number of rows as the firs
has columns); the result is a matrix of size c. If the matrices are of appropriate size, then
the result is

(AB)in= Y _Ai;Bjx-
J

Matrix multiplication is not commutative, even for squaratnices: AB # BA in general.
It is, however, associativg’AB)C = A(BC). Note that the dot product can be expressed in
terms of a transpose and a matrix multiplicationy = x "y.

Theidentity matrix | has elements; ; equal to 1 wher = j and equal to 0 otherwise.
It has the property thaf\l = A for all A. Thetranspose of A, written AT is formed by
turning rows into columns and vice versa, or, more formadlyA"; ; = A, ;. Theinverse of
a square matriA is another square matrik—! such thatA—!A =1. For asingular matrix,
the inverse does not exist. For a nonsingular matrix, it candmputed irO(n?) time.

Matrices are used to solve systems of linear equatioi(ir?) time; the time is domi-
nated by inverting a matrix of coefficients. Consider théoiwing set of equations, for which
we want a solution irx, y, andz:

+2r+y—2z = 8
—3r—y+2z = —11
—2z4+y+22 = -3.

Section A.3. Probability Distributions 1057

We can represent this system as the matrix equatian= b, where

2 1 -1 T 8
A=|-3-1 2|, x=[vy]|, b=|[-11].
-2 1 2 z -3

To solveA x = b we multiply both sides bya ™!, yielding A~ Ax = A~1b, which simplifies
tox = A~ 'b. After invertingA and multiplying byb, we get the answer

A.3 PROBABILITY DISTRIBUTIONS

A probability is a measure over a set of events that satidiiegtaxioms:

1. The measure of each event is between 0 and 1. We write thisa® (X =z;) < 1,
where X is a random variable representing an event andre the possible values of
X. In general, random variables are denoted by uppercasesethd their values by
lowercase letters.

2. The measure of the whole set is 1; thabig, ; P(X =z;) =1.

3. The probability of a union of disjoint events is the sumha# probabilities of the indi-
vidual events; that isP(X =21 V X =x9) = P(X =27) + P(X =x2), wherex; and
xo are disjoint.

A probabilistic model consists of a sample space of mutually exclusive possilieomes,
together with a probability measure for each outcome. Fangte, in a model of the weather
tomorrow, the outcomes might tsainny, cloudy, rainy, andsnowy. A subset of these out-
comes constitutes an event. For example, the event of |iseip is the subset consisting of
{rainy, snowy}.

We useP(X) to denote the vector of valué$ (X =x1),..., P(X =z,)). We also
useP(z;) as an abbreviation faP(X =z;) and)_ P(x) for Y | P(X =;).

The conditional probability?(B|A) is defined ag?(BNA)/P(A). AandB are condi-
tionally independent ifP(B|A) = P(B) (or equivalently,P(A|B) = P(A)). For continuous
variables, there are an infinite number of values, and uttess are point spikes, the proba-

P con bility of any one value is 0. Therefore, we definpr@bability density function, which we
also denote a®(-), but which has a slightly different meaning from the diserptobability
function. The density functio®(x) for a random variableX', which might be thought of as
P(X =uz), is intuitively defined as the ratio of the probability th&t falls into an interval
aroundz, divided by the width of the interval, as the interval widibeg to zero:

P(z)= dlgTOP(x <X <z+dx)/dr.

1058

Appendix A. Mathematical background

CUMULATIVE
PROBABILITY
DENSITY FUNCTION

GAUSSIAN
DISTRIBUTION

STANDARD NORMAL
DISTRIBUTION
MULTIVARIATE
GAUSSIAN

CUMULATIVE
DISTRIBUTION

CENTRAL LIMIT
THEOREM

EXPECTATION

The density function must be nonnegative foraadnd must have
We can also define eumulative probability density function Fx (x), which is the proba-
bility of a random variable being less than

Fx(x) =P(X <x) :/

— 00

P(z)dz=1.

T

P(u)du .

Note that the probability density function has units, wiasrthe discrete probability function

is unitless. For example, if values &f are measured in seconds, then the density is measured
in Hz (i.e., 1/sec). If values ok are points in three-dimensional space measured in meters,
then density is measured Ipm3.

One of the most important probability distributions is Baussian distribution, also
known as thenormal distribution. A Gaussian distribution with meanand standard devi-
ationo (and therefore variance?) is defined as

Pla) = — @2/ 20)

27
wherez is a continuous variable ranging fromoco to +o0c. With meanu, =0 and variance
0% =1, we get the special case of th@ndard normal distribution. For a distribution over
a vectorx in n dimensions, there is thaultivariate Gaussian distribution:

Px) = L (w2 o) 7
(2m)" ||
wherep is the mean vector antl is thecovariance matrix (see below).
In one dimension, we can define tbemulative distribution function F'(x) as the
probability that a random variable will be less thanFor the normal distribution, this is

/ Ple G
where erfz) is the so-callearror function, which has no closed-form representation.
Thecentral limit theorem states that the distribution formed by samplimgndepen-
dent random variables and taking their mean tends to a nadistalbution asn tends to
infinity. This holds for almost any collection of random \ables, even if they are not strictly
independent, unless the variance of any finite subset ciblas dominates the others.

Theexpectation of a random variableF'(X), is the mean or average value, weighted
by the probability of each value. For a discrete variabls:it i

-3

Fora contlnuous variable, replace the summation with aagnad over the probability density
function, P(z):

)

1+em

L)),

X=ux).

Bibliographical and Historical Notes 1059

ROOT MEAN SQUARE

COVARIANCE

COVARIANCE MATRIX

Theroot mean square, RMS, of a set of values (often samples of a random variable) i
the square root of the mean of the squares of the values,

I

n

Thecovariance of two random variables is the expectation of the producheirtdifferences
from their means:

cov(X,Y) = E((X — pux)(Y — py)) -

Thecovariance matrix, often denote®, is a matrix of covariances between elements of a
vector of random variables. Givef = (X,... X,,) ", the entries of the covariance matrix
are as follows:

3 = cov(X;, Xj) = E((Xi — pa) (X5 — 1y)) -

A few more miscellaneous points: we usg(z) for the natural logarithmlog,(z). We use
argmax,, f(x) for the value ofr for which f(z) is maximal.

RMS(z1,...,2pn) =

BIBLIOGRAPHICAL AND HISTORICAL NOTES

TheO() notation so widely used in computer science today was fingidnced in the context
of number theory by the German mathematician P. G. H. Bachr{e894). The concept of
NP-completeness was invented by Cook (1971), and the madetinod for establishing a
reduction from one problem to another is due to Karp (1972pkand Karp have both won
the Turing award, the highest honor in computer sciencethigr work.

Classic works on the analysis and design of algorithms declihose by Knuth (1973)
and Aho, Hopcroft, and Ullman (1974); more recent contidmg are by Tarjan (1983) and
Cormen, Leiserson, and Rivest (1990). These books placenghasis on designing and
analyzing algorithms to solve tractable problems. For tleoty of NP-completeness and
other forms of intractability, see Garey and Johnson (1@r9Papadimitriou (1994). Good
texts on probability include Chung (1979), Ross (1988), Radsekas and Tsitsiklis (2008).

