
A MATHEMATICAL
BACKGROUND

A.1 COMPLEXITY ANALYSIS AND O() NOTATION

Computer scientists are often faced with the task of comparing algorithms to see how fast
they run or how much memory they require. There are two approaches to this task. The first
is benchmarking—running the algorithms on a computer and measuring speed insecondsBENCHMARKING

and memory consumption in bytes. Ultimately, this is what really matters, but a benchmark
can be unsatisfactory because it is so specific: it measures the performance of a particular
program written in a particular language, running on a particular computer, with a particular
compiler and particular input data. From the single result that the benchmark provides, it
can be difficult to predict how well the algorithm would do on adifferent compiler, com-
puter, or data set. The second approach relies on a mathematical analysis of algorithms,ANALYSIS OF

ALGORITHMS

independently of the particular implementation and input,as discussed below.

A.1.1 Asymptotic analysis

We will consider algorithm analysis through the following example, a program to compute
the sum of a sequence of numbers:

function SUMMATION (sequence) returns a number
sum← 0
for i = 1 to LENGTH(sequence) do

sum← sum + sequence[i]
return sum

The first step in the analysis is to abstract over the input, inorder to find some parameter or
parameters that characterize the size of the input. In this example, the input can be charac-
terized by the length of the sequence, which we will calln. The second step is to abstract
over the implementation, to find some measure that reflects the running time of the algorithm
but is not tied to a particular compiler or computer. For the SUMMATION program, this could
be just the number of lines of code executed, or it could be more detailed, measuring the
number of additions, assignments, array references, and branches executed by the algorithm.

1053

1054 Appendix A. Mathematical background

Either way gives us a characterization of the total number ofsteps taken by the algorithm as
a function of the size of the input. We will call this characterization T (n). If we count lines
of code, we haveT (n)= 2n + 2 for our example.

If all programs were as simple as SUMMATION , the analysis of algorithms would be a
trivial field. But two problems make it more complicated. First, it is rare to find a parameter
like n that completely characterizes the number of steps taken by an algorithm. Instead, the
best we can usually do is compute the worst caseTworst(n) or the average caseTavg(n).
Computing an average means that the analyst must assume somedistribution of inputs.

The second problem is that algorithms tend to resist exact analysis. In that case, it is
necessary to fall back on an approximation. We say that the SUMMATION algorithm isO(n),
meaning that its measure is at most a constant timesn, with the possible exception of a few
small values ofn. More formally,

T (n) is O(f(n)) if T (n) ≤ kf(n) for somek, for all n > n0 .

TheO() notation gives us what is called anasymptotic analysis. We can say without ques-ASYMPTOTIC

ANALYSIS

tion that, asn asymptotically approaches infinity, anO(n) algorithm is better than anO(n2)
algorithm. A single benchmark figure could not substantiatesuch a claim.

TheO() notation abstracts over constant factors, which makes it easier to use, but less
precise, than theT () notation. For example, anO(n2) algorithm will always be worse than
anO(n) in the long run, but if the two algorithms areT (n2 + 1) andT (100n + 1000), then
theO(n2) algorithm is actually better forn < 110.

Despite this drawback, asymptotic analysis is the most widely used tool for analyzing
algorithms. It is precisely because the analysis abstractsover both the exact number of oper-
ations (by ignoring the constant factork) and the exact content of the input (by considering
only its sizen) that the analysis becomes mathematically feasible. TheO() notation is a good
compromise between precision and ease of analysis.

A.1.2 NP and inherently hard problems

The analysis of algorithms and theO() notation allow us to talk about the efficiency of a
particular algorithm. However, they have nothing to say about whether there could be a better
algorithm for the problem at hand. The field ofcomplexity analysis analyzes problems ratherCOMPLEXITY

ANALYSIS

than algorithms. The first gross division is between problems that can be solved in polynomial
time and problems that cannot be solved in polynomial time, no matter what algorithm is
used. The class of polynomial problems—those which can be solved in timeO(nk) for some
k—is called P. These are sometimes called “easy” problems, because the class contains those
problems with running times likeO(log n) andO(n). But it also contains those with time
O(n1000), so the name “easy” should not be taken too literally.

Another important class of problems is NP, the class of nondeterministic polynomial
problems. A problem is in this class if there is some algorithm that can guess a solution and
then verify whether the guess is correct in polynomial time.The idea is that if you have an
arbitrarily large number of processors, so that you can try all the guesses at once, or you are
very lucky and always guess right the first time, then the NP problems become P problems.
One of the biggest open questions in computer science is whether the class NP is equivalent

Section A.2. Vectors, Matrices, and Linear Algebra 1055

to the class P when one does not have the luxury of an infinite number of processors or
omniscient guessing. Most computer scientists are convinced that P6= NP; that NP problems
are inherently hard and have no polynomial-time algorithms. But this has never been proven.

Those who are interested in deciding whether P = NP look at a subclass of NP called the
NP-complete problems. The word “complete” is used here in the sense of “most extreme”NP­COMPLETE

and thus refers to the hardest problems in the class NP. It hasbeen proven that either all
the NP-complete problems are in P or none of them is. This makes the class theoretically
interesting, but the class is also of practical interest because many important problems are
known to be NP-complete. An example is the satisfiability problem: given a sentence of
propositional logic, is there an assignment of truth valuesto the proposition symbols of the
sentence that makes it true? Unless a miracle occurs and P = NP, there can be no algorithm
that solvesall satisfiability problems in polynomial time. However, AI is more interested in
whether there are algorithms that perform efficiently ontypical problems drawn from a pre-
determined distribution; as we saw in Chapter 7, there are algorithms such as WALK SAT that
do quite well on many problems.

The classco-NP is the complement of NP, in the sense that, for every decisionproblemCO­NP

in NP, there is a corresponding problem in co-NP with the “yes” and “no” answers reversed.
We know that P is a subset of both NP and co-NP, and it is believed that there are problems
in co-NP that are not in P. Theco-NP-complete problems are the hardest problems in co-NP.CO­NP­COMPLETE

The class #P (pronounced “sharp P”) is the set of counting problems corresponding to
the decision problems in NP. Decision problems have a yes-or-no answer: is there a solution
to this 3-SAT formula? Counting problems have an integer answer: how many solutions are
there to this 3-SAT formula? In some cases, the counting problem is much harder than the
decision problem. For example, deciding whether a bipartite graph has a perfect matching
can be done in timeO(V E) (where the graph hasV vertices andE edges), but the counting
problem “how many perfect matches does this bipartite graphhave” is #P-complete, meaning
that it is hard as any problem in #P and thus at least as hard as any NP problem.

Another class is the class of PSPACE problems—those that require a polynomial amount
of space, even on a nondeterministic machine. It is believedthat PSPACE-hard problems are
worse than NP-complete problems, although it could turn outthat NP = PSPACE, just as it
could turn out that P = NP.

A.2 VECTORS, MATRICES, AND L INEAR ALGEBRA

Mathematicians define avector as a member of a vector space, but we will use a more con-VECTOR

crete definition: a vector is an ordered sequence of values. For example, in two-dimensional
space, we have vectors such asx = 〈3, 4〉 andy = 〈0, 2〉. We follow the convention of bold-
face characters for vector names, although some authors usearrows or bars over the names:
~x or ȳ. The elements of a vector can be accessed using subscripts:z = 〈z1, z2, . . . , zn〉. One
confusing point: this book is synthesizing work from many subfields, which variously call
their sequences vectors, lists, or tuples, and variously use the notations〈1, 2〉, [1, 2], or (1, 2).

1056 Appendix A. Mathematical background

The two fundamental operations on vectors are vector addition and scalar multiplica-
tion. The vector additionx+y is the elementwise sum:x+y = 〈3+0, 4+2〉= 〈3, 6〉. Scalar
multiplication multiplies each element by a constant:5x = 〈5× 3, 5 × 4〉= 〈15, 20〉.

The length of a vector is denoted|x| and is computed by taking the square root of the
sum of the squares of the elements:|x|=

√

(32 + 42)= 5. The dot productx · y (also called
scalar product) of two vectors is the sum of the products of corresponding elements, that is,
x · y =

∑

i xiyi, or in our particular case,x · y = 3× 0 + 4× 2= 8.
Vectors are often interpreted as directed line segments (arrows) in ann-dimensional

Euclidean space. Vector addition is then equivalent to placing the tail of one vector at the
head of the other, and the dot productx · y is equal to|x| |y| cos θ, whereθ is the angle
betweenx andy.

A matrix is a rectangular array of values arranged into rows and columns. Here is aMATRIX

matrix A of size3× 4:




A1,1 A1,2 A1,3 A1,4

A2,1 A2,2 A2,3 A2,4

A3,1 A3,2 A3,3 A3,4





The first index ofAi,j specifies the row and the second the column. In programming lan-
guages,Ai,j is often writtenA[i,j] or A[i][j].

The sum of two matrices is defined by adding their corresponding elements; for example
(A + B)i,j = Ai,j + Bi,j. (The sum is undefined ifA andB have different sizes.) We can also
define the multiplication of a matrix by a scalar:(cA)i,j = cAi,j. Matrix multiplication (the
product of two matrices) is more complicated. The productAB is defined only ifA is of size
a× b andB is of sizeb × c (i.e., the second matrix has the same number of rows as the first
has columns); the result is a matrix of sizea× c. If the matrices are of appropriate size, then
the result is

(AB)i,k =
∑

j

Ai,jBj,k .

Matrix multiplication is not commutative, even for square matrices: AB 6= BA in general.
It is, however, associative:(AB)C = A(BC). Note that the dot product can be expressed in
terms of a transpose and a matrix multiplication:x · y = x⊤y.

Theidentity matrix I has elementsIi,j equal to 1 wheni= j and equal to 0 otherwise.IDENTITY MATRIX

It has the property thatAI = A for all A. The transpose of A, written A⊤ is formed byTRANSPOSE

turning rows into columns and vice versa, or, more formally,by A⊤
i,j = Aj,i. Theinverse ofINVERSE

a square matrixA is another square matrixA−1 such thatA−1A = I. For asingular matrix,SINGULAR

the inverse does not exist. For a nonsingular matrix, it can be computed inO(n3) time.
Matrices are used to solve systems of linear equations inO(n3) time; the time is domi-

nated by inverting a matrix of coefficients. Consider the following set of equations, for which
we want a solution inx, y, andz:

+2x + y − z = 8

−3x− y + 2z = −11

−2x + y + 2z = −3 .

Section A.3. Probability Distributions 1057

We can represent this system as the matrix equationA x = b, where

A =





2 1 −1
−3 −1 2
−2 1 2



 , x =





x
y
z



 , b =





8
−11
−3



 .

To solveA x = b we multiply both sides byA−1, yielding A−1Ax = A−1b, which simplifies
to x = A−1b. After invertingA and multiplying byb, we get the answer

x =





x
y
z



 =





2
3
−1



 .

A.3 PROBABILITY DISTRIBUTIONS

A probability is a measure over a set of events that satisfies three axioms:

1. The measure of each event is between 0 and 1. We write this as0 ≤ P (X = xi) ≤ 1,
whereX is a random variable representing an event andxi are the possible values of
X. In general, random variables are denoted by uppercase letters and their values by
lowercase letters.

2. The measure of the whole set is 1; that is,
∑n

i = 1 P (X = xi)= 1.

3. The probability of a union of disjoint events is the sum of the probabilities of the indi-
vidual events; that is,P (X = x1 ∨X = x2)= P (X = x1) + P (X =x2), wherex1 and
x2 are disjoint.

A probabilistic model consists of a sample space of mutually exclusive possible outcomes,
together with a probability measure for each outcome. For example, in a model of the weather
tomorrow, the outcomes might besunny, cloudy, rainy, andsnowy. A subset of these out-
comes constitutes an event. For example, the event of precipitation is the subset consisting of
{rainy, snowy}.

We useP(X) to denote the vector of values〈P (X = x1), . . . , P (X =xn)〉. We also
useP (xi) as an abbreviation forP (X = xi) and

∑

x P (x) for
∑n

i = 1 P (X = xi).
The conditional probabilityP (B|A) is defined asP (B∩A)/P (A). A andB are condi-

tionally independent ifP (B|A)= P (B) (or equivalently,P (A|B)= P (A)). For continuous
variables, there are an infinite number of values, and unlessthere are point spikes, the proba-
bility of any one value is 0. Therefore, we define aprobability density function, which wePROBABILITY

DENSITY FUNCTION

also denote asP (·), but which has a slightly different meaning from the discrete probability
function. The density functionP (x) for a random variableX, which might be thought of as
P (X = x), is intuitively defined as the ratio of the probability thatX falls into an interval
aroundx, divided by the width of the interval, as the interval width goes to zero:

P (x)= lim
dx→0

P (x ≤ X ≤ x + dx)/dx .

1058 Appendix A. Mathematical background

The density function must be nonnegative for allx and must have
∫

∞

−∞

P (x) dx= 1 .

We can also define acumulative probability density function FX(x), which is the proba-
CUMULATIVE

PROBABILITY

DENSITY FUNCTION

bility of a random variable being less thanx:

FX(x) = P (X ≤ x) =

∫ x

−∞

P (u) du .

Note that the probability density function has units, whereas the discrete probability function
is unitless. For example, if values ofX are measured in seconds, then the density is measured
in Hz (i.e., 1/sec). If values ofX are points in three-dimensional space measured in meters,
then density is measured in1/m3.

One of the most important probability distributions is theGaussian distribution, alsoGAUSSIAN

DISTRIBUTION

known as thenormal distribution. A Gaussian distribution with meanµ and standard devi-
ationσ (and therefore varianceσ2) is defined as

P (x)=
1

σ
√

2π
e−(x−µ)2/(2σ2) ,

wherex is a continuous variable ranging from−∞ to +∞. With meanµ = 0 and variance
σ2 = 1, we get the special case of thestandard normal distribution. For a distribution overSTANDARD NORMAL

DISTRIBUTION

a vectorx in n dimensions, there is themultivariate Gaussian distribution:MULTIVARIATE

GAUSSIAN

P (x)=
1

√

(2π)n|Σ|
e
−

1

2

“

(x−µ)⊤Σ
−1

(x−µ)
”

,

whereµ is the mean vector andΣ is thecovariance matrix (see below).
In one dimension, we can define thecumulative distribution function F (x) as theCUMULATIVE

DISTRIBUTION

probability that a random variable will be less thanx. For the normal distribution, this is

F (x)=

x
∫

−∞

P (z)dz =
1

2
(1 + erf(

z − µ

σ
√

2
)) ,

where erf(x) is the so-callederror function, which has no closed-form representation.
Thecentral limit theorem states that the distribution formed by samplingn indepen-CENTRAL LIMIT

THEOREM

dent random variables and taking their mean tends to a normaldistribution asn tends to
infinity. This holds for almost any collection of random variables, even if they are not strictly
independent, unless the variance of any finite subset of variables dominates the others.

Theexpectation of a random variable,E(X), is the mean or average value, weightedEXPECTATION

by the probability of each value. For a discrete variable it is:

E(X)=
∑

i

xi P (X =xi) .

For a continuous variable, replace the summation with an integral over the probability density
function,P (x):

E(X)=

∞
∫

−∞

xP (x) dx ,

Bibliographical and Historical Notes 1059

Theroot mean square, RMS, of a set of values (often samples of a random variable) isROOT MEAN SQUARE

the square root of the mean of the squares of the values,

RMS (x1, . . . , xn) =

√

x2
1 + . . . + x2

n

n
.

Thecovariance of two random variables is the expectation of the product of their differencesCOVARIANCE

from their means:

cov(X,Y) = E((X − µX)(Y − µY)) .

Thecovariance matrix, often denotedΣ, is a matrix of covariances between elements of aCOVARIANCE MATRIX

vector of random variables. GivenX = 〈X1, . . . Xn〉⊤, the entries of the covariance matrix
are as follows:

Σi,j = cov(Xi,Xj) = E((Xi − µi)(Xj − µj)) .

A few more miscellaneous points: we uselog(x) for the natural logarithm,loge(x). We use
argmaxx f(x) for the value ofx for which f(x) is maximal.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

TheO() notation so widely used in computer science today was first introduced in the context
of number theory by the German mathematician P. G. H. Bachmann (1894). The concept of
NP-completeness was invented by Cook (1971), and the modernmethod for establishing a
reduction from one problem to another is due to Karp (1972). Cook and Karp have both won
the Turing award, the highest honor in computer science, fortheir work.

Classic works on the analysis and design of algorithms include those by Knuth (1973)
and Aho, Hopcroft, and Ullman (1974); more recent contributions are by Tarjan (1983) and
Cormen, Leiserson, and Rivest (1990). These books place an emphasis on designing and
analyzing algorithms to solve tractable problems. For the theory of NP-completeness and
other forms of intractability, see Garey and Johnson (1979)or Papadimitriou (1994). Good
texts on probability include Chung (1979), Ross (1988), andBertsekas and Tsitsiklis (2008).

