CHAPTER 4, SECTIONS 3–4

LOCAL SEARCH ALGORITHMS
Chapter 4, Sections 3-4

- Local search in continuous spaces (very briefly)
- Genetic algorithms (briefly)
- Simulated annealing
- Hill-climbing

Outline
Iterative improvement algorithms

In many optimization problems, path is irrelevant; the goal state itself is the solution. In many optimization problems, path is irrelevant;

Then state space = set of "complete" configurations;

find optimal configuration, e.g., TSP

find configuration satisfying constraints, e.g., timetable

Chapter 4, Sections 3-4

Constantspace, suitable for online as well as offline search.

In such cases, can use iterative improvement algorithms;

keep a single "current" state, try to improve it.

Or, find configuration satisfying constraints, e.g., timetable;
Example: Travelling Salesperson Problem

Start with any complete tour, perform pairwise exchanges

Variants of this approach get within 1% of optimal very quickly with thousands of cities
Example: n-queens

Almost always solves n-queens problems almost instantly for very large n, e.g., $n = 1$ million.

Move a queen to reduce number of conflicts row, column, or diagonal.

Put n queens on an $n \times n$ board with no two queens on the same row, column, or diagonal.
Like climbing Everest in thick fog with amnesia.

```
function HILL-CLIMBING(problem) returns a state that is a local maximum
inputs problem, a problem
local variables: current, a node
neighbor, a node
make-node(initial-state(problem))
current
loop do
    neighbor ← a highest-valued successor of current
    if value(neighbor) ≥ value(current) then return state(current)
    current ← neighbor

end
```

Hill-climbing (or gradient ascent/descent)

Hill-climbing (or gradient ascent/descent)
Hill-climbing contd.

Useful to consider state space landscape

- Objective function
- State space
- Global maximum
- Local maximum
- "Flat" local maximum
- Shoulder

Random restart hill climbing overcomes local maxima—trivially complete.

Random sideways moves escape from shoulders 😊loop on flat maxima

Chapter 4, Sections 3-4
Idea: escape local maxima by allowing some “bad” moves but gradually decrease their size and frequency.

Simulated annealing
Properties of simulated annealing

At fixed "temperature" T, state occupation probability reaches Boltzmann distribution $p(x) \propto e^{-E(x)/kT}$, always reach best state x^* because $e^{-E(x)/kT}$ decreases slowly enough for small T. Is this necessarily an interesting guarantee?

Devised by Metropolis et al., 1953, for physical process modelling. Widely used in VLSI layout, airline scheduling, etc.
Idea: keep k states instead of l; choose top k of all their successors

Local beam search

Problem: quite often, all k states end up on same local hill

Idea: choose k successors randomly, biased towards good ones

Observe the close analogy to natural selection

Searches that find good states recruit other searches to join them

Not the same as k searches run in parallel
Genetic algorithms = stochastic local beam search + generate successors from pairs of states
Geneticalgorithms contd.

GAs require states encoded as strings (GPs use programs)

\[\text{GAs \neq \text{evolution: e.g., real genes encode replication machinery!}} \]

Crossover helps if substrings are meaningful components

\[\text{Crossover helps if substrings are meaningful components} \]

\[= \]

\[+ \]

Genetic algorithms contd.
Suppose we want to site three airports in Romania:

Objective Function
\[
f(x^1, x^2, x^3) = \sum \text{sum of squared distances from each city to nearest airport}
\]

Newton–Raphson (1664, 1690) iterates

\[
0 = (x) f \Delta \Rightarrow \nabla f(x) = H x - x \rightarrow x
\]

Sometimes can solve for \(\nabla f(x) = 0 \) exactly (e.g., with one city).

Gradient Methods compute

\[

\text{empirical gradient considers change in each coordinate, e.g.,}

(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}) = \nabla f \Delta
\]

Discretization methods turn continuous space into discrete space,

\[
(x) f \Delta v + x \rightarrow x
\]

to increase/reduce \(f \), e.g., by

\[
x \pm \frac{\partial f}{\partial x}
\]

Sometimes can solve for \(\nabla f(x) = 0 \) exactly (e.g., with one city).

\[
0 = (x) f \Delta \Rightarrow \nabla f(x) = H x - x \rightarrow x
\]

Chapter 4, Sections 3-413