
CHAPTER 1
INTRODUCTION

CHAPTER 2
INTELLIGENT AGENTS

function TABLE-DRIVEN-AGENT(percept) returns an action
persistent: percepts, a sequence, initially empty

table, a table of actions, indexed by percept sequences, initially fully specified

append percept to the end of percepts
action←LOOKUP(percepts, table)
return action

Figure 2.7 The TABLE-DRIVEN-AGENT program is invoked for each new percept and re-
turns an action each time. It retains the complete percept sequence in memory.

function REFLEX-VACUUM-AGENT([location,status]) returns an action

if status = Dirty then return Suck
else if location = A then return Right
else if location = B then return Left

Figure 2.8 The agent program for a simple reflex agent in the two-location vacuum environ-
ment. This program implements the agent function tabulated in Figure 2.3.

3

function SIMPLE-REFLEX-AGENT(percept) returns an action
persistent: rules, a set of condition–action rules

state← INTERPRET-INPUT(percept)
rule←RULE-MATCH(state, rules)
action←rule.ACTION
return action

Figure 2.10 A simple reflex agent. It acts according to a rule whose condition matches the
current state, as defined by the percept.

function MODEL-BASED-REFLEX-AGENT(percept) returns an action
persistent: state, the agent’s current conception of the world state

transition model, a description of how the next state depends on
the current state and action

sensor model, a description of how the current world state is reflected
in the agent’s percepts

rules, a set of condition–action rules
action, the most recent action, initially none

state←UPDATE-STATE(state, action, percept, transition model, sensor model)
rule←RULE-MATCH(state, rules)
action←rule.ACTION
return action

Figure 2.12 A model-based reflex agent. It keeps track of the current state of the world,
using an internal model. It then chooses an action in the same way as the reflex agent.

CHAPTER 3
SOLVING PROBLEMS BY SEARCHING

function BEST-FIRST-SEARCH(problem, f) returns a solution node or failure
node←NODE(STATE=problem.INITIAL)
frontier←a priority queue ordered by f , with node as an element
reached←a lookup table, with one entry with key problem.INITIAL and value node
while not IS-EMPTY(frontier) do

node←POP(frontier)
if problem.IS-GOAL(node.STATE) then return node
for each child in EXPAND(problem, node) do

s←child.STATE
if s is not in reached or child.PATH-COST < reached[s].PATH-COST then

reached[s]←child
add child to frontier

return failure

function EXPAND(problem, node) yields nodes
s←node.STATE
for each action in problem.ACTIONS(s) do

s′←problem.RESULT(s, action)
cost←node.PATH-COST + problem.ACTION-COST(s, action, s′)
yield NODE(STATE=s′, PARENT=node, ACTION=action, PATH-COST=cost)

Figure 3.7 The best-first search algorithm, and the function for expanding a node. The data
structures used here are described in Section 3.3.2. See Appendix B for yield.

5

function BREADTH-FIRST-SEARCH(problem) returns a solution node or failure
node←NODE(problem.INITIAL)
if problem.IS-GOAL(node.STATE) then return node
frontier←a FIFO queue, with node as an element
reached←{problem.INITIAL}
while not IS-EMPTY(frontier) do

node←POP(frontier)
for each child in EXPAND(problem, node) do

s←child.STATE
if problem.IS-GOAL(s) then return child
if s is not in reached then

add s to reached
add child to frontier

return failure

function UNIFORM-COST-SEARCH(problem) returns a solution node, or failure
return BEST-FIRST-SEARCH(problem, PATH-COST)

Figure 3.9 Breadth-first search and uniform-cost search algorithms.

function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution node or failure
for depth = 0 to ∞ do

result←DEPTH-LIMITED-SEARCH(problem, depth)
if result 6= cutoff then return result

function DEPTH-LIMITED-SEARCH(problem, `) returns a node or failure or cutoff
frontier←a LIFO queue (stack) with NODE(problem.INITIAL) as an element
result← failure
while not IS-EMPTY(frontier) do

node←POP(frontier)
if problem.IS-GOAL(node.STATE) then return node
if DEPTH(node) > ` then

result←cutoff
else if not IS-CYCLE(node) do

for each child in EXPAND(problem, node) do
add child to frontier

return result

Figure 3.12 Iterative deepening and depth-limited tree-like search. Iterative deepening re-
peatedly applies depth-limited search with increasing limits. It returns one of three different
types of values: either a solution node; or failure, when it has exhausted all nodes and proved
there is no solution at any depth; or cutoff , to mean there might be a solution at a deeper depth
than `. This is a tree-like search algorithm that does not keep track of reached states, and thus
uses much less memory than best-first search, but runs the risk of visiting the same state mul-
tiple times on different paths. Also, if the IS-CYCLE check does not check all cycles, then
the algorithm may get caught in a loop.

6 Chapter 3 Solving Problems by Searching

function BIBF-SEARCH(problemF , fF , problemB, fB) returns a solution node, or failure
nodeF←NODE(problemF .INITIAL) // Node for a start state
nodeB←NODE(problemB.INITIAL) // Node for a goal state
frontierF←a priority queue ordered by fF , with nodeF as an element
frontierB←a priority queue ordered by fB, with nodeB as an element
reachedF←a lookup table, with one key nodeF .STATE and value nodeF
reachedB←a lookup table, with one key nodeB.STATE and value nodeB
solution← failure
while not TERMINATED(solution, frontierF , frontierB) do

if fF (TOP(frontierF)) < fB(TOP(frontierB)) then
solution←PROCEED(F, problemF , frontierF , reachedF , reachedB, solution)

else solution←PROCEED(B, problemB, frontierB, reachedB, reachedF , solution)
return solution

function PROCEED(dir, problem, frontier, reached, reached2, solution) returns a solution
// Expand node on frontier; check against the other frontier in reached2.
// The variable “dir” is the direction: either F for forward or B for backward.

node←POP(frontier)
for each child in EXPAND(problem, node) do

s←child.STATE
if s not in reached or PATH-COST(child) < PATH-COST(reached[s]) then

reached[s]←child
add child to frontier
if s is in reached2 then

solution2← JOIN-NODES(dir, child, reached2[s]))
if PATH-COST(solution2) < PATH-COST(solution) then

solution←solution2
return solution

Figure 3.14 Bidirectional best-first search keeps two frontiers and two tables of reached
states. When a path in one frontier reaches a state that was also reached in the other half of
the search, the two paths are joined (by the function JOIN-NODES) to form a solution. The
first solution we get is not guaranteed to be the best; the function TERMINATED determines
when to stop looking for new solutions.

7

function RECURSIVE-BEST-FIRST-SEARCH(problem) returns a solution or failure
solution, fvalue←RBFS(problem, NODE(problem.INITIAL), ∞)

return solution

function RBFS(problem, node, f limit) returns a solution or failure, and a new f -cost limit
if problem.IS-GOAL(node.STATE) then return node
successors←LIST(EXPAND(node))
if successors is empty then return failure, ∞

for each s in successors do // update f with value from previous search
s.f←max(s.PATH-COST + h(s), node.f))

while true do
best← the node in successors with lowest f -value
if best. f > f limit then return failure, best. f
alternative← the second-lowest f -value among successors
result, best. f←RBFS(problem, best, min(f limit,alternative))
if result 6= failure then return result, best. f

Figure 3.22 The algorithm for recursive best-first search.

CHAPTER 4
SEARCH IN COMPLEX
ENVIRONMENTS

function HILL-CLIMBING(problem) returns a state that is a local maximum
current←problem.INITIAL
while true do

neighbor←a highest-valued successor state of current
if VALUE(neighbor) ≤ VALUE(current) then return current
current←neighbor

Figure 4.2 The hill-climbing search algorithm, which is the most basic local search tech-
nique. At each step the current node is replaced by the best neighbor.

function SIMULATED-ANNEALING(problem, schedule) returns a solution state
current←problem.INITIAL
for t = 1 to ∞ do

T←schedule(t)
if T = 0 then return current
next←a randomly selected successor of current
∆E←VALUE(current) – VALUE(next)
if ∆E > 0 then current←next
else current←next only with probability e∆E/T

Figure 4.5 The simulated annealing algorithm, a version of stochastic hill climbing where
some downhill moves are allowed. The schedule input determines the value of the “tempera-
ture” T as a function of time.

9

function GENETIC-ALGORITHM(population, fitness) returns an individual
repeat

weights←WEIGHTED-BY(population, fitness)
population2←empty list
for i = 1 to SIZE(population) do

parent1, parent2←WEIGHTED-RANDOM-CHOICES(population, weights, 2)
child←REPRODUCE(parent1, parent2)
if (small random probability) then child←MUTATE(child)
add child to population2

population←population2
until some individual is fit enough, or enough time has elapsed
return the best individual in population, according to fitness

function REPRODUCE(parent1, parent2) returns an individual
n←LENGTH(parent1)
c← random number from 1 to n
return APPEND(SUBSTRING(parent1, 1, c), SUBSTRING(parent2, c+1, n))

Figure 4.8 A genetic algorithm. Within the function, population is an ordered list of indi-
viduals, weights is a list of corresponding fitness values for each individual, and fitness is a
function to compute these values.

function AND-OR-SEARCH(problem) returns a conditional plan, or failure
return OR-SEARCH(problem, problem.INITIAL, [])

function OR-SEARCH(problem, state, path) returns a conditional plan, or failure
if problem.IS-GOAL(state) then return the empty plan
if IS-CYCLE(state, path) then return failure
for each action in problem.ACTIONS(state) do

plan←AND-SEARCH(problem, RESULTS(state, action), [state] + [path])
if plan 6= failure then return [action] + [plan]

return failure

function AND-SEARCH(problem, states, path) returns a conditional plan, or failure
for each si in states do

plani←OR-SEARCH(problem, si, path)
if plani = failure then return failure

return [if s1 then plan1 else if s2 then plan2 else . . . if sn−1 then plann−1 else plann]

Figure 4.11 An algorithm for searching AND–OR graphs generated by nondeterministic en-
vironments. A solution is a conditional plan that considers every nondeterministic outcome
and makes a plan for each one.

10 Chapter 4 Search in Complex Environments

function ONLINE-DFS-AGENT(problem, s′) returns an action
s, a, the previous state and action, initially null
result, a table mapping (s, a) to s′, initially empty
untried, a table mapping s to a list of untried actions
unbacktracked, a table mapping s to a list of states never backtracked to

if problem.IS-GOAL(s′) then return stop
if s′ is a new state (not in untried) then untried[s′]←problem.ACTIONS(s′)
if s is not null then

result[s, a]←s′

add s to the front of unbacktracked[s′]
if untried[s′] is empty then

if unbacktracked[s′] is empty then return stop
a←an action b such that result[s′, b] = POP(unbacktracked[s′])s′← null

else a←POP(untried[s′])
s←s′

return a

Figure 4.21 An online search agent that uses depth-first exploration. The agent can safely
explore only in state spaces in which every action can be “undone” by some other action.

function LRTA*-AGENT(problem, s′, h) returns an action
s, a, the previous state and action, initially null
result, a table mapping (s, a) to s′, initially empty
H, a table mapping s to a cost estimate, initially empty

if IS-GOAL(s′) then return stop
if s′ is a new state (not in H) then H[s′]←h(s′)
if s is not null then

result[s, a]←s′

H[s]← min
b∈ACTIONS(s)

LRTA*-COST(problem, s, b, result[s, b], H)

a← argmin
b∈ACTIONS(s)

LRTA*-COST(problem, s′, b, result[s′, b], H)

s←s′

return a

function LRTA*-COST(problem, s, a, s′, H) returns a cost estimate
if s′ is undefined then return h(s)
else return problem.ACTION-COST(s,a,s′) + H[s′]

Figure 4.24 LRTA∗-AGENT selects an action according to the values of neighboring states,
which are updated as the agent moves about the state space.

CHAPTER 5
CONSTRAINT SATISFACTION
PROBLEMS

function AC-3(csp) returns false if an inconsistency is found and true otherwise
queue←a queue of arcs, initially all the arcs in csp

while queue is not empty do
(Xi, X j)←POP(queue)
if REVISE(csp, Xi, X j) then

if size of Di = 0 then return false
for each Xk in Xi.NEIGHBORS - {X j} do

add (Xk, Xi) to queue
return true

function REVISE(csp, Xi, X j) returns true iff we revise the domain of Xi
revised← false
for each x in Di do

if no value y in D j allows (x,y) to satisfy the constraint between Xi and X j then
delete x from Di
revised← true

return revised

Figure 5.3 The arc-consistency algorithm AC-3. After applying AC-3, either every arc is
arc-consistent, or some variable has an empty domain, indicating that the CSP cannot be
solved. The name “AC-3” was used by the algorithm’s inventor (Mackworth, 1977) because
it was the third version developed in the paper.

12 Chapter 5 Constraint Satisfaction Problems

function BACKTRACKING-SEARCH(csp) returns a solution or failure
return BACKTRACK(csp,{})

function BACKTRACK(csp, assignment) returns a solution or failure
if assignment is complete then return assignment
var←SELECT-UNASSIGNED-VARIABLE(csp, assignment)
for each value in ORDER-DOMAIN-VALUES(csp, var, assignment) do

if value is consistent with assignment then
add {var = value} to assignment
inferences← INFERENCE(csp, var, assignment)
if inferences 6= failure then

add inferences to csp
result←BACKTRACK(csp, assignment)
if result 6= failure then return result
remove inferences from csp

remove {var = value} from assignment
return failure

Figure 5.5 A simple backtracking algorithm for constraint satisfaction problems. The
algorithm is modeled on the recursive depth-first search of Chapter 3. The functions
SELECT-UNASSIGNED-VARIABLE and ORDER-DOMAIN-VALUES implement the general-
purpose heuristics discussed in Section 5.3.1. The INFERENCE function can optionally im-
pose arc-, path-, or k-consistency, as desired. If a value choice leads to failure (noticed
either by INFERENCE or by BACKTRACK), then value assignments (including those made by
INFERENCE) are retracted and a new value is tried.

function MIN-CONFLICTS(csp, max steps) returns a solution or failure
inputs: csp, a constraint satisfaction problem

max steps, the number of steps allowed before giving up

current←an initial complete assignment for csp
for i = 1 to max steps do

if current is a solution for csp then return current
var←a randomly chosen conflicted variable from csp.VARIABLES
value← the value v for var that minimizes CONFLICTS(csp, var, v, current)
set var=value in current

return failure

Figure 5.9 The MIN-CONFLICTS local search algorithm for CSPs. The initial state may be
chosen randomly or by a greedy assignment process that chooses a minimal-conflict value
for each variable in turn. The CONFLICTS function counts the number of constraints violated
by a particular value, given the rest of the current assignment.

13

function TREE-CSP-SOLVER(csp) returns a solution, or failure
inputs: csp, a CSP with components X , D, C

n←number of variables in X
assignment←an empty assignment
root←any variable in X
X←TOPOLOGICALSORT(X, root)
for j = n down to 2 do

MAKE-ARC-CONSISTENT(PARENT(X j), X j)
if it cannot be made consistent then return failure

for i = 1 to n do
assignment[Xi]←any consistent value from Di
if there is no consistent value then return failure

return assignment

Figure 5.11 The TREE-CSP-SOLVER algorithm for solving tree-structured CSPs. If the
CSP has a solution, we will find it in linear time; if not, we will detect a contradiction.

CHAPTER 6
ADVERSARIAL SEARCH AND GAMES

function MINIMAX-SEARCH(game, state) returns an action
player←game.TO-MOVE(state)
value, move←MAX-VALUE(game, state)
return move

function MAX-VALUE(game, state) returns a (utility, move) pair
if game.IS-TERMINAL(state) then return game.UTILITY(state, player), null
v, move←−∞

for each a in game.ACTIONS(state) do
v2, a2←MIN-VALUE(game, game.RESULT(state, a))
if v2 > v then

v, move←v2, a
return v, move

function MIN-VALUE(game, state) returns a (utility, move) pair
if game.IS-TERMINAL(state) then return game.UTILITY(state, player), null
v, move←+∞

for each a in game.ACTIONS(state) do
v2, a2←MAX-VALUE(game, game.RESULT(state, a))
if v2 < v then

v, move←v2, a
return v, move

Figure 6.3 An algorithm for calculating the optimal move using minimax—the move that
leads to a terminal state with maximum utility, under the assumption that the opponent plays
to minimize utility. The functions MAX-VALUE and MIN-VALUE go through the whole
game tree, all the way to the leaves, to determine the backed-up value of a state and the move
to get there.

15

function ALPHA-BETA-SEARCH(game, state) returns an action
player←game.TO-MOVE(state)
value, move←MAX-VALUE(game, state,−∞,+∞)
return move

function MAX-VALUE(game, state,α,β) returns a (utility, move) pair
if game.IS-TERMINAL(state) then return game.UTILITY(state, player), null
v←−∞

for each a in game.ACTIONS(state) do
v2, a2←MIN-VALUE(game, game.RESULT(state, a),α,β)
if v2 > v then

v, move←v2, a
α←MAX(α, v)

if v ≥ β then return v, move
return v, move

function MIN-VALUE(game, state,α,β) returns a (utility, move) pair
if game.IS-TERMINAL(state) then return game.UTILITY(state, player), null
v←+∞

for each a in game.ACTIONS(state) do
v2, a2←MAX-VALUE(game, game.RESULT(state, a),α,β)
if v2 < v then

v, move←v2, a
β←MIN(β, v)

if v ≤ α then return v, move
return v, move

Figure 6.7 The alpha–beta search algorithm. Notice that these functions are the same as the
MINIMAX-SEARCH functions in Figure 6.3, except that we maintain bounds in the variables
α and β, and use them to cut off search when a value is outside the bounds.

function MONTE-CARLO-TREE-SEARCH(state) returns an action
tree←NODE(state)
while IS-TIME-REMAINING() do

leaf←SELECT(tree)
child←EXPAND(leaf)
result←SIMULATE(child)
BACK-PROPAGATE(result, child)

return the move in ACTIONS(state) whose node has highest number of playouts

Figure 6.11 The Monte Carlo tree search algorithm. A game tree, tree, is initialized, and
then we repeat a cycle of SELECT / EXPAND / SIMULATE / BACK-PROPAGATE until we run
out of time, and return the move that led to the node with the highest number of playouts.

CHAPTER 7
LOGICAL AGENTS

function KB-AGENT(percept) returns an action
persistent: KB, a knowledge base

t, a counter, initially 0, indicating time

TELL(KB, MAKE-PERCEPT-SENTENCE(percept, t))
action←ASK(KB, MAKE-ACTION-QUERY(t))
TELL(KB, MAKE-ACTION-SENTENCE(action, t))
t← t + 1
return action

Figure 7.1 A generic knowledge-based agent. Given a percept, the agent adds the percept
to its knowledge base, asks the knowledge base for the best action, and tells the knowledge
base that it has in fact taken that action.

17

function TT-ENTAILS?(KB,α) returns true or false
inputs: KB, the knowledge base, a sentence in propositional logic

α, the query, a sentence in propositional logic

symbols←a list of the proposition symbols in KB and α
return TT-CHECK-ALL(KB,α, symbols,{})

function TT-CHECK-ALL(KB,α, symbols, model) returns true or false
if EMPTY?(symbols) then

if PL-TRUE?(KB, model) then return PL-TRUE?(α, model)
else return true // when KB is false, always return true

else
P←FIRST(symbols)
rest←REST(symbols)
return (TT-CHECK-ALL(KB,α, rest, model ∪ {P = true})

and
TT-CHECK-ALL(KB,α, rest, model ∪ {P = false })

Figure 7.10 A truth-table enumeration algorithm for deciding propositional entailment. (TT
stands for truth table.) PL-TRUE? returns true if a sentence holds within a model. The
variable model represents a partial model—an assignment to some of the symbols. The key-
word and here is an infix function symbol in the pseudocode programming language, not an
operator in propositional logic; it takes two arguments and returns true or false.

function PL-RESOLUTION(KB,α) returns true or false
inputs: KB, the knowledge base, a sentence in propositional logic

α, the query, a sentence in propositional logic

clauses← the set of clauses in the CNF representation of KB∧¬α
new←{}
while true do

for each pair of clauses Ci, C j in clauses do
resolvents←PL-RESOLVE(Ci,C j)
if resolvents contains the empty clause then return true
new←new∪ resolvents

if new⊆ clauses then return false
clauses←clauses∪new

Figure 7.13 A simple resolution algorithm for propositional logic. PL-RESOLVE returns the
set of all possible clauses obtained by resolving its two inputs.

18 Chapter 7 Logical Agents

function PL-FC-ENTAILS?(KB, q) returns true or false
inputs: KB, the knowledge base, a set of propositional definite clauses

q, the query, a proposition symbol
count←a table, where count[c] is initially the number of symbols in clause c’s premise
inferred←a table, where inferred[s] is initially false for all symbols
queue←a queue of symbols, initially symbols known to be true in KB

while queue is not empty do
p←POP(queue)
if p = q then return true
if inferred[p] = false then

inferred[p]← true
for each clause c in KB where p is in c.PREMISE do

decrement count[c]
if count[c] = 0 then add c.CONCLUSION to queue

return false

Figure 7.15 The forward-chaining algorithm for propositional logic. The queue keeps track
of symbols known to be true but not yet “processed.” The count table keeps track of how
many premises of each implication are not yet proven. Whenever a new symbol p from the
agenda is processed, the count is reduced by one for each implication in whose premise p
appears (easily identified in constant time with appropriate indexing.) If a count reaches
zero, all the premises of the implication are known, so its conclusion can be added to the
agenda. Finally, we need to keep track of which symbols have been processed; a symbol that
is already in the set of inferred symbols need not be added to the agenda again. This avoids
redundant work and prevents loops caused by implications such as P⇒ Q and Q⇒ P.

19

function DPLL-SATISFIABLE?(s) returns true or false
inputs: s, a sentence in propositional logic

clauses← the set of clauses in the CNF representation of s
symbols←a list of the proposition symbols in s
return DPLL(clauses, symbols,{})

function DPLL(clauses, symbols, model) returns true or false

if every clause in clauses is true in model then return true
if some clause in clauses is false in model then return false
P, value←FIND-PURE-SYMBOL(symbols, clauses, model)
if P is non-null then return DPLL(clauses, symbols – P, model ∪ {P=value})
P, value←FIND-UNIT-CLAUSE(clauses, model)
if P is non-null then return DPLL(clauses, symbols – P, model ∪ {P=value})
P←FIRST(symbols); rest←REST(symbols)
return DPLL(clauses, rest, model ∪ {P=true}) or

DPLL(clauses, rest, model ∪ {P=false})

Figure 7.17 The DPLL algorithm for checking satisfiability of a sentence in propositional
logic. The ideas behind FIND-PURE-SYMBOL and FIND-UNIT-CLAUSE are described in
the text; each returns a symbol (or null) and the truth value to assign to that symbol. Like
TT-ENTAILS?, DPLL operates over partial models.

function WALKSAT(clauses, p, max flips) returns a satisfying model or failure
inputs: clauses, a set of clauses in propositional logic

p, the probability of choosing to do a “random walk” move, typically around 0.5
max flips, number of value flips allowed before giving up

model←a random assignment of true/false to the symbols in clauses
for each i= 1 to max flips do

if model satisfies clauses then return model
clause←a randomly selected clause from clauses that is false in model
if RANDOM(0, 1) ≤ p then

flip the value in model of a randomly selected symbol from clause
else flip whichever symbol in clause maximizes the number of satisfied clauses

return failure

Figure 7.18 The WALKSAT algorithm for checking satisfiability by randomly flipping the
values of variables. Many versions of the algorithm exist.

20 Chapter 7 Logical Agents

function HYBRID-WUMPUS-AGENT(percept) returns an action
inputs: percept, a list, [stench,breeze,glitter,bump,scream]
persistent: KB, a knowledge base, initially the atemporal “wumpus physics”

t, a counter, initially 0, indicating time
plan, an action sequence, initially empty

TELL(KB, MAKE-PERCEPT-SENTENCE(percept, t))
TELL the KB the temporal “physics” sentences for time t
safe←{[x,y] : ASK(KB,OKt

x,y) = true}
if ASK(KB,Glittert) = true then

plan← [Grab] + PLAN-ROUTE(current,{[1,1]}, safe) + [Climb]
if plan is empty then

unvisited←{[x,y] : ASK(KB,Lt ′
x,y) = false for all t ′ ≤ t}

plan←PLAN-ROUTE(current, unvisited∩safe, safe)
if plan is empty and ASK(KB,HaveArrowt) = true then

possible wumpus←{[x,y] : ASK(KB,¬Wx,y) = false}
plan←PLAN-SHOT(current, possible wumpus, safe)

if plan is empty then // no choice but to take a risk
not unsafe←{[x,y] : ASK(KB,¬ OKt

x,y) = false}
plan←PLAN-ROUTE(current, unvisited∩not unsafe, safe)

if plan is empty then
plan←PLAN-ROUTE(current,{[1,1]}, safe) + [Climb]

action←POP(plan)
TELL(KB, MAKE-ACTION-SENTENCE(action, t))
t← t + 1
return action

function PLAN-ROUTE(current,goals,allowed) returns an action sequence
inputs: current, the agent’s current position

goals, a set of squares; try to plan a route to one of them
allowed, a set of squares that can form part of the route

problem←ROUTE-PROBLEM(current, goals,allowed)
return SEARCH(problem) // Any search algorithm from Chapter 3

Figure 7.20 A hybrid agent program for the wumpus world. It uses a propositional knowl-
edge base to infer the state of the world, and a combination of problem-solving search and
domain-specific code to choose actions. Each time HYBRID-WUMPUS-AGENT is called, it
adds the percept to the knowledge base, and then either relies on a previously-defined plan or
creates a new plan, and pops off the first step of the plan as the action to do next.

21

function SATPLAN(init, transition, goal, T max) returns solution or failure
inputs: init, transition, goal, constitute a description of the problem

T max, an upper limit for plan length

for t = 0 to T max do
cnf←TRANSLATE-TO-SAT(init, transition, goal, t)
model←SAT-SOLVER(cnf)
if model is not null then

return EXTRACT-SOLUTION(model)
return failure

Figure 7.22 The SATPLAN algorithm. The planning problem is translated into a CNF sen-
tence in which the goal is asserted to hold at a fixed time step t and axioms are included for
each time step up to t. If the satisfiability algorithm finds a model, then a plan is extracted by
looking at those proposition symbols that refer to actions and are assigned true in the model.
If no model exists, then the process is repeated with the goal moved one step later.

CHAPTER 8
FIRST-ORDER LOGIC

CHAPTER 9
INFERENCE IN FIRST-ORDER LOGIC

function UNIFY(x, y, θ=empty) returns a substitution to make x and y identical, or failure
if θ = failure then return failure
else if x = y then return θ
else if VARIABLE?(x) then return UNIFY-VAR(x, y, θ)
else if VARIABLE?(y) then return UNIFY-VAR(y, x, θ)
else if COMPOUND?(x) and COMPOUND?(y) then

return UNIFY(ARGS(x), ARGS(y), UNIFY(OP(x), OP(y), θ))
else if LIST?(x) and LIST?(y) then

return UNIFY(REST(x), REST(y), UNIFY(FIRST(x), FIRST(y), θ))
else return failure

function UNIFY-VAR(var, x, θ) returns a substitution
if {var/val} ∈ θ for some val then return UNIFY(val, x, θ)
else if {x/val} ∈ θ for some val then return UNIFY(var, val, θ)
else if OCCUR-CHECK?(var, x) then return failure
else return add {var/x} to θ

Figure 9.1 The unification algorithm. The arguments x and y can be any expression: a
constant or variable, or a compound expression such as a complex sentence or term, or a
list of expressions. The argument θ is a substitution, initially the empty substitution, but
with {var/val} pairs added to it as we recurse through the inputs, comparing the expressions
element by element. In a compound expression such as F(A,B), OP(x) field picks out the
function symbol F and ARGS(x) field picks out the argument list (A,B).

24 Chapter 9 Inference in First-Order Logic

function FOL-FC-ASK(KB,α) returns a substitution or false
inputs: KB, the knowledge base, a set of first-order definite clauses

α, the query, an atomic sentence

while true do
new←{} // The set of new sentences inferred on each iteration
for each rule in KB do

(p1∧ . . .∧ pn ⇒ q)←STANDARDIZE-VARIABLES(rule)
for each θ such that SUBST(θ, p1 ∧ . . . ∧ pn) = SUBST(θ, p′1 ∧ . . . ∧ p′n)

for some p′1, . . . ,p
′
n in KB

q′←SUBST(θ, q)
if q′ does not unify with some sentence already in KB or new then

add q′ to new
φ←UNIFY(q′,α)
if φ is not failure then return φ

if new = {} then return false
add new to KB

Figure 9.3 A conceptually straightforward, but inefficient, forward-chaining algorithm. On
each iteration, it adds to KB all the atomic sentences that can be inferred in one step
from the implication sentences and the atomic sentences already in KB. The function
STANDARDIZE-VARIABLES replaces all variables in its arguments with new ones that have
not been used before.

function FOL-BC-ASK(KB, query) returns a generator of substitutions
return FOL-BC-OR(KB, query,{})

function FOL-BC-OR(KB, goal, θ) returns a substitution
for each rule in FETCH-RULES-FOR-GOAL(KB, goal) do
(lhs ⇒ rhs)←STANDARDIZE-VARIABLES(rule)
for each θ′ in FOL-BC-AND(KB, lhs, UNIFY(rhs, goal, θ)) do

yield θ′

function FOL-BC-AND(KB, goals, θ) returns a substitution
if θ = failure then return
else if LENGTH(goals) = 0 then yield θ
else

first,rest←FIRST(goals), REST(goals)
for each θ′ in FOL-BC-OR(KB, SUBST(θ, first), θ) do

for each θ′′ in FOL-BC-AND(KB, rest, θ′) do
yield θ′′

Figure 9.6 A simple backward-chaining algorithm for first-order knowledge bases.

CHAPTER 10
KNOWLEDGE REPRESENTATION

CHAPTER 11
AUTOMATED PLANNING

Init(At(C1, SFO) ∧ At(C2, JFK) ∧ At(P1, SFO) ∧ At(P2, JFK)
∧ Cargo(C1) ∧ Cargo(C2) ∧ Plane(P1) ∧ Plane(P2)
∧ Airport(JFK) ∧ Airport(SFO))

Goal(At(C1, JFK) ∧ At(C2, SFO))
Action(Load(c, p, a),

PRECOND: At(c, a) ∧ At(p, a) ∧ Cargo(c) ∧ Plane(p) ∧ Airport(a)
EFFECT: ¬ At(c, a) ∧ In(c, p))

Action(Unload(c, p, a),
PRECOND: In(c, p) ∧ At(p, a) ∧ Cargo(c) ∧ Plane(p) ∧ Airport(a)
EFFECT: At(c, a) ∧ ¬ In(c, p))

Action(Fly(p, from, to),
PRECOND: At(p, from) ∧ Plane(p) ∧ Airport(from) ∧ Airport(to)
EFFECT: ¬ At(p, from) ∧ At(p, to))

Figure 11.1 A PDDL description of an air cargo transportation planning problem.

Init(Tire(Flat) ∧ Tire(Spare) ∧ At(Flat,Axle) ∧ At(Spare,Trunk))
Goal(At(Spare,Axle))
Action(Remove(obj, loc),

PRECOND: At(obj, loc)
EFFECT: ¬ At(obj, loc) ∧ At(obj,Ground))

Action(PutOn(t, Axle),
PRECOND: Tire(t) ∧ At(t,Ground) ∧ ¬ At(Flat,Axle) ∧ ¬ At(Spare,Axle)
EFFECT: ¬ At(t,Ground) ∧ At(t,Axle))

Action(LeaveOvernight,
PRECOND:
EFFECT: ¬ At(Spare,Ground) ∧ ¬ At(Spare,Axle) ∧ ¬ At(Spare,Trunk)

∧ ¬ At(Flat,Ground) ∧ ¬ At(Flat,Axle) ∧ ¬ At(Flat, Trunk))

Figure 11.2 The simple spare tire problem.

27

Init(On(A,Table) ∧ On(B,Table) ∧ On(C,A)
∧ Block(A) ∧ Block(B) ∧ Block(C) ∧ Clear(B) ∧ Clear(C) ∧ Clear(Table))

Goal(On(A,B) ∧ On(B,C))
Action(Move(b,x,y),

PRECOND: On(b,x) ∧ Clear(b) ∧ Clear(y) ∧ Block(b) ∧ Block(y) ∧
(b6=x) ∧ (b6=y) ∧ (x 6=y),

EFFECT: On(b,y) ∧ Clear(x) ∧ ¬On(b,x) ∧ ¬Clear(y))
Action(MoveToTable(b,x),

PRECOND: On(b,x) ∧ Clear(b) ∧ Block(b) ∧ Block(x),
EFFECT: On(b,Table) ∧ Clear(x) ∧ ¬On(b,x))

Figure 11.4 A planning problem in the blocks world: building a three-block tower. One
solution is the sequence [MoveToTable(C,A),Move(B,Table,C),Move(A,Table,B)].

Refinement(Go(Home,SFO),
STEPS: [Drive(Home,SFOLongTermParking),

Shuttle(SFOLongTermParking,SFO)])
Refinement(Go(Home,SFO),

STEPS: [Taxi(Home,SFO)])

Refinement(Navigate([a,b], [x,y]),
PRECOND: a=x ∧ b=y
STEPS: [])

Refinement(Navigate([a,b], [x,y]),
PRECOND:Connected([a,b], [a−1,b])
STEPS: [Left,Navigate([a−1,b], [x,y])])

Refinement(Navigate([a,b], [x,y]),
PRECOND:Connected([a,b], [a+1,b])
STEPS: [Right,Navigate([a+1,b], [x,y])])

. . .

Figure 11.7 Definitions of possible refinements for two high-level actions: going to San
Francisco airport and navigating in the vacuum world. In the latter case, note the recursive
nature of the refinements and the use of preconditions.

28 Chapter 11 Automated Planning

function HIERARCHICAL-SEARCH(problem, hierarchy) returns a solution or failure

frontier←a FIFO queue with [Act] as the only element
while true do

if IS-EMPTY(frontier) then return failure
plan←POP(frontier) // chooses the shallowest plan in frontier
hla← the first HLA in plan, or null if none
prefix,suffix← the action subsequences before and after hla in plan
outcome←RESULT(problem.INITIAL, prefix)
if hla is null then // so plan is primitive and outcome is its result

if problem.IS-GOAL(outcome) then return plan
else for each sequence in REFINEMENTS(hla, outcome, hierarchy) do

add APPEND(prefix, sequence, suffix) to frontier

Figure 11.8 A breadth-first implementation of hierarchical forward planning search. The
initial plan supplied to the algorithm is [Act]. The REFINEMENTS function returns a set of
action sequences, one for each refinement of the HLA whose preconditions are satisfied by
the specified state, outcome.

29

function ANGELIC-SEARCH(problem, hierarchy, initialPlan) returns a solution or fail

frontier←a FIFO queue with initialPlan as the only element
while true do

if IS-EMPTY?(frontier) then return fail
plan←POP(frontier) // chooses the shallowest node in frontier
if REACH+(problem.INITIAL,plan) intersects problem.GOAL then

if plan is primitive then return plan // REACH+ is exact for primitive plans
guaranteed←REACH−(problem.INITIAL,plan) ∩ problem.GOAL
if guaranteed 6={} and MAKING-PROGRESS(plan, initialPlan) then

finalState←any element of guaranteed
return DECOMPOSE(hierarchy, problem.INITIAL, plan, finalState)

hla←some HLA in plan
prefix,suffix← the action subsequences before and after hla in plan
outcome←RESULT(problem.INITIAL, prefix)
for each sequence in REFINEMENTS(hla, outcome, hierarchy) do

add APPEND(prefix, sequence, suffix) to frontier

function DECOMPOSE(hierarchy, s0, plan, sf) returns a solution

solution←an empty plan
while plan is not empty do

action←REMOVE-LAST(plan)
si←a state in REACH−(s0,plan) such that sf∈REACH−(si,action)
problem←a problem with INITIAL = si and GOAL = sf
solution←APPEND(ANGELIC-SEARCH(problem, hierarchy, action), solution)
sf←si

return solution

Figure 11.11 A hierarchical planning algorithm that uses angelic semantics to identify and
commit to high-level plans that work while avoiding high-level plans that don’t. The predi-
cate MAKING-PROGRESS checks to make sure that we aren’t stuck in an infinite regression
of refinements. At top level, call ANGELIC-SEARCH with [Act] as the initialPlan.

30 Chapter 11 Automated Planning

Jobs({AddEngine1≺AddWheels1≺ Inspect1},
{AddEngine2≺AddWheels2≺ Inspect2})

Resources(EngineHoists(1), WheelStations(1), Inspectors(2), LugNuts(500))

Action(AddEngine1, DURATION:30,
USE:EngineHoists(1))

Action(AddEngine2, DURATION:60,
USE:EngineHoists(1))

Action(AddWheels1, DURATION:30,
CONSUME:LugNuts(20), USE:WheelStations(1))

Action(AddWheels2, DURATION:15,
CONSUME:LugNuts(20), USE:WheelStations(1))

Action(Inspecti, DURATION:10,
USE:Inspectors(1))

Figure 11.13 A job-shop scheduling problem for assembling two cars, with resource con-
straints. The notation A≺B means that action A must precede action B.

CHAPTER 12
QUANTIFYING UNCERTAINTY

function DT-AGENT(percept) returns an action
persistent: belief state, probabilistic beliefs about the current state of the world

action, the agent’s action

update belief state based on action and percept
calculate outcome probabilities for actions,

given action descriptions and current belief state
select action with highest expected utility

given probabilities of outcomes and utility information
return action

Figure 12.1 A decision-theoretic agent that selects rational actions.

CHAPTER 13
PROBABILISTIC REASONING

function ENUMERATION-ASK(X, e, bn) returns a distribution over X
inputs: X, the query variable

e, observed values for variables E
bn, a Bayes net with variables vars

Q(X)←a distribution over X, initially empty
for each value xi of X do

Q(xi)←ENUMERATE-ALL(vars, exi)
where exi is e extended with X = xi

return NORMALIZE(Q(X))

function ENUMERATE-ALL(vars, e) returns a real number
if EMPTY?(vars) then return 1.0
V←FIRST(vars)
if V is an evidence variable with value v in e

then return P(v | parents(V)) × ENUMERATE-ALL(REST(vars), e)
else return ∑v P(v | parents(V)) × ENUMERATE-ALL(REST(vars), ev)

where ev is e extended with V = v

Figure 13.11 The enumeration algorithm for exact inference in Bayes nets.

function ELIMINATION-ASK(X, e, bn) returns a distribution over X
inputs: X, the query variable

e, observed values for variables E
bn, a Bayesian network with variables vars

factors← []
for each V in ORDER(vars) do

factors← [MAKE-FACTOR(V, e)] + factors
if V is a hidden variable then factors←SUM-OUT(V , factors)

return NORMALIZE(POINTWISE-PRODUCT(factors))

Figure 13.13 The variable elimination algorithm for exact inference in Bayes nets.

33

function PRIOR-SAMPLE(bn) returns an event sampled from the prior specified by bn
inputs: bn, a Bayesian network specifying joint distribution P(X1, . . . ,Xn)

x←an event with n elements
for each variable Xi in X1, . . . ,Xn do

x[i]←a random sample from P(Xi | parents(Xi))
return x

Figure 13.16 A sampling algorithm that generates events from a Bayesian network. Each
variable is sampled according to the conditional distribution given the values already sampled
for the variable’s parents.

function REJECTION-SAMPLING(X, e, bn, N) returns an estimate of P(X |e)
inputs: X, the query variable

e, observed values for variables E
bn, a Bayesian network
N, the total number of samples to be generated

local variables: C, a vector of counts for each value of X, initially zero

for j = 1 to N do
x←PRIOR-SAMPLE(bn)
if x is consistent with e then

C[j]←C[j]+1 where x j is the value of X in x
return NORMALIZE(C)

Figure 13.17 The rejection-sampling algorithm for answering queries given evidence in a
Bayesian network.

34 Chapter 13 Probabilistic Reasoning

function LIKELIHOOD-WEIGHTING(X, e, bn, N) returns an estimate of P(X |e)
inputs: X, the query variable

e, observed values for variables E
bn, a Bayesian network specifying joint distribution P(X1, . . . ,Xn)
N, the total number of samples to be generated

local variables: W, a vector of weighted counts for each value of X, initially zero

for j = 1 to N do
x, w←WEIGHTED-SAMPLE(bn, e)
W[j]←W[j]+w where x j is the value of X in x

return NORMALIZE(W)

function WEIGHTED-SAMPLE(bn, e) returns an event and a weight

w←1; x←an event with n elements, with values fixed from e
for i = 1 to n do

if Xi is an evidence variable with value xi j in e
then w←w× P(Xi= xi j | parents(Xi))
else x[i]←a random sample from P(Xi | parents(Xi))

return x, w

Figure 13.18 The likelihood-weighting algorithm for inference in Bayesian networks. In
WEIGHTED-SAMPLE, each nonevidence variable is sampled according to the conditional
distribution given the values already sampled for the variable’s parents, while a weight is
accumulated based on the likelihood for each evidence variable.

function GIBBS-ASK(X, e, bn, N) returns an estimate of P(X |e)
local variables: C, a vector of counts for each value of X, initially zero

Z, the nonevidence variables in bn
x, the current state of the network, initialized from e

initialize x with random values for the variables in Z
for k = 1 to N do

choose any variable Zi from Z according to any distribution ρ(i)
set the value of Zi in x by sampling from P(Zi |mb(Zi))
C[j]←C[j]+1 where x j is the value of X in x

return NORMALIZE(C)

Figure 13.20 The Gibbs sampling algorithm for approximate inference in Bayes nets; this
version chooses variables at random, but cycling through the variables but also works.

CHAPTER 14
PROBABILISTIC REASONING OVER
TIME

function FORWARD-BACKWARD(ev, prior) returns a vector of probability distributions
inputs: ev, a vector of evidence values for steps 1, . . . , t

prior, the prior distribution on the initial state, P(X0)
local variables: fv, a vector of forward messages for steps 0, . . . , t

b, a representation of the backward message, initially all 1s
sv, a vector of smoothed estimates for steps 1, . . . , t

fv[0]←prior
for i= 1 to t do

fv[i]←FORWARD(fv[i−1],ev[i])
for i= t down to 1 do

sv[i]←NORMALIZE(fv[i]×b)
b←BACKWARD(b,ev[i])

return sv

Figure 14.4 The forward–backward algorithm for smoothing: computing posterior prob-
abilities of a sequence of states given a sequence of observations. The FORWARD and
BACKWARD operators are defined by Equations (14.5) and (14.9), respectively.

36 Chapter 14 Probabilistic Reasoning over Time

function FIXED-LAG-SMOOTHING(et , hmm, d) returns a distribution over Xt−d
inputs: et , the current evidence for time step t

hmm, a hidden Markov model with S× S transition matrix T
d, the length of the lag for smoothing

persistent: t, the current time, initially 1
f, the forward message P(Xt |e1:t), initially hmm.PRIOR
B, the d-step backward transformation matrix, initially the identity matrix
et−d:t , double-ended list of evidence from t−d to t, initially empty

local variables: Ot−d ,Ot , diagonal matrices containing the sensor model information

add et to the end of et−d:t
Ot←diagonal matrix containing P(et |Xt)
if t > d then

f←FORWARD(f,et−d)
remove et−d−1 from the beginning of et−d:t
Ot−d←diagonal matrix containing P(et−d |Xt−d)
B←O−1

t−dT−1BTOt
else B←BTOt
t← t+1
if t > d +1 then return NORMALIZE(f × B1) else return null

Figure 14.6 An algorithm for smoothing with a fixed time lag of d steps, implemented as an
online algorithm that outputs the new smoothed estimate given the observation for a new time
step. Notice that the final output NORMALIZE(f×B1) is just α f×b, by Equation (14.14).

function PARTICLE-FILTERING(e, N, dbn) returns a set of samples for the next time step
inputs: e, the new incoming evidence

N, the number of samples to be maintained
dbn, a DBN defined by P(X0), P(X1 |X0), and P(E1 |X1)

persistent: S, a vector of samples of size N, initially generated from P(X0)
local variables: W, a vector of weights of size N

for i = 1 to N do
S[i]←sample from P(X1 |X0= S[i]) // step 1
W[i]←P(e |X1= S[i]) // step 2

S←WEIGHTED-SAMPLE-WITH-REPLACEMENT(N, S, W) // step 3
return S

Figure 14.17 The particle filtering algorithm implemented as a recursive update oper-
ation with state (the set of samples). Each of the sampling operations involves sam-
pling the relevant slice variables in topological order, much as in PRIOR-SAMPLE. The
WEIGHTED-SAMPLE-WITH-REPLACEMENT operation can be implemented to run in O(N)
expected time. The step numbers refer to the description in the text.

CHAPTER 15
MAKING SIMPLE DECISIONS

function INFORMATION-GATHERING-AGENT(percept) returns an action
persistent: D, a decision network

integrate percept into D
j← the value that maximizes VPI(E j) / C(E j)
if VPI(E j) > C(E j)

then return Request(E j)
else return the best action from D

Figure 15.9 Design of a simple, myopic information-gathering agent. The agent works by
repeatedly selecting the observation with the highest information value, until the cost of the
next observation is greater than its expected benefit.

CHAPTER 16
MAKING COMPLEX DECISIONS

function VALUE-ITERATION(mdp, ε) returns a utility function
inputs: mdp, an MDP with states S, actions A(s), transition model P(s′ |s,a),

rewards R(s,a,s′), discount γ
ε, the maximum error allowed in the utility of any state

local variables: U, U′, vectors of utilities for states in S, initially zero
δ, the maximum relative change in the utility of any state

repeat
U←U′; δ←0
for each state s in S do

U′[s]←maxa∈A(s) Q-VALUE(mdp, s,a,U)
if |U′[s] − U[s]| > δ then δ←|U′[s] − U[s]|

until δ ≤ ε(1−γ)/γ
return U

Figure 16.6 The value iteration algorithm for calculating utilities of states. The termination
condition is from Equation (16.2).

39

function POLICY-ITERATION(mdp) returns a policy
inputs: mdp, an MDP with states S, actions A(s), transition model P(s′ |s,a)
local variables: U, a vector of utilities for states in S, initially zero

π, a policy vector indexed by state, initially random

repeat
U←POLICY-EVALUATION(π, U, mdp)
unchanged?← true
for each state s in S do

a∗← argmax
a∈A(s)

Q-VALUE(mdp, s,a,U)

if Q-VALUE(mdp, s,a∗,U) > Q-VALUE(mdp, s, π[s],U) then
π[s]←a∗; unchanged?← false

until unchanged?
return π

Figure 16.9 The policy iteration algorithm for calculating an optimal policy.

function POMDP-VALUE-ITERATION(pomdp, ε) returns a utility function
inputs: pomdp, a POMDP with states S, actions A(s), transition model P(s′ |s,a),

sensor model P(e |s), rewards R(s,a,s′), discount γ
ε, the maximum error allowed in the utility of any state

local variables: U, U′, sets of plans p with associated utility vectors αp

U′←a set containing all one-step plans [a], with α[a](s)= ∑s′ P(s′ |s,a) R(s,a,s′)
repeat

U←U′

U′← the set of all plans consisting of an action and, for each possible next percept,
a plan in U with utility vectors computed according to Equation (16.18)

U′←REMOVE-DOMINATED-PLANS(U′)
until MAX-DIFFERENCE(U,U′) ≤ ε(1−γ)/γ
return U

Figure 16.16 A high-level sketch of the value iteration algorithm for POMDPs. The
REMOVE-DOMINATED-PLANS step and MAX-DIFFERENCE test are typically implemented
as linear programs.

CHAPTER 17
MULTIAGENT DECISION MAKING

Actors(A,B)
Init(At(A,LeftBaseline) ∧ At(B,RightNet) ∧

Approaching(Ball,RightBaseline) ∧ Partner(A,B) ∧ Partner(B,A)
Goal(Returned(Ball) ∧ (At(x,RightNet) ∨ At(x,LeftNet))
Action(Hit(actor,Ball),

PRECOND:Approaching(Ball, loc) ∧ At(actor, loc)
EFFECT:Returned(Ball))

Action(Go(actor, to),
PRECOND:At(actor, loc) ∧ to 6= loc,
EFFECT:At(actor, to) ∧ ¬ At(actor, loc))

Figure 17.1 The doubles tennis problem. Two actors, A and B, are playing together and can
be in one of four locations: LeftBaseline, RightBaseline, LeftNet, and RightNet. The ball can
be returned only if a player is in the right place. The NoOp action is a dummy, which has no
effect. Note that each action must include the actor as an argument.

CHAPTER 18
PROBABILISTIC PROGRAMMING

type Researcher, Paper, Citation
random String Name(Researcher)
random String Title(Paper)
random Paper PubCited(Citation)
random String Text(Citation)
random Boolean Professor(Researcher)
origin Researcher Author(Paper)

#Researcher ∼ OM(3,1)
Name(r) ∼ NamePrior()
Professor(r) ∼ Boolean(0.2)
#Paper(Author= r) ∼ if Professor(r) then OM(1.5,0.5) else OM(1,0.5)
Title(p) ∼ PaperTitlePrior()
CitedPaper(c) ∼ UniformChoice({Paper p})
Text(c) ∼ HMMGrammar(Name(Author(CitedPaper(c))),Title(CitedPaper(c)))

Figure 18.5 An OUPM for citation information extraction. For simplicity the model assumes
one author per paper and omits details of the grammar and error models.

42 Chapter 18 Probabilistic Programming

#SeismicEvents ∼ Poisson(T ∗λe)
Time(e) ∼ UniformReal(0,T)
EarthQuake(e) ∼ Boolean(0.999)
Location(e) ∼ if Earthquake(e) then SpatialPrior() else UniformEarth()
Depth(e) ∼ if Earthquake(e) then UniformReal(0,700) else Exactly(0)
Magnitude(e) ∼ Exponential(log(10))
Detected(e, p,s) ∼ Logistic(weights(s, p),Magnitude(e), Depth(e), Dist(e,s))
#Detections(site = s) ∼ Poisson(T ∗λ f (s))
#Detections(event=e, phase=p, station=s) = if Detected(e, p,s) then 1 else 0
OnsetTime(a,s) if (event(a) = null) then ∼ UniformReal(0,T)

else = Time(event(a)) + GeoTT(Dist(event(a),s),Depth(event(a)),phase(a))
+ Laplace(µt(s),σt(s))

Amplitude(a,s) if (event(a) = null) then ∼ NoiseAmpModel(s)
else = AmpModel(Magnitude(event(a)),Dist(event(a),s),Depth(event(a)),phase(a))

Azimuth(a,s) if (event(a) = null) then ∼ UniformReal(0, 360)
else = GeoAzimuth(Location(event(a)),Depth(event(a)),phase(a),Site(s))

+ Laplace(0,σa(s))
Slowness(a,s) if (event(a) = null) then ∼ UniformReal(0,20)

else = GeoSlowness(Location(event(a)),Depth(event(a)),phase(a),Site(s))
+ Laplace(0,σs(s))

ObservedPhase(a,s) ∼ CategoricalPhaseModel(phase(a))

Figure 18.6 A simplified version of the NET-VISA model (see text).

#Aircraft(EntryTime =t) ∼ Poisson(λa)
Exits(a, t) ∼ if InFlight(a, t) then Boolean(αe)
InFlight(a, t) = (t=EntryTime(a)) ∨ (InFlight(a, t−1) ∧ ¬ Exits(a, t−1))
X(a, t) ∼ if t = EntryTime(a) then InitX()

else if InFlight(a, t) then N (FX(a, t−1),Σx)
#Blip(Source=a, Time=t) ∼ if InFlight(a, t) then Bernoulli(DetectionProb(X(a, t)))
#Blip(Time=t) ∼ Poisson(λ f)
Z(b) ∼ if Source(b)=null then UniformZ(R) else N (HX(Source(b),Time(b)),Σz)

Figure 18.9 An OUPM for radar tracking of multiple targets with false alarms, detection
failure, and entry and exit of aircraft. The rate at which new aircraft enter the scene is λa,
while the probability per time step that an aircraft exits the scene is αe. False alarm blips (i.e.,
ones not produced by an aircraft) appear uniformly in space at a rate of λ f per time step. The
probability that an aircraft is detected (i.e., produces a blip) depends on its current position.

43

function GENERATE-IMAGE() returns an image with some letters
letters←GENERATE-LETTERS(10)
return RENDER-NOISY-IMAGE(letters, 32, 128)

function GENERATE-LETTERS(λ) returns a vector of letters
n ∼ Poisson(λ)
letters← []
for i = 1 to n do

letters[i] ∼ UniformChoice({a,b,c, · · ·})
return letters

function RENDER-NOISY-IMAGE(letters, width, height) returns a noisy image of the letters
clean image←RENDER(letters, width, height, text top = 10, text left = 10)
noisy image← []
noise variance ∼ UniformReal(0.1, 1)
for row = 1 to width do

for col = 1 to height do
noisy image[row,col] ∼ N (clean image[row,col],noise variance)

return noisy image

Figure 18.11 Generative program for an open-universe probability model for optical charac-
ter recognition. The generative program produces degraded images containing sequences of
letters by generating each sequence, rendering it into a 2D image, and incorporating additive
noise at each pixel.

function GENERATE-MARKOV-LETTERS(λ) returns a vector of letters
n ∼ Poisson(λ)
letters← []
letter probs←MARKOV-INITIAL()
for i = 1 to n do

letters[i] ∼ Categorical(letter probs)
letter probs←MARKOV-TRANSITION(letters[i])

return letters

Figure 18.15 Generative program for an improved optical character recognition model that
generates letters according to a letter bigram model whose pairwise letter frequencies are
estimated from a list of English words.

CHAPTER 19
LEARNING FROM EXAMPLES

function LEARN-DECISION-TREE(examples, attributes, parent examples) returns a tree

if examples is empty then return PLURALITY-VALUE(parent examples)
else if all examples have the same classification then return the classification
else if attributes is empty then return PLURALITY-VALUE(examples)
else

A←argmaxa∈attributes IMPORTANCE(a, examples)
tree←a new decision tree with root test A
for each value v of A do

exs←{e : e∈examples and e.A = v}
subtree←LEARN-DECISION-TREE(exs, attributes−A, examples)
add a branch to tree with label (A = v) and subtree subtree

return tree

Figure 19.5 The decision tree learning algorithm. The function IMPORTANCE is described
in Section 19.3.3. The function PLURALITY-VALUE selects the most common output value
among a set of examples, breaking ties randomly.

45

function MODEL-SELECTION(Learner, examples, k) returns a (hypothesis, error rate) pair

err←an array, indexed by size, storing validation-set error rates
training set, test set←a partition of examples into two sets
for size = 1 to ∞ do

err[size]←CROSS-VALIDATION(Learner, size, training set, k)
if err is starting to increase significantly then

best size← the value of size with minimum err[size]
h←Learner(best size, training set)
return h, ERROR-RATE(h, test set)

function CROSS-VALIDATION(Learner, size, examples, k) returns error rate

N← the number of examples
errs←0
for i = 1 to k do

validation set←examples[(i − 1) × N/k:i × N/k]
training set←examples − validation set
h←Learner(size, training set)
errs←errs + ERROR-RATE(h, validation set)

return errs / k // average error rate on validation sets, across k-fold cross-validation

Figure 19.8 An algorithm to select the model that has the lowest validation error. It builds
models of increasing complexity, and choosing the one with best empirical error rate, err,
on the validation data set. Learner(size,examples) returns a hypothesis whose complexity
is set by the parameter size, and which is trained on examples. In CROSS-VALIDATION,
each iteration of the for loop selects a different slice of the examples as the validation set,
and keeps the other examples as the training set. It then returns the average validation set
error over all the folds. Once we have determined which value of the size parameter is best,
MODEL-SELECTION returns the model (i.e., learner/hypothesis) of that size, trained on all
the training examples, along with its error rate on the held-out test examples.

function DECISION-LIST-LEARNING(examples) returns a decision list, or failure

if examples is empty then return the trivial decision list No
t←a test that matches a nonempty subset examplest of examples

such that the members of examplest are all positive or all negative
if there is no such t then return failure
if the examples in examplest are positive then o←Yes else o←No
return a decision list with initial test t and outcome o and remaining tests given by

DECISION-LIST-LEARNING(examples − examplest)

Figure 19.11 An algorithm for learning decision lists.

46 Chapter 19 Learning from Examples

function ADABOOST(examples, L, K) returns a hypothesis
inputs: examples, set of N labeled examples (x1,y1), . . . ,(xN ,yN)

L, a learning algorithm
K, the number of hypotheses in the ensemble

local variables: w, a vector of N example weights, initially all 1/N
h, a vector of K hypotheses
z, a vector of K hypothesis weights

ε←a small positive number, used to avoid division by zero
for k = 1 to K do

h[k]←L(examples, w)
error←0
for j = 1 to N do // Compute the total error for h[k]

if h[k](x j) 6= y j then error←error + w[j]
if error > 1/2 then break from loop
error←min(error, 1 − ε)
for j = 1 to N do // Give more weight to the examples h[k] got wrong

if h[k](x j) = y j then w[j]←w[j] · error/(1− error)
w←NORMALIZE(w)
z[k]← 1

2 log((1− error)/error) // Give more weight to accurate h[k]
return Function(x) : ∑ zi hi(x)

Figure 19.25 The ADABOOST variant of the boosting method for ensemble learning. The
algorithm generates hypotheses by successively reweighting the training examples. The func-
tion WEIGHTED-MAJORITY generates a hypothesis that returns the output value with the
highest vote from the hypotheses in h, with votes weighted by z. For regression problems, or
for binary classification with two classes -1 and 1, this is ∑k h[k]z[k].

CHAPTER 20
KNOWLEDGE IN LEARNING

function CURRENT-BEST-LEARNING(examples, h) returns a hypothesis or fail

if examples is empty then
return h

e←FIRST(examples)
if e is consistent with h then

return CURRENT-BEST-LEARNING(REST(examples), h)
else if e is a false positive for h then

for each h′ in specializations of h consistent with examples seen so far do
h′′←CURRENT-BEST-LEARNING(REST(examples), h′)
if h′′ 6= fail then return h′′

else if e is a false negative for h then
for each h′ in generalizations of h consistent with examples seen so far do

h′′←CURRENT-BEST-LEARNING(REST(examples), h′)
if h′′ 6= fail then return h′′

return fail

Figure 20.2 The current-best-hypothesis learning algorithm. It searches for a consis-
tent hypothesis that fits all the examples and backtracks when no consistent specializa-
tion/generalization can be found. To start the algorithm, any hypothesis can be passed in;
it will be specialized or gneralized as needed.

function VERSION-SPACE-LEARNING(examples) returns a version space
local variables: V , the version space: the set of all hypotheses

V← the set of all hypotheses
for each example e in examples do

if V is not empty then V←VERSION-SPACE-UPDATE(V , e)
return V

function VERSION-SPACE-UPDATE(V , e) returns an updated version space

V←{h∈V : h is consistent with e}

Figure 20.3 The version space learning algorithm. It finds a subset of V that is consistent
with all the examples.

48 Chapter 20 Knowledge in Learning

function MINIMAL-CONSISTENT-DET(E, A) returns a set of attributes
inputs: E, a set of examples

A, a set of attributes, of size n

for i = 0 to n do
for each subset Ai of A of size i do

if CONSISTENT-DET?(Ai, E) then return Ai

function CONSISTENT-DET?(A, E) returns a truth value
inputs: A, a set of attributes

E, a set of examples
local variables: H, a hash table

for each example e in E do
if some example in H has the same values as e for the attributes A

but a different classification then return false
store the class of e in H, indexed by the values for attributes A of the example e

return true

Figure 20.8 An algorithm for finding a minimal consistent determination.

49

function FOIL(examples, target) returns a set of Horn clauses
inputs: examples, set of examples

target, a literal for the goal predicate
local variables: clauses, set of clauses, initially empty

while examples contains positive examples do
clause←NEW-CLAUSE(examples, target)
remove positive examples covered by clause from examples
add clause to clauses

return clauses

function NEW-CLAUSE(examples, target) returns a Horn clause
local variables: clause, a clause with target as head and an empty body

l, a literal to be added to the clause
extended examples, a set of examples with values for new variables

extended examples←examples
while extended examples contains negative examples do

l←CHOOSE-LITERAL(NEW-LITERALS(clause), extended examples)
append l to the body of clause
extended examples←set of examples created by applying EXTEND-EXAMPLE

to each example in extended examples
return clause

function EXTEND-EXAMPLE(example, literal) returns a set of examples
if example satisfies literal

then return the set of examples created by extending example with
each possible constant value for each new variable in literal

else return the empty set

Figure 20.12 Sketch of the FOIL algorithm for learning sets of first-order Horn clauses from
examples. NEW-LITERALS and CHOOSE-LITERAL are explained in the text.

CHAPTER 21
LEARNING PROBABILISTIC MODELS

CHAPTER 22
DEEP LEARNING

CHAPTER 23
REINFORCEMENT LEARNING

function PASSIVE-ADP-LEARNER(percept) returns an action
inputs: percept, a percept indicating the current state s′ and reward signal r
persistent: π, a fixed policy

mdp, an MDP with model P, rewards R, actions A, discount γ
U, a table of utilities for states, initially empty
Ns′|s,a, a table of outcome count vectors indexed by state and action, initially zero
s, a, the previous state and action, initially null

if s′ is new then U[s′]←0
if s is not null then

increment Ns′|s,a[s, a][s’]
R[s, a, s′]←r
add a to A[s]
P(· | s,a)←NORMALIZE(Ns′|s,a[s, a])
U←POLICYEVALUATION(π, U, mdp)
s, a←s′,π[s′]
return a

Figure 23.2 A passive reinforcement learning agent based on adaptive dynamic program-
ming. The agent chooses a value for γ and then incrementally computes the P and R values
of the MDP. The POLICY-EVALUATION function solves the fixed-policy Bellman equations,
as described on page 567.

53

function PASSIVE-TD-LEARNER(percept) returns an action
inputs: percept, a percept indicating the current state s′ and reward signal r
persistent: π, a fixed policy

s, the previous state, initially null
U, a table of utilities for states, initially empty
Ns, a table of frequencies for states, initially zero

if s′ is new then U[s′]←0
if s is not null then

increment Ns[s]
U[s]←U[s] + α(Ns[s]) × (r + γU[s′] - U[s])

s←s′

return π[s′]

Figure 23.4 A passive reinforcement learning agent that learns utility estimates using tem-
poral differences. The step-size function α(n) is chosen to ensure convergence.

function Q-LEARNING-AGENT(percept) returns an action
inputs: percept, a percept indicating the current state s′ and reward signal r
persistent: Q, a table of action values indexed by state and action, initially zero

Nsa, a table of frequencies for state–action pairs, initially zero
s, a, the previous state and action, initially null

if s is not null then
increment Nsa[s, a]
Q[s,a]←Q[s,a] + α(Nsa[s,a])(r + γ maxa′ Q[s′,a′] − Q[s,a])

s, a←s′, argmaxa′ f (Q[s′,a′],Nsa[s′,a′])
return a

Figure 23.8 An exploratory Q-learning agent. It is an active learner that learns the value
Q(s,a) of each action in each situation. It uses the same exploration function f as the ex-
ploratory ADP agent, but avoids having to learn the transition model.

CHAPTER 24
NATURAL LANGUAGE PROCESSING

function CYK-PARSE(words, grammar) returns a table of parse trees
inputs: words, a list of words

grammar, a structure with LEXICALRULES and GRAMMARRULES
T←a table // T[X, i, k] is most probable X tree spanning wordsi:k
P←a table, initially all 0 // P[X, i, k] is probability of tree T[X, i, k]
// Insert lexical categories for each word.
for i = 1 to LEN(words) do

for each (X, p) in grammar.LEXICALRULES(wordsi) do
P[X, i, i]←p
T[X, i, i]←TREE(X, wordsi)

// Construct Xi:k from Yi: j + Z j+1:k, shortest spans first.
for each (i, j, k) in SUBSPANS(LEN(words)) do

for each (X, Y, Z, p) in grammar.GRAMMARRULES do
PYZ←P[Y, i, j] × P[Z, j+1, k] × p
if PYZ > P[X, i, k] do

P[X, i, k]←PYZ
T[X, i, k]←TREE(X, T[Y , i, j], T[Z, j + 1, k])

return T

function SUBSPANS(N) yields (i, j, k) tuples
for length = 2 to N do

for i = 1 to N + 1 − length do
k← i + length − 1
for j = i to k − 1 do

yield (i, j, k)

Figure 24.5 The CYK algorithm for parsing. Given a sequence of words, it finds the most
probable parse tree for the sequence and its subsequences. The table P[X, i,k] gives the prob-
ability of the most probable tree of category X spanning wordsi:k. The output table T[X, i, k]
contains the most probable tree of category X spanning positions i to k inclusive. The func-
tion SUBSPANS returns all tuples (i, j,k) covering a span of wordsi:k, with i≤ j< k, listing the
tuples by increasing length of the i : k span, so that when we go to combine two shorter spans
into a longer one, the shorter spans are already in the table. LEXICALRULES(word) returns a
collection of (X, p) pairs, one for each rule of the form X →word [p], and GRAMMARRULES
gives (X,Y,Z,p) tuples, one for each grammar rule of the form X → Y Z [p].

55

[[S [NP-2 Her eyes]
[VP were

[VP glazed
[NP *-2]
[SBAR-ADV as if

[S [NP she]
[VP did n’t

[VP [VP hear [NP *-1]]
or
[VP [ADVP even] see [NP *-1]]
[NP-1 him]]]]]]]]

.]

Figure 24.8 Annotated tree for the sentence “Her eyes were glazed as if she didn’t hear
or even see him.” from the Penn Treebank. Note a grammatical phenomenon we have not
covered yet: the movement of a phrase from one part of the tree to another. This tree analyzes
the phrase “hear or even see him” as consisting of two constituent VPs, [VP hear [NP *-1]]
and [VP [ADVP even] see [NP *-1]], both of which have a missing object, denoted *-1, which
refers to the NP labeled elsewhere in the tree as [NP-1 him]. Similarly, the [NP *-2] refers to
the [NP-2 Her eyes].

CHAPTER 25
DEEP LEARNING FOR NATURAL
LANGUAGE PROCESSING

It is a truth universally acknowledged that the earth is not the center of the uni-
verse. There are those who assert there is. I do not accept them, but others I
consider to be of the same opinion. The truth is, however, that if there are other
than the center, and if there are any other living things in the universe and if they
are not human, then we do not yet have our answers. We have to go on. This page
gives a simplified, simplified answer to the problem. We don’t have all the answers.
The truth is, however, that the truth is out there.

When Gregor Samsa woke up one morning, he did not notice anything strange.
“When my wife is looking at me, I feel like she is looking at a piece of art,” he said.
“I think she is admiring something I have created.” The idea is that by looking at
your own life, you learn something important and become a better person. It is a
theory that emerged from psychologist Daniel Goleman’s work, in which he asked
“How do you know you’re not a loser?”

Alice was beginning to get very tired of sitting with her sister on the bank. She
sat up, yawned, and said, with a loud little scream, “I hope you don’t mind if I keep
on doing what I should like to do, and if someone asks me which of us will do
more, don’t tell them that I won’t do much, my dear sister.”

All happy families are alike; each happy family is like a garden of paradise. The
only difference between happy families and unhappy families, is that the unhappy
family doesn’t have any flowers or trees.

Tell me a story. Tell me a story. Tell me a story. Tell me a story. Tell me a story.
Tell me a story. Tell me a story. Tell me a story. Tell me a story. Tell me a story.
Tell me a story. Tell me a story. Please fill out the following details. Thank you...
Thank you for your interest in this interview. Please wait...

Figure 25.14 Example completion texts generated by the GPT-2 language model, given the
prompts in bold. Most of the texts are quite fluent English, at least locally. The final example
demonstrates that sometimes the model just breaks down.

CHAPTER 26
ROBOTICS

function MONTE-CARLO-LOCALIZATIONa, z, N, P(X ′|X , v, ω), P(z|z∗), map
returns a set of samples, S, for the next time step
inputs: a, robot velocities v and ω

z, a vector of M range scan data points
P(X ′|X , v, ω), motion model
P(z|z∗), a range sensor noise model
map, a 2D map of the environment

persistent: S, a vector of N samples
local variables: W , a vector of N weights

S′, a temporary vector of N samples

if S is empty then
for i = 1 to N do // initialization phase

S[i]←sample from P(X0)
for i = 1 to N do // update cycle

S′[i]←sample from P(X ′|X = S[i],v,ω)
W [i]←1
for j = 1 to M do

z∗←RAYCAST(j, X = S′[i], map)
W [i]←W [i] · P(z j| z∗)

S←WEIGHTED-SAMPLE-WITH-REPLACEMENT(N, S′, W)
return S

Figure 26.6 A Monte Carlo localization algorithm using a range-scan sensor model with
independent noise.

CHAPTER 27
COMPUTER VISION

CHAPTER 28
PHILOSOPHY, ETHICS, AND SAFETY
OF AI

CHAPTER 29
THE FUTURE OF AI

APPENDIX A
MATHEMATICAL BACKGROUND

APPENDIX B
NOTES ON LANGUAGES AND
ALGORITHMS

