
Bibliographical and Historical Notes 311

lish propositional inconsistency. This idea led John Alan Robinson (no relation) to develop

resolution (Robinson, 1965).

Resolution was adopted for question-answering systems by Cordell Green and Bertram

Raphael (1968). Early AI implementations put a good deal of effort into data structures that

would allow efficient retrieval of facts; this work is covered in AI programming texts (Char-

niak et al., 1987; Norvig, 1992; Forbus and de Kleer, 1993). By the early 1970s, forward

chaining was well established in AI as an easily understandable alternative to resolution. AI

applications typically involved large numbers of rules, so it was important to develop efficient

rule-matching technology, particularly for incremental updates.

The technology for production systems was developed to support such applications. The

production system language OPS-5 (Forgy, 1981; Brownston et al., 1985), incorporating the

efficient Rete match process (Forgy, 1982), was used for applications such as the R1 expert

system for minicomputer configuration (McDermott, 1982). Kraska et al. (2017) describe

how neural nets can learn an efficient indexing scheme for specific data sets.

The SOAR cognitive architecture (Laird et al., 1987; Laird, 2008) was designed to handle

very large rule sets—up to a million rules (Doorenbos, 1994). Example applications of SOAR

include controlling simulated fighter aircraft (Jones et al., 1998), airspace management (Tay-

lor et al., 2007), AI characters for computer games (Wintermute et al., 2007), and training

tools for soldiers (Wray and Jones, 2005).

The field of deductive databases began with a workshop in Toulouse in 1977 attended

by experts in logical inference and databases (Gallaire and Minker, 1978). Influential work

by Chandra and Harel (1980) and Ullman (1985) led to the adoption of Datalog as a standard

language for deductive databases. The development of the magic sets technique for rule

rewriting by Bancilhon et al. (1986) allowed forward chaining to borrow the advantage of

goal-directedness from backward chaining.

The rise of the Internet led to increased availability of massive online databases. This

drove increased interest in integrating multiple databases into a consistent dataspace (Halevy,

2007). Kraska et al. (2017) showed speedups of up to 70% by using machine learning to

create learned index structures for efficient data lookup.

Backward chaining for logical inference originated in the PLANNER language (Hewitt,

1969). Meanwhile, in 1972, Alain Colmerauer had developed and implemented Prolog for

the purpose of parsing natural language—Prolog’s clauses were intended initially as context-

free grammar rules (Roussel, 1975; Colmerauer et al., 1973).

Much of the theoretical background for logic programming was developed by Robert

Kowalski at Imperial College London, working with Colmerauer; see Kowalski (1988) and

Colmerauer and Roussel (1993) for a historical overview. Efficient Prolog compilers are

generally based on the Warren Abstract Machine (WAM) model of computation developed by

David H. D. Warren (1983). Van Roy (1990) showed that Prolog programs can be competitive

with C programs in terms of speed.

Methods for avoiding unnecessary looping in recursive logic programs were developed

independently by Smith et al. (1986) and Tamaki and Sato (1986). The latter paper also

included memoization for logic programs, a method developed extensively as tabled logic

programming by David S. Warren. Swift and Warren (1994) show how to extend the WAM

to handle tabling, enabling Datalog programs to execute an order of magnitude faster than

forward-chaining deductive database systems.


