154

Chapter 5 Adversarial Search and Games

Player

Opponent

Player

Opponent

Figure 5.6 The general case for alpha—beta pruning. If m or m’ is better than n for Player,
we will never get to n in play.

function ALPHA-BETA-SEARCH(game, state) returns an action
player «— game. TO-MOVE(state)
value, move <— M AX-VALUE(game, state, —oo, +o0)
return move

function MAX-VALUE(game, state, o,) returns a (utility, move) pair
if game.IS-TERMINAL(state) then return game.UTILITY (state, player), null
v, move <— —oo, null
for each a in game. ACTIONS(state) do
v2, a2 <+ MIN-VALUE(game, game.RESULT(state, a), cv, 3)
if v2 > v then
v, move<+v2, a
a+—MAX(a, v)
if v > [then return v, move
return v, move

function MIN-VALUE(game, state, «, 3) returns a (utility, move) pair
if game.IS-TERMINAL(state) then return game . UTILITY (state, player), null
v, move < —+oo, null
for each a in game. ACTIONS(state) do
v2, a2 <+ MAX-VALUE(game, game. RESULT(state, a), c, [3)
if v2 < v then
v, move<+v2, a
B < MIN(S, v)
if v < « then return v, move
return v, move

Figure 5.7 The alpha—beta search algorithm. Notice that these functions are the same as the
MINIMAX-SEARCH functions in Figure 5.3, except that we maintain bounds in the variables
« and (3, and use them to cut off search when a value is outside the bounds.

